Conflict of interest: H.C. reports grants from Medtronic and St. Jude Medical, during the conduct of the study; F.D. and C.B. report grants from the Georg and Bertha Schwyzer-Winker Foundation; M.N.A.M.E. reports personal fees from Boston Scientific Corporation, St. Jude Medical, and from Medtronic. The other authors report no conflicts of interest.

References
The list of references is available in the online version of this paper.

Comparison of conventional resynchronization therapy to multipoint pacing using two separate left ventricular leads by non-invasive imaging of cardiac electrophysiology

Fabian Barbieri1, Bernhard Pfeifer2, Thomas Berger1, and Wolfgang Dichtl1*

1Department of Cardiology and Angiology, University Hospital for Internal Medicine III, University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria; and 2Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology (UMIT), Hall in Tirol, Austria

* Corresponding author. Tel: +43 51250481388, Fax: +43 51250422767, Email: wolfgang.dichtl@uki.at; dichtl@me.com

A 64-year-old woman with non-ischaemic cardiomyopathy (left ventricular ejection fraction 30%), mild heart failure symptoms, and left bundle branch block underwent implantation of a cardiac resynchronization therapy (CRT)-defibrillator device. Previous endomyocardial biopsy had revealed no signs of infiltrative disease or ongoing myocarditis. As venous anatomy included both a postero- and anterolateral vein, two separate left ventricular leads were implanted (Panel A).

Clinical follow-up showed normalization of systolic left ventricular function and significant reduction of QRS complex duration. To separate the effects of conventional CRT to multipoint pacing (MPP), non-invasive imaging of cardiac electrophysiology (NICE) was performed 3 days after implantation: NICE is a novel imaging tool which works by fusing data from high-resolution electrocardiogram mapping with a model of the patient’s individual cardiothoracic anatomy created from magnetic resonance imaging. Beat-to-beat endo- and epicardial ventricular activation sequences were computed using NICE during intrinsic conduction as well as during different pacing modes (right ventricular, conventional resynchronization, MPP; Panels B and C). Multipoint pacing resulted in a marked shortening of total activation duration of both ventricles when compared with conventional CRT, intrinsic conduction, and right ventricular pacing.

Multipoint pacing by two separate left ventricular leads seems to further improve the clinical and structural response to CRT, and may be considered in selected patients depending on the individual anatomy of the cardiac vein system.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.