How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)

Burkert Pieske1,2,3,4*, Carsten Tscho¨pe1,2,5, Rudolf A. de Boer6, Alan G. Fraser7, Stefan D. Anker1,2,5,8, Erwan Donal9, Frank Edelmann1,2, Michael Fu10, Marco Guazzi11,12, Carolyn S.P. Lam13,14, Patrizio Lancellotti15, Vojtech Melenovsky16, Daniel A. Morris1, Eike Nagel17,18, Elisabeth Pieske-Kraigher1, Piotr Ponikowski19, Scott D. Solomon20, Ramachandran S. Vasan21, Frans H. Rutten22, Adriaan A. Voors6, Frank Ruschitzka23, Walter J. Paulus24, Petar Seferovic25, and Gerasimos Filippatos26,27

1Department of Internal Medicine and Cardiology, Charite´ - Universita¨tsmedizin Berlin, Campus Virchow Klinikum; 2German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany; 3Department of Internal Medicine and Cardiology, German Heart Institute, Berlin, Germany; 4Berlin Institute of Health (BIH), Germany; 5Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany; 6University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands; 7School of Medicine, Cardiff University, Cardiff, UK; 8Department of Cardiology and Pneumology, University Medicine Go¨ttingen (UMG), Germany; 9Cardiology and CIC, IT1414, CHU de Rennes LTSI, Universite´ Rennes-I, INSERM 1099, Rennes, France; 10Section of Cardiology, Department of Medicine, Sahlgrenska University Hospital/Ostra, Goteborg, Sweden; 11Department of Biomedical Sciences for Health, University of Milan, IRCCS, Milan, Italy; 12Department of Cardiology, IRCCS Policlinico, San Donato Milanese, Milan, Italy; 13National Heart Centre, Singapore & Duke-National University of Singapore; 14University Medical Centre Groningen, The Netherlands; 15Department of Cardiology, Heart Valve Clinic, University of Liege Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liege, Belgium; 16Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic; 17Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt; 18German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt, Germany; 19Medical University, Clinical Military Hospital, Wroclaw, Poland; 20Cardiovascular Division, Bingham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 21Section of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; 22Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; 23University Heart Centre, University Hospital Zurich, Switzerland; 24Department of Physiology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, The Netherlands; 25University of Belgrade School of Medicine, Belgrade University Medical Center, Serbia; 26Department of Cardiology, National and Kapodistrian University of Athens Medical School; University Hospital “Attikon”, Athens, Greece; and 27University of Cyprus, School of Medicine, Nicosia, Cyprus

Received 16 May 2018; revised 30 October 2018; editorial decision 16 August 2019; accepted 26 August 2019; online publish-ahead-of-print 31 August 2019

Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HfPEF) remains a challenge. We recommend a new step-wise diagnostic process, the ‘HFA–PEFF diagnostic algorithm’. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HfPEF can be suspected if there is a normal left ventricular ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HfPEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e‘), left ventricular (LV) filling pressure estimated using E/e’, left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic...
strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥ 5 points implies definite HfPEF; ≤ 1 point makes HfPEF unlikely. An intermediate score (2–4 points) implies diagnostic uncertainty, in which case Step 3 (F_3: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F_4: Final aetiology) is recommended to establish a possible specific cause of HfPEF or alternative explanations. Further research is needed for a better classification of HfPEF.

Keywords

Heart failure • HfPEF • diagnosis • echocardiography • biomarkers • natriuretic peptides • exercise echocardiography

Introduction

In the general population aged ≥ 60 years, 4.9% were identified to have heart failure with preserved ejection fraction (HfPEF), implying several millions of affected individuals in Europe. This number is expected to increase further as people live longer and obesity and diabetes become more common. Heart failure with preserved ejection fraction already accounts for more than half of all heart failure (HF) hospital admissions. Providing effective management is a major unmet clinical need that will depend on a clear diagnosis.

The Heart Failure Association (HFA) of the European Society of Cardiology (ESC) published a consensus statement in 2007 on ‘How to diagnose diastolic heart failure’. Since then, terminology has evolved through HF with normal ejection fraction (HfN EF) to the current definition as ‘HF with preserved ejection fraction’. Additional diagnostic criteria for HfPEF have been published, including one scoring system, but they differ in echocardiographic cut-off values, the role of comorbidities, the inclusion of biomarkers, the role of invasive haemodynamic assessment, and the role of exercise stress testing. Understanding of the pathophysiology of HfPEF has advanced, diagnostic options have evolved, and this novel information needs to be integrated into a new comprehensive diagnostic algorithm for suspected HfPEF.

A writing committee initiated by the HFA of the ESC has therefore produced an updated consensus recommendation—the HFA–PEFF diagnostic algorithm (Figure 1). Its key elements are (i) the concept that identification of HfPEF involves all levels of care, including general practitioners, internists, general cardiologists, HF specialists, and invasive cardiologists; (ii) a stepwise diagnostic approach from initial clinical assessment to more specialized tests will therefore be useful; (iii) the diagnosis is not always straightforward, so the integration of distinct parameters from complementary diagnostic domains into a new diagnostic score is recommended; (iv) for the subset of patients with an inconclusive score, definitive diagnosis (or exclusion) will require invasive haemodynamics and/or non-invasive or invasive exercise stress tests; and (v) underlying pathophysiological alterations (such as chronotropic incompetence, reduced LV compliance) and specific aetiologies (such as amyloidosis) have to be considered. A precise diagnosis is increasingly important since new targeted therapies are becoming available for defined subsets of HfPEF patients.

Why new diagnostic recommendations for heart failure with preserved ejection fraction?

The key criteria in the previous HFA recommendations were: (i) symptoms and/or signs of HF, (ii) normal or only mildly abnormal LV systolic function, and (iii) LV diastolic dysfunction. Diagnostic parameters were invasive measurements, echocardiographic indices of LV diastolic function and filling pressures, LV hypertrophy (LVH), left atrial (LA) enlargement, serum natriuretic peptides (NP), and atrial fibrillation (AF). Over time, both advantages and disadvantages of this approach have been reported.

Cut-offs for key non-invasive parameters are often based on limited data, and may fall in a non-diagnostic intermediate range. The non-invasive diagnosis or exclusion of HfPEF will not depend on a single parameter above or below a certain cut-off, but on a combination of parameters derived from clinical, laboratory, and imaging tests that together will give a probability for the diagnosis. A recent example of such an approach was a composite HfPEF diagnostic score, derived retrospectively from clinical characteristics (age ≥ 60 years, obesity, atrial fibrillation, treatment with ≥ 2 antihypertensive drugs) and echocardiographic measurements [$E/e' > 9$, pulmonary artery systolic pressure (PASP) > 35 mmHg].

Echocardiographic criteria for diagnosing heart failure with preserved ejection fraction

Left ventricular ejection fraction (LVEF) estimates global function but does not indicate LV volume or stroke volume. Despite a preserved LVEF, patients with HfPEF have impaired LV long-axis systolic function, which can be measured using mitral annular systolic excursion or systolic velocities or LV global longitudinal strain (GLS). As well as global diastolic dysfunction, they have long-axis diastolic dysfunction which can be measured from the velocity of long-axis lengthening of the LV in early diastole (from mitral annular velocity, e'). These were not considered in the previous HFA recommendations.

A mean E/e' index ≥ 15 at rest has good diagnostic value for identifying a high mean pulmonary capillary wedge pressure (mPCWP), supporting the likelihood of HfPEF. but an E/e' ratio within the intermediate range (9–14) is less sensitive. The E/e' ratio has limitations that are relevant in routine clinical practice and its use as
single diagnostic index above all other non-invasive measures of filling pressures (such as retrograde pulmonary venous flow) cannot be recommended. In consequence, HFpEF cannot be diagnosed from a single echocardiographic measure, and inclusion of recently validated functional and structural parameters into a diagnostic score may better define this heterogeneous disorder.

Usefulness of natriuretic peptides

In general, NP levels are higher in patients presenting with acute shortness of breath for cardiac reason or in acute HF, than in patients who have chronic HF.30,31 Of note, our recommendations target stable symptomatic HFpEF, and natriuretic peptide levels can be normal in these patients even with invasively confirmed HFpEF. In consequence, normal NP levels do not exclude HFpEF, especially in the presence of obesity.32,33 Interpretation depends also on whether the patient is in sinus rhythm (SR) or has AF, which itself is associated with increased NP levels even in the absence of HF.34,35

Besides obesity, sex, age, and renal function affect NP levels,36,37 but using stratified cut-points only marginally improves diagnostic accuracy (net reclassification index 3%),38 at the expense of less everyday utility. The variability of repeated measurements in individual patients is up to 100%, so a rise or fall of ≤100% may not necessarily indicate recovery or progression of disease.39,40

Diagnostic algorithms for heart failure with preserved ejection fraction

The concept of a diagnostic algorithm that incorporates imaging and biomarkers (NPs) was recommended by the HFA in 2007,4 and adapted by others.41 It allowed parallel diagnostic pathways starting from haemodynamic measurements, echocardiography, or NPs,4 that could yield different results for the same patients. In addition, the proportion of non-classifiable patients was substantial. Thus, our revised algorithm (see below) proposes a novel stepwise diagnostic approach that has only one entry point, and all patients will be classifiable.

Defining aetiology and pathophysiology

Heart failure with preserved ejection fraction typically evolves from a combination of risk factors and comorbidities, including advanced age, female sex, obesity, systemic arterial hypertension, diabetes mellitus, renal dysfunction, anaemia, iron deficiency, sleep disorders, and chronic obstructive pulmonary disease.12,11,42–44 Heart failure with preserved ejection fraction ‘masqueraders’ such as heart valve disease, arrhythmias, and pericardial constriction need to be excluded. Similarly, a patient with a normal LVEF and HF-like symptoms caused by significant coronary artery disease (CAD) is also not considered to have HFpEF. Similar to current practice for heart failure with reduced ejection fraction (HFrEF), we recommend applying the descriptive term HFpEF for both the classical form with typical risk factors and comorbidities, and for rarer cases with a specific aetiology, provided that the key diagnostic criteria are met. Specific aetiologies that may be treatable include inherited or acquired infiltrative, restrictive, inflammatory, or genetic cardiomyopathies45–48 (Table 2). They should always be considered once a diagnosis of HFpEF has been made (Table 2, Supplementary material online, S2–S4). It has been suggested that patients with HFrEF share a common mechanism that responds to common treatment (inhibition of the renin-angiotensin system)3 but there are other treatments for subsets of patients with HFrEF that are specific (such as treating ischaemia when there is hibernating myocardium, using targeted antiviral therapy or immune modulation in inflammatory HFrEF, and corticosteroid therapy in sarcoidosis-related HFrEF); in that respect, our proposed use of the generic term HFpEF is similar and should include specific myocardial aetiologies.

Basic mechanisms affecting the myocardium in HFpEF include myocyte hypertrophy, systolic and diastolic dysfunction, energetic abnormalities, interstitial fibrosis, inflammation, increased oxidative stress, endothelial dysfunction, and impaired density and autoregulation of the microcirculation.9,10,12,45–48,154,155 Cardiovascular pathophysiological processes include increased systemic vascular
resistance, increased conduit arterial stiffness, abnormal ventricular-arterial coupling, reduced LV long-axis systolic function, slowed early diastolic relaxation, reduced LV compliance with increased end-diastolic stiffness, reduced LA reservoir and contractile function, impaired right ventricular (RV) function, and chronotropic incompetence. Patients often have reduced reserve of stroke volume, heart rate, and cardiac output (CO), and the increase in CO relative to oxygen consumption is blunted. Heart failure with preserved ejection fraction patients typically have high LV filling pressures, whether at rest and/or on exercise, and they may develop fluid retention and an expanded plasma volume. All these mechanisms might be targets for treatment.

In a meta-analysis, exercise capacity in HFpEF was related to chronotropic incompetence, high mPCWP, blunted augmentation of arteriovenous oxygen-content difference (implying inadequate perfusion of exercising skeletal muscles), reduced stroke volume reserve, and pulmonary hypertension. Changes in pulmonary artery pressure (PAP) on exercise are determined by the interplay between CO, PA compliance, pulmonary vascular resistance, and mPCWP. The increase in PAP is flow-dependent so it is best reported in relation to the increase in CO; the upper limit of normal is $+3 \text{ mmHg/L/min}$. There are haemodynamic differences between patients with pre- and post-capillary pulmonary hypertension.

We recommend that the pathophysiological phenotype(s) prevailing in an individual HFpEF patient are determined, as that may allow the selection of specific therapies (see diagnostic Step 4 below).

The new Heart Failure Association diagnostic recommendations

The flowchart (Figure 2) provides an overview of the new diagnostic algorithm.

Step 1(P): Pre-test assessment

Step 1(P) should be performed in any patient who presents with symptoms and/or signs compatible with a diagnosis of HF. It requires a detailed clinical and demographic history; an electrocardiogram (ECG); blood tests; standard echocardiography to exclude other causes such as HFrEF or heart valve disease; and investigations for ischaemia, arrhythmias, anaemia, or pulmonary disease (Figure 2). NP levels can be obtained if the assay is available; elevated levels suggest heart disease but normal levels do not exclude HFpEF. Step 1(P) mirrors the 2016 ESC HF guidelines concerning initial HF diagnostic workup.

Symptoms and signs

Breathlessness on exertion (New York Heart Association Class II or III) is highly sensitive for a diagnosis of HF but only moderately specific (about 50%) for a cardiac cause. Orthopnoea is quite specific but relatively insensitive. Patients with HFpEF often report reduced exercise capacity and fatigue, out of proportion to cardiac abnormalities at rest. In elderly, overweight and deconditioned persons, poor exercise capacity, dyspnoea on exertion, and peripheral oedema may also have a non-cardiac origin.

Electrocardiographic abnormalities

Patients may have electrocardiographic features of LVH (such as a Sokolow-Lyon Index $\geq 3.5 \text{ mV}$; abnormal repolarisation) and/or LA enlargement, but there are no pathognomonic signs and the diagnostic value of an ECG to identify HFpEF is poor. The most important indication is to detect atrial fibrillation (AF), which is highly predictive of underlying HFpEF.
Laboratory tests
Several tests are recommended, including: sodium, potassium, urea, and creatinine (with an estimated glomerular filtration rate); liver function tests; HbA1c (metabolic syndrome and type 2 diabetes are common comorbidities); thyroid stimulating hormone; and full blood count, ferritin, transferrin saturation, and for anaemia. Anaemia associated with HfEF aggravates symptoms and exercise intolerance.171,172

Natriuretic peptides
Multiple studies in primary care have shown that serum levels <125 pg/mL (or ng/L) for N-terminal pro-brain natriuretic peptide (NT-proBNP) or <35 pg/mL for BNP, have high negative predictive values (NPV; 95–99%) for excluding any heart failure.39,40,121,173–177
The main trigger for release of NPs is high LV end-diastolic wall stress, which is inversely proportional to wall thickness. It is therefore understandable that the excellent NPV of NPs is true particularly for HFrEF with a dilated LV, but not necessarily for HfEF where LVH tends to normalize wall stress. In consequence, it has become clear that up to 20% of patients with invasively proven HfEF have NPs below these diagnostic thresholds,28,178–180 which represents a limitation to the use of NPs. Therefore, it is important to understand that with our SCORE approach HfEF can still be diagnosed even if NP cut-offs (stratified by SR vs. AF) are below the given thresholds’.28,178–180

Echocardiography
Standard echocardiography should be performed in every breathless patient in whom there is clinical suspicion of HF, unless all the factors listed in Table 1 are absent or negative. Echocardiography may exclude alternative causes of dyspnoea such as HFrEF, valve disease, primary pulmonary hypertension, or pericardial effusion.181,182
Left ventricular ejection fraction should be measured, not estimated, ideally from biplane or three-dimensional images. Only small variations in normal ranges for EF by age, gender, and ethnic group have been reported, so it is recommended that a single cut-point of ≥50% is applied to define a ‘preserved’ EF. Left ventricular diameters and volumes should also be recorded. A diagnosis of HfEF is suggested if there is a non-dilated LV with a normal EF, concentric remodelling or LVH, and left atrial enlargement. Echocardiographic findings at rest compatible with this HfEF phenotype are often found in asymptomatic patients, who are at risk of progressing to overt HfEF.183,184 Of note, the presence of structural alterations on echocardiography supports, but its absence does not exclude echocardiographic findings at rest compatible with this HfEF phenotype. A more detailed or advanced echocardiographic study (see Step 2(E); Supplementary material online, S1) is not necessary at this step, but if it can be performed then only one examination will be needed.

Exercise tests
Coexisting epicardial stenotic coronary artery disease in patients with HfEF impacts on mortality and should be detected and treated.133 Coronary microvascular dysfunction is part of the HfEF pathophysiology134 so non-invasive stress testing can give false-positive results.134,186 Nonetheless, a bicycle or treadmill exercise test, or tests with higher sensitivity to detect ischaemia such as dobutamine stress echocardiography, cardiac magnetic resonance (CMR) imaging, or myocardial scintigraphy, or an anatomical approach using coronary computed tomography (CT) angiography or invasive angiography, should be considered if CAD is suspected.167
A stress test provides information about exercise capacity, the blood pressure response to exercise (which may be hypertensive), and the heart rate response. Chronotropic incompetence is present in 33–77% of HfEF patients,188,189 and defined as the failure to reach 70–80% of the predicted maximal heart rate. Reduced heart rate recovery after exercise has prognostic value.191–193 Reduced exercise capacity can be defined as a peak workload ≤75% of the value predicted for age. In elderly patients with suspected HfEF a 6-min walk test (6MWT) distance <300 m can be considered abnormal153 but 6MWT performance is affected by non-cardiac as well as cardiopulmonary conditions.193,194
In selected cases, advanced cardiopulmonary exercise testing (CPET) with spiro-ergometry may be performed. Reduced exercise capacity is defined as a peak oxygen consumption (VO2 max) ≤20 mL/kg/min, and ventilatory inefficiency as a VE/VCO2 slope ≥30.166,170 Cardiopulmonary exercise testing provides objective evidence of exercise capacity and may differentiate between cardiac and non-cardiac causes (pulmonary, peripheral) for dyspnoea.157,166,196–200 but its value to distinguish between HfEF and non-cardiac causes may be limited.166 Cardiopulmonary exercise testing is not a typical element in the initial HfEF workup (see below).
If HfEF is suspected after Step 1(P), a more specific assessment may confirm or exclude the diagnosis (Step 2(E)).

Step 2(E): Echocardiographic and natriuretic peptide heart failure with preserved ejection fraction diagnostic score
There is no single non-invasive diagnostic criterion for HfEF so we recommend a combination of echocardiographic measurements of cardiac structure and function, and NP levels. Some may already be available from Step 1(P).
Many of these measurements are continuously distributed within a population, from normal to possibly abnormal and to overtly abnormal values. Diagnostic cut-points may vary according to age, gender, body weight, renal function, and the presence of atrial fibrillation.

Table 1 Risk factors and findings consistent with heart failure with preserved ejection fraction in a symptomatic patient

<table>
<thead>
<tr>
<th>Risk factors and findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early (age ≥ 70 in men or ≥ in women)</td>
</tr>
<tr>
<td>Overweight/obesity</td>
</tr>
<tr>
<td>Metabolic syndrome/diabetes mellitus</td>
</tr>
<tr>
<td>Physical inactivity/deconditioning</td>
</tr>
<tr>
<td>Arterial hypertension</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
</tr>
<tr>
<td>ECG abnormalities (beyond atrial fibrillation)</td>
</tr>
<tr>
<td>Elevated natriuretic peptide levels (if available, BNP ≥ 35 pg/mL or NT-proBNP ≥ 125 pg/mL)</td>
</tr>
</tbody>
</table>
Table 2 Potential specific aetiologies underlying heart failure with preserved ejection fraction-like syndromes in Step 4 (F2)

<table>
<thead>
<tr>
<th>Abnormalities of the myocardium</th>
<th>Potential Specific Aetiologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischaemic</td>
<td>Abnormalities of the myocardium</td>
</tr>
<tr>
<td></td>
<td>Myocardial post-infarction/scar⁴⁹</td>
</tr>
<tr>
<td></td>
<td>Myocardial stunning⁵⁰</td>
</tr>
<tr>
<td></td>
<td>Epicardial coronary artery disease⁵¹</td>
</tr>
<tr>
<td></td>
<td>Microvascular and endothelial dysfunction⁵²,⁵³,⁵⁵</td>
</tr>
<tr>
<td>Toxic</td>
<td>Recreational substance abuse</td>
</tr>
<tr>
<td></td>
<td>Such as alcohol⁵⁶, cocaine⁵⁷, and anabolic steroids⁵⁸</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>Such as iron⁵⁹, lead⁶⁰, cadmium⁶¹, cobalt⁶² and copper (M. Wilson)⁶²</td>
</tr>
<tr>
<td>Medications</td>
<td>Such as chloroquine⁶³, ergotamine⁶⁴, cytostatic drugs (e.g. anthracyclines)⁶⁴, immunomodulating drugs (e.g. interferons monoclonal antibodies such as trastuzumab, cetuximab)⁶⁴</td>
</tr>
<tr>
<td>Immune and inflammatory</td>
<td>Radiation</td>
</tr>
<tr>
<td></td>
<td>Mean cardiac radiation doses > 3 Gy⁶⁵,⁶⁶</td>
</tr>
<tr>
<td>Related to infection</td>
<td>Such as cardiotropic viruses⁶⁷,⁶⁸, HIV⁶⁹–⁷¹, helminths⁷², parasites (e.g. Chagas’ disease⁷⁴)</td>
</tr>
<tr>
<td>Not related to infection</td>
<td>Lymphocytic myocarditis⁷⁵–⁷⁷, autoimmune diseases (e.g. rheumatoid arthritis⁸⁰), connective tissue disorders like scleroderma⁸¹, M. Raynaud⁸², systemic lupus erythematosus⁸², dermatomyositis⁸³, and hypersensitivity and eosinophilic myocarditis⁸⁴–⁸⁷</td>
</tr>
<tr>
<td>Infiltrative</td>
<td>Related to malignancy</td>
</tr>
<tr>
<td></td>
<td>Direct infiltrations and metastases⁸⁸–⁹⁰</td>
</tr>
<tr>
<td>Not related to malignancy</td>
<td>Amyloidosis⁹⁹, sarcoidosis⁹², primarily and secondary haemochromatosis⁹⁴–⁹⁶, storage diseases⁹⁷ (e.g. Fabry disease⁹⁸, Danon disease⁹⁹–¹⁰⁰, Pompe disease⁹⁹,¹⁰¹, PRKAG2 deficiency⁹⁹, Gaucher’s disease⁹⁵,¹⁰²,¹⁰³,¹⁰⁴,¹⁰⁵,¹⁰⁶,¹⁰⁷</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Hormonal</td>
</tr>
<tr>
<td></td>
<td>Such as thyroid diseases⁹⁷,¹⁰⁷,¹⁰⁸, parathyroid diseases⁹⁹, acromegaly,¹¹⁰, GH deficiency,¹¹¹, Cushing disease,¹¹², Conn’s disease,¹¹³, Addison disease¹¹⁴, phaeochromocytoma,¹¹⁵, pathologies related to pregnancy and peripartum¹¹⁶,¹¹⁷</td>
</tr>
<tr>
<td>Nutritional</td>
<td>Such as deficiencies in thiamine¹¹⁸, L-carnitine¹¹⁹, selenium¹²⁰, functional iron,¹²¹,¹²², complex malnutrition (e.g. AIDS, infections)¹²³, anorexia nervosa¹²³,¹²⁴</td>
</tr>
<tr>
<td>Genetic</td>
<td>Diverse forms</td>
</tr>
<tr>
<td></td>
<td>Such as HCM⁹⁷,¹²⁵,¹²⁶, restrictive cardiomyopathies,¹⁰³,¹⁰⁴,¹⁰⁶, hypertrophic form of non-compaction cardiomyopathy¹²⁷,¹²⁸, early forms of muscular dystrophies (Duchenne/Becker disease¹²⁹),¹³⁰,¹³¹,¹³²</td>
</tr>
<tr>
<td>Endomyocardial</td>
<td>HES,¹³³ EMF,¹³⁴, endocardial fibroelastosis,¹³⁸, carcinoid¹³⁰, endocardial calcification (Paget’s disease¹³²)</td>
</tr>
<tr>
<td>Abnormalities of loading conditions</td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Primary and secondary forms of hypertension¹¹²,¹¹³,¹¹⁵,¹³⁰,¹³¹</td>
</tr>
<tr>
<td>Valvular and structural defects</td>
<td>Acquired Heart valve diseases¹³³,¹³⁴</td>
</tr>
<tr>
<td>Valvular and structural defects</td>
<td>Congenital Septal defects¹³²,¹³⁵,¹³⁶</td>
</tr>
<tr>
<td>Pericardial and endomyocardial pathologies</td>
<td>Constrictive pericarditis and pericardial effusion¹³⁷,¹³⁸</td>
</tr>
<tr>
<td>Pericardial</td>
<td>HES,¹³³, EMF,¹³⁴, endocardial fibroelastosis¹³⁸, carcinoid¹⁴¹, endocardial calcification (Paget’s disease¹⁴³)</td>
</tr>
<tr>
<td>Endomyocardial</td>
<td>Severe anaemia¹⁴⁴, sepsis¹⁴⁵, thyrotoxicosis¹⁴⁶, arteriovenous fistula¹⁴⁶ and pregnancy¹⁴⁷</td>
</tr>
<tr>
<td>High output states</td>
<td>Renal failure and fluid overload¹⁴⁸,¹⁴⁹,¹⁵⁰</td>
</tr>
<tr>
<td>Abnormalities of the cardiac rhythm</td>
<td>Atrial/ventricular arrhythmias, pacing, conduction disorders¹⁸,¹⁵¹–¹⁵⁵</td>
</tr>
</tbody>
</table>

EMF, endomyocardial fibrosis; GH, growth hormone; HCM, hypertrophic cardiomyopathy; HES, hypereosinophilic syndrome (formerly known as Löeffler’s endocarditis); HIV/AIDS, human immunodeficiency virus/acquired immune deficiency; LV, left ventricular; PRKAG2, protein kinase AMP-activated non-catalytic subunit gamma 2.
To take account of these factors, we recommend the use of major and minor diagnostic criteria according to the severity of an abnormality and the presence of modifiers. Major criteria (and cut-points) have been selected for their high specificity, while minor criteria should be more sensitive. Cut-points were derived particularly from studies that compared echocardiographic parameters against invasive haemodynamic data.28,166

In one cohort with 64% prevalence of HfPEF determined by invasive measurements, the univariable sensitivity of septal e’ velocity <7 cm/s to diagnose HfPEF, without adjusting for age or other variables, was 46%, while its specificity was 76%.5 The sensitivity and specificity of an E/e’ ratio >9 were 78% and 59%, compared with 46% and 86% for E/e’ >13. The sensitivity and specificity of LA volume index >30 mL/m² were about 70%. Measurements of LV mass had low sensitivity (26%) for HfPEF but high specificity (86%) if LVH was present. PAP >35 mmHg [derived from tricuspid regurgitation (TR) velocity] was 46% sensitive and 86% specific for HfPEF, which makes it an important diagnostic criterion. The utility of GLS <16% was moderate (sensitivity 62% and specificity 56%).201

The utility of NP levels varies according to several factors including cardiac rhythm. For NT-proBNP >275 pg/mL, a sensitivity of 59% and a specificity of 77% were reported (accuracy 68%).5 Sensitivity decreased to 46% while specificity increased to 85% if the cut-off was increased to >450 pg/mL (accuracy 66%). At our lowest recommended cut-off of 125 pg/mL (minor criterion, if the patient is in sinus rhythm), the sensitivity reported in that study was 77% and the specificity 53% (accuracy 65%). Of note, 39% of patients in that study were in AF or had a history of paroxysmal AF.5 Combining the results of E/e’ and NT-proBNP can increase their predictive value, notably their sensitivity to diagnose HfPEF.202

Echocardiographic measurements of function and morphology

In Step 1(P) we recommend standard echocardiography, at least to assess LVEF and LV diameter. In Step 2(E) we recommend more detailed echocardiographic measurements (Supplementary material online, 51). These could all be obtained during a single study. The echocardiographic criteria in the HFA–PEFF score, listed below, mirror consensus recommendations for the diagnosis of LV diastolic dysfunction.41

Septal and lateral mitral annular peak early diastolic velocity (e’)

Major criterion: septal e’<7 cm/s, or lateral e’<10 cm/s [subjects aged <75 years]

Major criterion: septal e’<5 cm/s, or lateral e’<7 cm/s [subjects aged ≥75 years]

The main determinant of e’, the early diastolic velocity of mitral annular motion, is LV relaxation. It reflects LV lengthening and is influenced by preload.203,204 Left ventricular longitudinal e’ velocity declines with age;205 normative ranges reported from elderly participants were found to be lower than those given in the 2007 HFA consensus.206 We include age-specific e’ criteria in the HFA–PEFF score, measured as recommended.41

Average septal-lateral E/e’ ratio

Major criterion: average septal–lateral E/e’ ratio >15

Minor criterion: average septal–lateral E/e’ ratio 9–14

The ratio of the peak velocity of mitral inflow during early diastole (E), recorded by pulsed Doppler between the tips of the mitral leaflets, over the average of septal and lateral mitral annular early diastolic peak velocities (e’) recorded by pulsed tissue Doppler, reflects the mPcWP.41 The mitral E/e’ index correlates with LV stiffness and fibrosis20,21 and is less age-dependent than e’.206 It also has diagnostic value during exercise.28,158 The E/e’ index is little influenced by changes in volume but it is influenced by the severity of LVH.23,24

Tricuspid regurgitation peak velocity or pulmonary arterial systolic pressure

Major criterion: TR peak velocity >2.8 m/s

Major criterion: Pulmonary artery systolic pressure >35 mmHg

Pulmonary arterial systolic pressure is calculated from the modified Bernoulli equation as 4 × peak TR velocity plus estimated right atrial pressure. Elevated PASP and reduced RV function are important predictors of mortality in HfPEF.207–211 Even a moderate increase in PASP can lead to increased ventricular interaction since a leftward shift of the ventricular septum impedes LV filling.212 A PASP >35 mmHg discriminates HfPEF from hypertensives and controls.207 A TR peak velocity >2.8 m/s indicates increased PASP21,213 and is an indirect marker of LV diastolic dysfunction.41

Left ventricular global longitudinal systolic strain

Minor criterion: GLS < 16%

Left ventricular peak systolic GLS is not angle-dependent, unlike myocardial velocities recorded by tissue Doppler.188 It is measured using speckle-tracking echocardiography as the average of systolic strain obtained from all LV segments in the apical 4-chamber, apical 2-chamber, and apical long-axis views.214

Reduced LV longitudinal systolic strain and LV early diastolic strain rate have both been identified in HfPEF.19,204,216 Impaired GLS predicts HF hospitalization, cardiovascular death, or cardiac arrest.216,217 It correlates with invasive measurements of LV stiffness and with NP levels.19,204,218 All strain values are dimensionless and are expressed as percentages. For ease of use in these recommendations, we suggest a cut-point of 16% in absolute values;219–222 and a value below 16% (e.g. 14%) is recommended as a minor criterion.

Left atrial volume index

Major criterion: >34 mL/m² [in sinus rhythm]

Major criterion: >40 mL/m² [in atrial fibrillation]

Minor criterion: 29–34 mL/m² [in atrial fibrillation]

Minor criterion: 34–40 mL/m² [in atrial fibrillation]
The maximal volume of the LA, measured at end-systole from biplane or three-dimensional images and indexed to body surface area (left atrial volume index (LAVI)) is an indirect correlate of LV filling pressures. It is more accurate as a marker of chronic LA remodelling than either LA area or diameter, and it correlates with other echocardiographic indices of LV diastolic function. A LAVI of 29–34 mL/m² is considered as a minor criterion since it represents the upper limit in healthy subjects.

In patients without AF or heart valve disease, LAVI >34 mL/m² independently predicts death, heart failure, AF, and ischaemic stroke. In patients with HFrEF and permanent AF, LAVI was 35% more enlarged than it was in HFrEF patients in SR. Patients with permanent AF may have a large LAVI even if they have no LV diastolic dysfunction. We therefore recommend separate cut-offs for LAVI in SR vs. AF.

Left ventricular mass index and relative wall thickness

Major criterion: LVMI ≥149 g/m² in men or ≥122 g/m² in women and RWT >0.42

Minor criterion: LVMI ≥115 g/m² in men or ≥95 g/m² in women or RWT >0.42 or LV end-diastolic wall thickness ≥12 mm

Increased LV diastolic wall thickness in a non-dilated heart implies that the patient has LVH. It develops first in the basal segments of the ventricular septum, and a wall thickness ≥12 mm at that site is common in elderly people. Localized septal hypertrophy may be a consequence of abnormal ventricular–arterial coupling but it is not sufficient to indicate that there is significant global LV remodelling or hypertrophy.

Left ventricular geometry is often classified using relative wall thickness (RWT), calculated as twice the LV posterior wall thickness divided by the LV internal diameter at end-diastole (LVPW × 2/LVIDD), and using left ventricular mass index (LVMI) normalized to body surface area or height. Four patterns are described: normal (normal LVMI, RWT <0.42), concentric remodelling (normal LVMI, RWT >0.42), concentric hypertrophy (increased LVMI, RWT >0.42), and eccentric hypertrophy (increased LVMI, RWT <0.42). In patients with HFrEF, both concentric LVH and eccentric hypertrophy can be observed.

The absence of LVH on echocardiography does not exclude HFrEF. We therefore recommend the finding of concentric hypertrophy (increased LVMI and increased RWT) as a major criterion, or one of a lesser degree of LVH, RWT, and LV end-diastolic wall thickness as a minor criterion.

Natriuretic peptides

Major criterion: NT-proBNP >220 pg/mL, or BNP >80 pg/mL [in sinus rhythm]

Major criterion: NT-proBNP >660 pg/mL or BNP >240 pg/mL [in atrial fibrillation]

Minor criterion: NT-proBNP 125–220 pg/mL, or BNP 35–80 pg/mL [in sinus rhythm]

Minor criterion: NT-proBNP 375–660 pg/mL, or BNP 105–240 pg/mL [in atrial fibrillation]

In Step 1(P), a single low cut-point was recommended in order to have a sensitive marker for cardiac abnormalities. In this step, in order to increase specificity, a higher cut-off value is recommended as a major criterion, in agreement with ESC guidelines. Cut-offs are also stratified for the presence of SR or AF.

Natriuretic peptide levels should always be interpreted in context. Definitive cut-offs to diagnose HFrEF in patients with SR or AF are not well established, and trials have used different values. In the setting of screening, average NPs have been reported to be 3–3.5 fold higher in patients with AF than in patients in SR. Average NPs were found to be threefold higher in patients with AF than in patients in SR. In prevalent symptomatic HFrEF with AF, levels tend to be even higher. For diagnosing HFrEF, we hence recommend values in patients with AF that are three times higher than used for patients in SR.

Calculating and interpreting the HFA–PEFF score

The score has functional, morphological, and biomarker domains. Within each domain, a major criterion scores 2 points or a minor criterion 1 point (Figure 3: Supplementary material online, Table S1). Each domain can contribute maximally 2 points, if any major criterion from this domain is positive, or 1 point if no major but any minor criterion is positive. If several major criteria within a single domain are positive, this domain still contributes 2 points; and if no major but several minor criteria are positive the contribution still is 1 point. Major and minor criteria are not additive in a single domain. Points are added only when they come from different domains.

For example, 2 major (E/e’ >15, and TR >2.8 m/s) and 1 minor (GLS <16) criteria, all in the functional domain, will lead to a total score from that domain of 2 points. The total score would be 5, if at least one minor criterion (LAVI <34 mL/m²; LV wall thickness >12 mm) and one major criterion (BNP in SR >80 pg/mL) would be present coming from the morphological and biomarker domains, respectively. It is important to understand that not all parameters from each domain need to be recordable (which is typically the case). The HFA-PEFF score can be calculated even if not all parameters are obtained, which adds to the practical utility of the score.

A total score ≥5 points is considered to be diagnostic of HFrEF, while a score of ≤1 point is considered to make a diagnosis of HFrEF very unlikely and to mandate investigations for alternative causes. Patients with an intermediate score (2–4 points, Figures 2 and 3) need further evaluation (Step 3(F1); Figures 4A, B).

If LAVI, LVMI, or wall thickness cannot be assessed by echocardiography, we recommend using measurements obtained from CMR imaging instead. Of note, there are some systematic differences in measurements of LV volumes and LVEF between imaging
modalities. In one comparative study, LV volumes were larger and LVEF was lower but not statistically different with CMR compared with other imaging modalities.

Step 3 (F1): Functional testing

Symptoms compatible with HF can be confirmed to originate from the heart if haemodynamic abnormalities such as reduced stroke volume, reduced CO, and elevated LV filling pressures are detected either at rest or during exercise. In a typical elderly patient with multiple comorbidities, the presence or absence of isolated cardiac structural and/or functional abnormalities at rest does not always establish or exclude the diagnosis of HFpEF. If invasive testing demonstrates a high LV filling pressure [left ventricular end-diastolic pressure (LVEDP) \(\geq 16 \) mmHg, PCWP \(\geq 15 \) mmHg] at rest, then the diagnosis may be confirmed; otherwise, assessment during exercise is recommended, either by non-invasive exercise stress echocardiography or by invasive haemodynamics (Figures 2 and 4AB).

Exercise stress echocardiography: the diastolic stress test

During exercise in healthy people, enhanced LV untwisting and early diastolic suction maintain or increase stroke volume despite shortening of the filling time and without increasing LV filling pressures. In patients with HFpEF, impaired early diastolic relaxation, reduced increments in suction, and poor LV compliance lead to inadequate increases in stroke volume and CO on exercise, increased LV filling pressures, and increased PASP. High LV filling pressures and inadequate CO responses during exercise can also impair RV reserve.

Many patients with HFpEF have symptoms mainly on exertion that are usually attributed to the increase in LV filling pressures which is needed to maintain adequate filling and stroke volume. Acquiring echocardiographic data during exercise can unmask LV diastolic and systolic dysfunction. The parameters that have been studied most often, during or immediately after exercise, are the mitral \(E/e' \) ratio and the TR peak velocity, which indicate increases in mPCWP and PASP, respectively.

Ideally a semi-supine bicycle test with imaging during exercise, or else a treadmill or upright bicycle exercise protocol with imaging at or immediately after peak stress, is recommended but there are no universally adopted protocols. The European Association of Cardiovascular Imaging and the American Society of Echocardiography recommend a stepped protocol, starting at 25 W at 60 r.p.m. with the load increasing by 25 W every 3 min until the patient has reached his maximal predicted workload and/or maximal predicted heart rate (220—age in years) and/or developed limiting symptoms. Some patients cannot perform that protocol, and a ramped exercise test on a semi-supine bicycle at 60 r.p.m. starting at 15 W and with increments of 5 W every minute has also been proposed, to a submaximal target heart rate of 100–110/min or until the patient develops limiting symptoms. None of these protocols have been shown to be superior to others.

The mitral \(E/e' \) ratio and peak TR velocity should be acquired at baseline, during each stage including peak exercise, and during a submaximal stage before fusion of the mitral \(E \) and \(A \) velocities or during the first 2 min of the recovery phase when mitral \(E \) and \(A \) velocities are no longer fused and LV filling pressures remain...
Changes in CO can be assessed by measuring the velocity integral of flow in the LV outflow tract, multiplied by the HR.

Exercise echocardiography should be considered abnormal if average E/e’ ratio at peak stress increases to ≥15, with or without a peak TR velocity >3.4 m/s. An increase only in TR velocity should not be used to diagnose HFpEF because it might be caused simply by a normal hyperdynamic response to exercise (with increased pulmonary blood flow) in the absence of LV diastolic dysfunction.

An average E/e’ ratio during exercise ≥15 adds 2 points to the HFA–PEFF score. An average E/e’ ratio ≥15 with a peak TR velocity >3.4 m/s adds 3 points to the previous score from Step 2(E). If the combined score from Step 2(E) and Step 3(F1) is ≥5 points, then the diagnosis of HFpEF can be confirmed.

However, echocardiographic stress tests also have limitations. It was reported that E/e’ was not measurable in about 10% of subjects during submaximal exercise (20 W) and in about 20% of HFpEF patients during peak exercise, and that TR velocity was measurable in only 50%; about 20% of controls were considered to have false-positive tests. Data from stress echocardiography are not sufficient to substitute for invasive haemodynamic data under all circumstances. If the score remains <5 points or if exercise echocardiography cannot be performed, we recommend an invasive haemodynamic stress test in any case of doubt, especially if a therapeutic decision depends on the results.

Invasive haemodynamic tests at rest and with exercise

Left ventricular end-diastolic pressure LVEDP in the resting supine position is typically obtained in the context of left heart catheterization and bears important diagnostic information in the workup of unexplained dyspnoea. In selected patients, LV compliance and stiffness can be determined directly by using a multiple-loop conductance...
How to diagnose HfPEF

Step 4(F2): Final aetiology

Most cases of HfPEF are related to common risk factors and comorbidities, but the possibility of a specific underlying aetiology should always be considered (Table 2, Supplementary material online, S2–S4; Figure 5A,B). We postulate that identification of specific HfPEF aetiologies will advance the field of targeted therapies.

Specific heart muscle diseases that may present with the HfPEF phenotype include hypertrophic cardiomyopathies, myocarditis and chronic inflammatory cardiomyopathy, autoimmune diseases, non-infiltrative and infiltrative cardiomyopathies, idiopathic or acquired endocardial fibrosis, storage diseases, and other genetic disorders including early stages of cardiomyopathies associated with muscular dystrophy. Rare causes such as toxicity from drugs or heavy metals, radiation, and metabolic causes related to hormonal or nutritional disease, should also be considered (Table 2). The trigger may occur long before the onset of symptoms. For instance radiation-induced HfPEF develops after 10–15 years, even when low mean cardiac radiation doses of 3.3 Gy are used.

Aetiological workup may include a standard exercise stress test that may identify myocardial ischaemia, an abnormal blood pressure response to exercise, chronotropic incompetence, or supraventricular and ventricular arrhythmias (Figures 5A,S2). These findings can immediately translate into management strategies, such as anti-ischæmic therapy, improved blood pressure control, removal of bradycardic agents (such as beta-blockers often prescribed for hypertension), and control of exercise-induced cardiac arrhythmias.

More sophisticated tools for aetiological workup include CMB which is most accurate for determining LA and LV volumes and mass, detects scar and myocardial ischaemia due to epicardial coronary disease or microvascular dysfunction, and stress perfusion imaging to reveal diffuse subendocardial defects. Regional and diffuse myocardial oedema (T2-imaging) and infiltration or fibrosis are quantified using late gadolinium enhancement [LGE; for extracellular volume fraction (ECV)] or T1-mapping (Supplementary material online, S2). Right or left ventricular myocardial biopsy, (99m)Tc-DPD scintigraphy to identify cardiac amyloidosis, positron emission tomography (PET)-CT, as well as specific genetic and laboratory tests (Figure 5B) should be considered in selected cases where a specific aetiology is suspected.

Of note, we do not intend to lump together all causes of the clinical syndrome of heart failure with a normal ejection fraction under the term ‘HfPEF’, but instead to stress the importance to always consider specific aetiologies if the clinical diagnosis of HfPEF is made. It is also important to understand that non-myocardial aetiologies (Table 2) that may mimic HfPEF, such as constrictive pericarditis, primary valvular heart disease, or high output failure should not be considered part of the HfPEF syndrome.

Limitations, gaps in evidence, and unanswered questions

Heart failure with preserved ejection fraction is a clinical syndrome with multiple contributing factors, aetiologies, and pathophysiological expressions. It is a limitation that we suggest an algorithm that reduces it to a single clinical diagnosis. Future studies should evaluate...
and refine the recommended diagnostic algorithm and classify HFpEF patients into specific subgroups. Ideally, a large and unselected sample of breathless patients, and age-matched controls, would undergo all tests including echocardiography and the ‘gold standard’ invasive haemodynamic assessment.

The stage and severity of HFpEF may impact on the accuracy of a specific diagnostic parameter. In a recent trial 45% of patients had ‘early’ HFpEF with normal filling pressures at rest, and elevated filling pressures only during invasive haemodynamic exercise testing. Because of the intermittent diastolic pressure overload in early HFpEF, LAVI may be smaller (and less diagnostic), and functional indices such as global LA strain or LA conduit strain might be more appropriate diagnostic parameters. In consequence, the patient mix under investigation may affect the test results. Prospective testing and retesting in distinct HFpEF patients populations is needed to sort this out.

The diagnosis of HF is still based on LVEF, partly for historical reasons and despite its limitations for predicting cardiac functional reserve and symptoms. Exercise capacity correlates better with long-axis functional reserve of the LV and with peripheral blood flow than with LVEF. In fact, a preserved LVEF has no diagnostic role for HFpEF except to exclude HF with reduced LVEF. In future, real-time non-invasive assessments of chamber volumes, stroke volumes, and CO, as well as filling pressures, in combination with innovative markers of systolic and diastolic function, will markedly reduce the significance of LVEF in characterizing HF.

We have recommended exercise testing as a component of the diagnostic workflow in cases of uncertainty, but there is no consensus yet about which stress protocol should be used or which measurements are most important. It is uncertain if a simple parameter such as the 6MWT distance could be as useful as detailed cardiopulmonary stress testing, which can be difficult to perform in breathless elderly subjects.

Besides increases in filling pressures, HFpEF patients may be haemodynamically limited by their inability to adequately enhance stroke volume during exercise, but no cut-points have been published to diagnose the resulting impaired reserve of CO. Unfortunately, reliable data on LV diastolic properties, stroke volume, and CO can currently only be obtained invasively, ideally by conductance catheterization. 3D echocardiography and CMR is now reaching a state where pressure–volume loops and stroke volumes can be obtained non-invasively but these measurements still await validation in broader HFpEF cohorts.

Figure 5 Step 4 (F2): Final aetiological workup. (A) It shows the role of ergometry to detect underlying causes such as inadequate blood pressure response, chronotropic incompetence, or myocardial ischaemia during exercise. (B) It shows the aetiological workup using cardiac magnetic resonance (CMR). CT, computed tomography; PET, positron emission tomography.
It will be important not just to confirm the diagnosis using the scoring system that we propose, but to document which specific abnormalities correlate with individual responses to treatment, in order to dissect out specific pathophysiological mechanisms that need different treatments.283,286 We recommend that future HfP EF studies and registries should collect, record, and analyse the detailed components that are included in the HF–PEFF Score.

There is a close relationship between HfP EF and AF. There is overlap in symptoms, signs, echocardiographic findings, and NP levels between the two conditions, and a substantial proportion of patients in HfP EF registries and trials have AF. We have provided distinct diagnostic thresholds for NP and LAVI in SR vs. AF, based on existing literature and consensus. These thresholds need more prospective research for their validation. In addition, other functional measures are also likely to be affected by concomitant AF. Of note, we did not adopt the alternative view that AF per se could be used as a standalone indicator of HfP EF, but we again emphasize the close association between AF and HfP EF.

There is controversy about the best non-invasive indicators of elevated LV filling pressures and mPCWP.297 The E′/e′ index has gained a supremacy in clinical practice that is not fully supported by all clinical investigations.288,289 The diagnostic utility of alternative indices such as retrograde pulmonary venous flow,290,291 estimated LV stiffness (diastolic pressure–volume quotient),284 and left atrial strain rate during atrial contraction74,161,276,292 in patients in sinus rhythm, and the L wave of mitral inflow293 and left atrial strain during reservoir function560,294 in patients in AF, merit further investigation.

Modern imaging methods generate a huge quantity of digital data about global and regional left ventricular morphology and function throughout the cardiac cycle, and about arterial and endothelial function and myocardial perfusion, which can be coupled with comprehensive demographic data including traditional risk factors and new biomarkers and with proteomic, metabolomic, and genomic data. Making sense of all this information is a challenge that can likely be met by machine learning. Recent studies suggest that it may be useful for diagnosis and for defining pathophysiology,15,295,296 but long-term studies in large populations are needed to unravel which features best predict clinical outcomes and responses to treatment. Molecular phenotyping for a better identification of distinct HfP EF phenotypes is emerging and may also help to develop targeted therapies.

Supplementary material

Supplementary material is available at European Heart Journal online.

Acknowledgements

We acknowledge the continuous support of the Heart Failure Association (HFA) for this manuscript. Members of this Task Force were selected by the HFA Board and HFA HfP EF Committee to represent professionals involved with the medical care of patients with HfP EF. Selected experts in the field undertook a comprehensive review of the published evidence for diagnosis of HfP EF according to the ESC Committee for Practice Guidelines (CPG) and HFA policy. A critical evaluation of suggested procedures was done by all authors and accepted after consensus. The experts of the writing and reviewing panels provided declaration of interest forms for all relationships that might be perceived as real or potential sources of conflicts of interest. Figures were drawn by Medical Visuals, Maartje Kunen.

Conflict of interest: Dr B.P. has received research funds from Bayer Healthcare, Servier, and AstraZeneca, as well as speakers honoraria/committee membership fees from Novartis, Bayer Healthcare, Daiichi-Sankyo, MSD, Stealth Peptides, Astra-Zeneca, Sanofi, Vifor, and Servier. Dr R.A.d.B. is supported by the Netherlands Heart Foundation (CVON DORIS, grant 2014-40, CVON SHE-PREDICT-HF, grant 2017-21, and CVON RED-CVD, grant 2017-11); and the Innovational Research Incentives Scheme program of the Netherlands Organization for Scientific Research (NWO VIDI, grant 917.13.350). The UMCG, which employs Dr De Boer has received research grants and/or fees from AstraZeneca, Abbott, Bristol-Myers Squibb, Novartis, Roche, Trevena, and Thermofisher GmbH. Dr R.A.d.B. received personal fees from MandalMed Inc., Novartis, and Servier. Dr A.A.V. has received consultancy fees and/or research grants from Amgen, Bayer, Boehringer Ingelheim, Merck/Merck Sharp & Dohme, Novartis, Roche Diagnostics, Sanofi Aventis, Servier, Stealth Peptides, Singulex, Sphingotec, Trevena, and Vifor. Dr C.T. received research grants from Novartis and speaker fees from AstraZeneca, Berlin Chemie, Alceva, Impulse Dynamics, Servier, Bayer, Pfizer, Abbott, Boston Scientific. Dr D.S.A. has received research funds for their validation. In addition, other functional measures that are included in the HF–PEFF Score.

References

Veldhuisen DJ, de Boer RA. Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population. Eur J Heart Fail 2018;20:1205–1214.

206. Marchese P, Malvassi V, Rossi L, Nikolskaya N, Donne GD, Becirovic M, Colantoni A, Luciani A, Modena MG. Indexed left atrial volume is superior to...

278. Shanoff OF, Gupta H. What is the evidence that the tissue Doppler index 'E'/e' reflects left ventricular filling pressure changes after exercise or pharmacological intervention for evaluating diastolic function? A systematic review. *J Am Heart Assoc* 2017;6:e004766.

