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Effects of inorganic and organic fertilizers on CO2

and CH4 fluxes from tea plantation soil

Shan Lin1, Shangpeng Zhang2,3, Guoting Shen2, Muhammad Shaaban4, Wenliang Ju2,5,
Yongxing Cui2,3, Chengjiao Duan2,3, and Linchuan Fang2,5,*

Agricultural practices such as fertilization considerably influence soil greenhouse gas fluxes. However, the
effects of fertilization on greenhouse gases fluxes remain unclear in tea soil when soil nitrogen is low. In the
present study, soil CO2 and CH4 fluxes under various fertilization treatments in tea soil were investigated
during a 50-day period.The experiment consisted of five treatments: no fertilizer (CK), single nitrogen (urea,
N), single oilseed rape cake fertilizer (R), nitrogen þ cake fertilizer (2:1, NR1), and nitrogen þ cake fertilizer
(1:2, NR2). The fertilization proportion of NR1 and NR2 was determined by the nitrogen content of nitrogen
fertilizer and cake fertilizer. The results revealed that the single application of nitrogen had no significant
effect on soil CO2 flux. However, the addition of cake fertilizer significantly increased CO2 emissions through
enhanced soil microbial biomass carbon (MBC). Additionally, CO2 emissions were directly proportional to the
amount of carbon (C) in the fertilizer. All treatments were minor sinks for CH4 except for the treatment NR1.
Specifically, the cumulative CH4 fluxes of NR1 and NR2 were significantly higher than rest of the three
treatments, which implies that application of urea and oilseed rape cake reduced the capability of CH4
oxidation in tea soil. Structural equation models indicated that soil CO2 flux is significantly and positively
correlated with soil dissolved organic carbon, MBC and soil pH, while mineral nitrogen content was the main
factor affecting CH4 flux. Overall, the application of oilseed rape cake increased the oxidation of CH4 and
promoted soil C sequestration but inevitably increased the soil CO2 emissions.

Keywords: Nitrogenous fertilizer, Oilseed rape cake fertilizer, Greenhouse gases, Microbial metabolisms,
Structural equation models

1. Introduction
The tea plant (Camellia sinensis), a perennial evergreen
woody plant, acts as an important cash crop in tropical
and subtropical areas (Yang et al., 2018). It is grown in
multiple developing countries such as China, India, Kenya
(Wang et al., 2020). The high-quality tea in China is most
commonly cultivated in the mountainous regions due to
the favorable climate and soil conditions (Yan et al., 2018).
The addition of chemical and organic fertilizers can signif-
icantly stimulate the tea yield. Chemical fertilizers provide

essential nutrients to tea plants and thus improve the
bush tea shoot mass and the production of compounds
(Mudau et al., 2005; Yang et al., 2014). The addition of
organic materials not only maintains soil fertility but also
improves soil structure and soil porosity (Kallenbach et al.,
2010; Wu et al., 2019). However, fertilization changes com-
munity structure of microbes and affects the decomposi-
tion of organic matter (Bao et al., 2016; Wei et al., 2019).
Furthermore, the addition of fertilizer affects the green-
house gas (GHG) fluxes from soil (Shimizu et al., 2013;
Chen et al., 2017; Liu et al., 2018; Wu et al., 2018).

Carbon dioxide (CO2) and methane (CH4) contribute
significantly to global warming, and they are greatly influ-
enced by anthropogenic and agricultural activities (Kallen-
bach et al., 2010; Shah et al., 2016). The application of
organic and inorganic fertilizers highly influence soil
CO2 and CH4 emissions (Nyamadzawo et al., 2014; Khan
et al., 2017). Many studies have shown that application of
chemical fertilizers increases soil CO2 emissions (Shao et
al., 2014; Zamanian et al., 2018; Zhang et al., 2019),
whereas the effect of nitrogen (N) fertilizer on soil CH4

emissions is not consistent. Kong et al. (2019) observed
that the application of N fertilizer improved the soil car-
bon (C) substrate and benefited the methanogens
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proliferation to improve methanogenic activities and thus
promote CH4 emissions. In addition, methane monooxy-
genase participates in the oxidation process of ammonia
(NH3) after using ammonium nitrogen (NH4

þ-N), influenc-
ing the catalytic oxidation of CH4 (Willison et al., 1995).
However, Bodelier and Laanbroek (2004) reported that the
application of N fertilizer directly promote the oxidation
of CH4 by nitrifying bacteria. Adding straw and green
manure to soil are important measures to improve soil
organic matter (Wu et al., 2019; Yu et al., 2020). The appli-
cation of organic fertilizers can promote microbial decom-
position activities and root respiration, leading to the
increase of the CO2 emission of soil (Qiu et al., 2015; Li
et al., 2019). The addition of straw and green manure can
improve soil methane production potentials and the
abundances of methanogens (Zhou et al., 2020). However,
Hoang et al. (2019) found that returning burned straw to
the field could reduce seasonal cumulative CH4 emission.
Therefore, the results of fertilization types on soil GHG
emissions are still controversial, especially the impact of
fertilization on CH4 fluxes.

In addition to the single application of chemical or
organic fertilizer, the combined application of both is the
main measure of agricultural fertilization (Zhou et al.,
2019; Qaswar et al., 2020). Different proportions of ferti-
lizers with differences in C/N ratio may affect soil physi-
cochemical properties, and soil CO2 and CH4 emission
(Finn et al., 2016; Zhou et al., 2017; Gwon et al., 2019).
Fertilizers with low C/N ratio can substantially increase
the decomposition of residues and contribute to GHG
emissions (Abera et al., 2014; Zhou et al., 2019). But stud-
ies have found that adding fertilizers with low C/N ratio
can reduce CH4 emissions (Kim et al., 2012). Oilseed rape
cake is a low C/N ratio residue, and GHG emission char-
acteristics from soil following combined application of
oilseed rape cake and chemical fertilizer is not clear (Ra-
heem et al., 2019). Soil properties had direct or indirect
effects on CO2 and CH4 emission. Soil dissolved organic
carbon (DOC) is an indicator of the C available to soil
microbes, and has close relationship with the respiration
and denitrification of heterotrophic microbes (Boyer and
Groffman, 1996). Iqbal et al. (2008) observed a positive
correlation between DOC and soil CO2 flux, and DOC pro-
vided energy to methanogens to promote CH4 production
(Zhou et al., 2020). In addition, some studies have shown
that soil respiration was positively correlated with soil
DOC and soil microbial biomass carbon (MBC) (Ge et al.,
2020; Wu et al., 2020). Soil nitrate nitrogen (NO3

–-N) and
NH4

þ-N not only provides essential nutrients for microbes
but also indirectly affects soil microbes and gas emissions.
The process of nitrification and denitrification was
affected by the soil pH and affected the activity of soil
microbes (Sauze et al. 2017; Li et al., 2020). Furthermore,
denitrifying intermediates can inhibit methanogenic mi-
croorganisms during nitrate reduction (Clarens et al.,
1998; Bao et al., 2016). Moreover, NH4

þ-N inhibited the
oxidation of CH4 by competitive action in upland soils
(Schimel, 2000), but Bodelier et al. (2000) found ammo-
nium actually stimulates CH4 oxidation and methano-
troph growth in rice-paddy soils. Therefore, clarifying the

relationship between soil physicochemical properties and
gas flux under different fertilization methods plays an
important role in controlling GHG emissions of tea
plantations.

Soil respiration is the main flux of C between the
atmosphere and soil, and soil C loss can be quantified
by soil CO2 and CH4 emission (Khan et al., 2017; Liu et
al., 2019). Studies have shown that fertilization can
increase soil C sequestration and reduce GHG emissions
(Wu et al., 2019). By exploring the emission characteris-
tics of soil CO2 and CH4 in tea plantations, we can under-
stand the soil C sequestration and provide theoretical
basis for improving the productivity of tea. In addition,
N content of fertilizers is an important factor affecting
CO2 and CH4 fluxes. Studies have shown that using low
levels of N fertilizers produces low magnitudes of CO2

and CH4 (Shao et al., 2014; Li et al., 2019). In the present,
the N concentrations of fertilizers were controlled at
a low level, and then explored the CO2 and CH4 emission
characteristics of different fertilization methods. We
selected the soil of tea plantations in central China for
incubation experiment to measure soil CO2 and CH4

fluxes. Organic and inorganic fertilizers were applied in
the present study. The specific objectives of this study
were to (1) compare the emission pattern and character-
istics of CO2 and CH4 in tea plantations soil under dif-
ferent fertilization types and proportions, (2) identify the
relationships between soil properties and CO2 and CH4

fluxes, and (3) choose minimal carbon emission fertiliza-
tion types and proportions and to provide a scientific
basis for reducing agricultural pollution in tea planta-
tions. We hypothesized that mixed application of nitro-
gen and oilseed rape cake fertilizer will increase CO2 and
CH4 emissions under the condition of lower nitrogen
addition, and soil C content and mineral N content are
the main factors affecting CO2 and CH4 emissions.

2. Materials and methods
2.1. Experimental soil

The surface soil (0*20 cm) in this study was collected
from the tea garden of Heshengqiao town
(29�020*30�180N, 133�310*144�580E), Xianning city, Hu-
bei province, China. The region has the characteristics of
typical plain-hills area and belongs to the typical subtrop-
ical monsoon climate. The annual average temperatures
and precipitation are 16.8 �C and 1577 mm, respectively.
The red soil in this area can be classified as Ultisols, as well
as some Alfisols and Oxisols, on the basis of US soil taxon-
omy. The field had been under gone tea plantation for more
than 10 years. The average elevation of the sampling site is
about 35 m, and the surface soil of tea garden was collected
from 0*20 cm by the diagonal multipoint mixing. A com-
posite soil sample was made after removing visible organic
residues and the small stones. The soil was passed through
a 2-mm sieve after air-drying and used for incubation ex-
periments. The properties of the soil were as follows: 45.3%
sand, 22.6% silt, 15.7% clay, pH 4.57, bulk density 1.41 g
cm–3, 17.2 g kg–1 total C (TC), 1.04 g kg–1 total N (TN), 64.2
mg kg–1 NH4

þ-N, and 19.1 mg kg–1 NO3
–-N.
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2.2. Experiment design

The cake fertilizer used in the experiment was oilseed rape
cake, which was dried, crushed, and set aside after 100
mesh sieving. The total C content of rapeseed cake was
446 g kg–1, the total N content was 51.2 g kg–1, and C/N
ratio was 8.71. Urea aqueous solution was used as N fer-
tilizer, instead of granule form. Five treatments were de-
signed in this study: no fertilizer (CK), single nitrogen
(urea, N), single cake fertilizer (R), nitrogen þ cake fertil-
izer (2:1, NR1), and nitrogen þ cake fertilizer (1:2, NR2),
respectively. The N concentrations of all fertilization treat-
ments were limited to 100 mg kg–1. The fertilization pro-
portion of NR1 and NR2 was determined by the nitrogen
content of nitrogen fertilizer and cake fertilizer. The C
contents of R, NR1, and NR2 were 870 mg kg–1, 290 mg
kg–1, and 580 mg kg–1, respectively.

A weight of 200 g air-dried soil was placed in a 1000
mL glass bottle. Distilled water was added to moisten the
soil, and the soil was preincubated for 10 days in the dark
to activate soil microbes. At the end of preincubation,
different types and proportions of fertilizer were added
to the glass bottles. Three replicates were set for each
treatment. At the same time, water content of distilled
water was adjusted as 60% for the entire experiment, and
the water lost by evaporation was replenished by weighing
every 2 days to keep the soil water content constant. Top
of the glass bottle was closed by a butyl rubber stopper
having two holes. The glass tubes with three valve hose
were inserted into holes, which was used to exchange and
sample gas. All treatment bottles were incubated aerobi-
cally in a biochemical incubator at 25 �C + 1.0 �C for 50
days. The incubation bottles consisted of two sets, one set
was used to collect gas, and the other one was used to
collect soil samples to determine soil DOC, MBC, pH,
NH4

þ-N, and NO3
–-N.

Gases were sampled from glass bottles each day for the
first 7 days, each 2 or 3 days till day 22, and each 5 days till
the last day 50. In addition, soil samples of each treatment
were destructively sampled at days 1, 3, 7, 13, 22, 41, and
50. Before sampling, the butyl rubber stopper was
removed to ensure thorough gas exchange between the
ambient air and atmosphere inside each glass bottle. The
upper headspace gas sample of the glass bottle was col-
lected as the initial gas concentration and recorded the
sampling time. After 2 hours of closure, the gas samples
were collected again and stored in a prevacuumed bottle.

2.3. Methods for the calculation and determination

of gases

The calculation formula of CO2 and CH4 fluxes of soil
greenhouse gases was as follows (Zheng et al., 1998):

F ¼ r� V
m
� dc

dt
� 273

T

Where F is the fluxes of CO2 and CH4 (mg kg–1 h–1),
a positive value represents the emission of this gas from
soil to the atmosphere, and a negative value represents
the absorption of this gas by the soil. r is the density of
gas under standard conditions, the density of CO2 and CH4

are 1.98 kg m–3, 0.714 kg m–3, respectively; V is the glass

bottle upper effective space volume (m3); m is the dry
weight of soil sample, and the unit is (g); dc/dt is within
the unit time gas concentration change; T is the absolute
temperature. The concentration of CO2 and CH4 was deter-
mined by gas chromatograph (Agilent 7890A, California,
USA). Cumulative emissions of CO2 and CH4 were calcu-
lated by multiplying the average emission rate of two
adjacent gases by the emission time.

2.4. Soil analysis

Soil pH was measured in a 1:2.5 soil: water (w/v) mixture
using a pH meter connected with a glass electrode (In-
sMarkTM IS126, Shanghai, China). Soil bulk density was
determined using ring sampler weighing method. The
particle composition was measured with a laser particle
size analyzer (Master-sizer 2000, Malvern, UK). Total C (TC)
and total N (TN) were analyzed by elemental analyzer
(Vario MACRO Cube, Elementar, Germany). Dissolved
organic carbon was extracted with 0.5 mol L–1 K2SO4 and
the extracts were measured using a Liqui TOCII analyzer
(Elementar, Germany; Jones and Willett, 2006; Wang et al.,
2020). Soil microbial biomass carbon was determined by
chloroform fumigation-K2SO4 extraction method(Brookes
et al., 1985). The difference between the total C in non-
fumigated and fumigated samples was considered as MBC,
and the conversion factors was 0.45. Soil was extracted
and filtered by 1 mol L–1 KCl, and the contents of NH4

þ-
N and NO3

–-N in the extract were measured by Seal Ana-
lytical chemistry AA3 flow analyzer.

2.5. Statistical analysis

Statistical analysis of the data was conducted using SPSS
21.0 (SPSS Inc., Chicago, IL, USA). A one-way analysis of
variance and a Duncan multiple comparisons (P < 0.05)
test were used to assess the significance of differences
among different treatments (Liu et al., 2020). All bar
graphs and broken line graphs were drawn using Origin
2018. Using the corrplot package in R (v.3.5.2) for pairwise
comparisons, and the vegan package in R was used for
Mantel tests (Sunagawa et al., 2015; Liu et al., 2019). To
understand the relationship between CO2, CH4, and soil
properties, we correlated CO2 flux and CH4 flux with soil
properties by partial (geographic distance-corrected) Man-
tel tests. The structural equation modeling (SEM) frame-
work was used to investigate direct and indirect effects of
environmental variables on CO2 flux and CH4 flux. The w

2

values, P values, RMSEA, and AIC were adopted to evaluate
the overall goodness of structural equation model fit. SEM
was performed by Amos 17.0 software package (Small-
waters Corporation, Chicago, IL, USA).

3. Results
3.1. Soil CO2 emission flux and cumulative emission

In all treatments, soil CO2 fluxes showed a gradual
decrease in the first 27 days of incubation and finally stay
stable (Figure 1a). The CO2 fluxes of the CK, NR1, NR2
treatments peaked after a small increase in the first 4 days,
and the fluxes of CO2 under four fertilization treatments
was higher than those in CK. At the later stage of incuba-
tion, CO2 fluxes of each treatment were relatively stable
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between 0.27 and 0.32 mg kg–1 h–1. During the incuba-
tion, the CO2 fluxes of the N treatment were significantly
lower than those in the three treatments with cake fer-
tilizer (P < 0.05; Table 1). Compared with the control,
the treatment with single nitrogen fertilizer had no sig-
nificant effect on the CO2 emission. The average CO2

fluxes from high to low were, in turn, R > NR2 > NR1
> N > CK. The values were 0.75 + 0.03, 0.68 + 0.05,
0.58 + 0.01, 0.42 + 0.01, and 0.39 + 0.04 mg kg–1 h–1,
respectively (Table 1).

The cumulative CO2 emission increased gradually in
the process of incubation, and it sharply increased in the
early stages (Figure 1b). In the study period, cumulative
CO2 emissions in R, NR2, and NR1 were significantly high-
er than those in CK (P < 0.05; Table 1). The R treatment
had the highest cumulative emissions of 654 + 52.9 mg
kg–1, which is 1.73 times higher than that of the CK treat-
ment (Table 1). Cumulative CO2 emission of the CK and N
treatment were 377 + 18.3 mg kg–1, 414+ 18.7 mg kg–1

with no significant difference (P > 0.05).

Figure 1. CO2 (A) and CH4 (C) fluxes, and cumulative CO2 (B) and CH4 (D) emissions in five different treatments. CK
(soil), N (soil þ urea), R (soil þ rape cake fertilizer), NR1 (soil þ urea, rape cake fertilizer (2:1)), NR2 (soil þ urea, rape
cake fertilizer (1:2)). Error bars represent standard error of the mean (n ¼ 3). DOI: https://doi.org/10.1525/
elementa.2021.090.f1

Table 1. CO2 and CH4 fluxes under N fertilizer and oilseed rape cake fertilizer. DOI: https://doi.org/10.1525/
elementa.2021.090.t1

Treatment

CO2 CH4

Variation

(mg kg–1 h–1)

Average

(mg kg–1 h–1)

Cumulative Emission

(mg kg–1)

Variation

(ng kg–1 h–1)

Average

(ng kg–1 h–1)

Cumulative Emission

(mg kg–1)

CK 0.25 * 0.77 0.39 + 0.04 d 377 + 18.3 c –40.5 * 4.86 –11.2 + 1.40 a –8.16 + 1.83 b

N 0.22 * 1.43 0.42 + 0.01 d 414 + 18.7 c –34.8 * 17.9 –4.47 + 9.37 a –11.5 + 2.40 b

R 0.26 * 1.82 0.75 + 0.03 a 654 + 52.9 a –47.7 * 20.5 –9.09 + 7.18 a –12.7 + 0.29 b

NR1 0.27 * 2.10 0.58 + 0.01 c 544 + 16.9 b –55.7 * 25.7 –1.49 + 2.01 a 2.51 + 1.63 a

NR2 0.28 * 1.78 0.68 + 0.05 b 621 + 37.7 a –43.5 * 25.1 –2.51 + 4.48 a –0.70 + 2.66 a

CK (soil), N (soilþ urea), R (soilþ rape cake fertilizer), NR1 (soilþ urea, rape cake fertilizer (2:1)), NR2 (soilþ urea, rape cake fertilizer
(1:2)). Different letters within a column mean significant difference (P < 0.05). Data are means+ SD of three independent replicates.
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3.2. Soil CH4 emission flux and cumulative emission

There were some fluctuations of CH4 fluxes during the
whole incubation process. However, the overall trend of
CH4 fluxes changed from negative value to positive value,
that is, the soil gradually changed from absorbing CH4 to
discharging throughout the study stage (Figure 1c). At
the early stage of incubation, CH4 showed absorption
trend in treatments NR2, CK, NR1 and R with absorption
values of 43.5 + 3.49, 40.5 + 0.32, 38.9 + 1.32, and
34.3 + 1.21 ng kg–1 h–1, respectively. At the end of the
incubation, all treatments showed CH4 emissions, and the
emissions of NR2, N, R, NR1, and CK were 14.7 + 2.78,
9.77 + 1.41, 4.88 + 1.39, 2.46 + 2.82, and 2.44 + 1.44
ng kg–1 h–1, respectively. During the incubation, there was
no significant difference between treatments (Table 1).

The soil cumulative CH4 emission of NR2 CK, N and R
showed net absorption, and its cumulative emissions at the
end of the incubation were –0.70 + 2.66, –8.16 + 1.83,
�11.5 + 2.40, and –12.7 + 0.29 mg kg–1, respectively
(Figure 1d). Among them, the absorption of CH4 by the
three treatments (N, R, and NR2) increased first and then
decreased. The NR1 treatment switched to net emissions
after 41 days, and the final cumulative emissions were 2.51
+ 1.63 mg kg–1. The cumulative CH4 emissions in the NR1
and NR2 treatments were significantly higher than that in
the CK, N, and R treatments (P < 0.05; Table 1).

3.3. Changes in soil properties

Throughout the study stage, the contents of DOC and
MBC in the R treatment were significantly higher than
other treatments (Figure 2a and b). At the end of the
incubation, DOC content in the R, NR2, NR1, and N
treatments was 2.91, 1.66, 1.21, and 0.12 times higher
than the CK treatment, respectively. Compared with the
treatment with single N fertilizer, the average content of
DOC in R, NR2, NR1 treatment was significantly
increased (P < 0.05; Table 2). The content of MBC trea-
ted by fertilization showed a trend of decreasing gradu-
ally with the development of incubation time (Figure
2b). In the whole incubation, the average MBC content
of each treatment was R > NR2 > NR1 > N > CK from
high to low (Table 2).

The NH4
þ-N content of the N treatment was the high-

est in the incubation process (Figure 2c). Moreover, the
average contents of NH4

þ-N in each treatment (N, NR1,
NR2, R, CK) were 94.4 + 4.28, 81.1 + 0.42, 67.9 + 1.21,
41.5 + 3.74, and 20.7 + 1.87 mg kg–1, respectively and
there were significant differences among the treatments
(P < 0.05; Table 2). The trend of NO3

–-N content in soil
gradually increased with time, especially in N and NR1
treatments(Figure 2d). The average contents of NO3

–-N
in the treatment of N and NR1 were significantly higher
than the treatment of R (P < 0.05; Table 2). In addition,

Figure 2. Changes in soil DOC contents (A), MBC contents (B), NH4
þ-N contents (C), NO3

–-N contents (D) and pH (E)
after five different treatments. CK (soil), N (soil þ urea), R (soil þ rape cake fertilizer), NR1 (soil þ urea, rape cake
fertilizer (2:1)), NR2 (soil þ urea, rape cake fertilizer (1:2)). Data were analyzed by one-way analysis of variance and
means were compared by Duncan test. Different letters indicate significant differences (P < 0.05) among the different
treatments. DOI: https://doi.org/10.1525/elementa.2021.090.f2
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the average NO3
–-N content of the R treatment was the

lowest, which was 18.1 + 7.54 mg kg–1.
The change of soil pH value with time under different

treatments was shown in Figure 2e. Soil pH value in each
treatment varied within the range of 4.12–5.05. The aver-
age pH value of the four fertilization treatments was sig-
nificantly higher than the CK treatment (Table 2). At the
end of incubation, compared with CK, the pH value of R
treatment increased by 0.01 units, while the pH value of
N, NR1, and NR2 treatment decreased by 0.21, 0.06, and
0.04 units, respectively.

3.4.The relationship between soil CO2, CH4 flux and

soil properties

According to the correlation results between soil proper-
ties, pH showed a correlation with NO3

–-N (r ¼ –0.8), DOC
(r ¼ 0.73), and MBC (r ¼ 0.67), while NO3

–-N had a neg-
ative correlation with DOC (r ¼ –0.66) and MBC (r ¼
–0.68), and DOC had a positive correlation with MBC
(r ¼ 0.73; Figure 3). Correlation results can be used to
determine collinear problems among factors and con-
struct structural equation models. To understand the rela-
tionship between CO2, CH4, and soil properties, we
correlated CO2 flux and CH4 flux with soil properties by
partial (geographic distance-corrected) Mantel tests. Over-
all, DOC and MBC had the strongest correlations with CO2

flux, followed by NO3
–-N and pH. The correlation between

CH4 flux and NO3
–-N was the strongest, while DOC was

not significantly correlated (Figure 3).
The effects of different fertilization treatments showed

a reasonable fit to our hypothesized causal relationships,
as shown by the properties of the SEM (w2 ¼ 7.04, P ¼
0.42, RMSEA ¼ 0.01, AIC ¼ 35.0, Figure 4a; w2 ¼ 3.80,
P ¼ 0.70, RMSEA ¼ 0.00, AIC ¼ 33.8, Figure 4c). NH4

þ-N
exerted an indirect negative effect on CO2 flux and CH4

flux, as shown by CO2 (–0.14) and CH4 (–0.16) release, and
NO3

–-N showed a negative control on CO2 (–0.15) and CH4

(–0.32), respectively. The emission for both CO2 and CH4

was positively affected by DOC. The MBC showed a direct
effect on CO2 (þ0.43) and CH4 (þ0.21) emission, respec-
tively. And pH mainly exerted a positive control on CO2

release (þ0.63) and CH4 formation (þ0.32) (Figure 4b
and d).

4. Discussion
The trend of CO2 emissions under different fertilization
types was consistent, but there were significant differ-
ences among treatments. The CO2 fluxes showed a gradual
decline during the whole incubation period (Figure 1a),
which was consistent with the content of MBC (Figure
2b). Previous studies have reported that soil CO2 emission
was affected by multiple factors, including organic matter
content (Iqbal et al., 2008), microbial activities (Sauze et
al., 2017), and different fertilization treatments (Nyamad-
zawo et al., 2014). However, for indoor cultivated soil
without vegetation cover, microbial respiration in soil was
the main way of CO2 emission (Zhang et al., 2016). There-
fore, with the available C and N sources of microbes grad-
ually reduced, the CO2 emission rate slowed down and
finally stabilized, which was coincident with the studyTa
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Figure 3. Environmental drivers of CO2 and CH4 fluxes. Pairwise comparisons of physicochemical property are shown,
with a color gradient denoting Spearman’s correlation coefficients. CO2 flux and CH4 flux were related to each
environmental factor by partial (geographic distance-corrected) Mantel tests. Edge width corresponds to the
Mantel’s r statistic for the corresponding distance correlations, and edge color denotes the statistical significance
based on 9,999 permutations. DOI: https://doi.org/10.1525/elementa.2021.090.f3

Figure 4. The structural equation model (SEM) showing the effects of NH4
þ-N, NO3

–-N, microbial biomass C (MBC),
dissolved organic C (DOC), and pH on CO2 (A) and CH4 (C) fluxes. Standardized total effects of soil NH4

þ-N, NO3
–-N,

MBC, DOC, and pH on CO2 (B) and CH4 (D) fluxes as revealed by SEM. The width of the arrows indicates the strength of
the standardized path coefficient. Solid lines represent positive path coefficients and dashed lines represent negative
path coefficients. R2 values represent the proportion of the variance explained for each endogenous variable. DOI:
https://doi.org/10.1525/elementa.2021.090.f4
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result of Senbayram et al. (2019). Compared to the CK
treatment, single application of N fertilizer had no signif-
icant effect on soil CO2 flux (Table 1). This result indicated
that the addition of organic matter was the main source of
CO2 production (Singh et al., 1999). In addition, organic
carbon as the substrate of soil respiration could provide
available C and N for microbial decomposition (Witt et al.,
2000; Qiu et al., 2015; Shah et al., 2016), and organic
materials such as straw and cake fertilizer applied into the
soil are conducive to the formation of soil aggregates and
increase the soil porosity and promote the diffusion of
CO2 (Kallenbach et al., 2010). This was also the reason why
CO2 emission of three cake fertilizer treatments was high-
er than the N treatment (Table 1).

Among them, the CO2 emission of single cake fertilizer
treatment was higher than that of nitrogen fertilizer and
cake fertilizer mixed treatment (Figure 1b). This could be
due to the lower C/N ratio of oilseed rape cake (8.71)
which is conducive for high respiration and ultimately
CO2 emissions (Kim et al., 2012; Raheem et al., 2019). In
addition, specific C/N ratio is required for microbial activ-
ities to meet their nutritional requirements, and the addi-
tion of the residue with a low C/N ratio in this study made
the N content a factor not limiting microbial activity (Finn
et al., 2016; Wei et al., 2019). Therefore, the C content of
fertilizer was an important factor affecting CO2 emission
in this study. The C content in R treatment was the high-
est, which provided more C sources for soil microbial
activities. This was also supported by the result of CO2

emission that was positively affected by DOC and MBC,
as revealed by SEM (Figure 4b). As an indicator of micro-
bial available C, DOC can indirectly affect soil respiration
by influencing microbial activity and MBC (Boyer and
Groffman, 1996; Wu et al., 2020). A previous study has
shown that the abundance of soil phototrophs increased
most at higher soil pH, promoting the production of CO2

(Sauze et al., 2017). This is consistent with the results of
the structural equation model that CO2 was positively
affected by pH (Figure 4b). In addition, CO2-C is consid-
ered to be the sole C source promoting the autotrophic
growth of nitrifiers (Xia et al., 2011; Zhang et al., 2019).
Soil pH can indirectly affect soil CO2 emissions by affect-
ing soil nitrification rate (Li et al., 2020).

CH4 fluxes mainly remained negative and low during
the study period(Figure 1c). Our finding was similar to
other research results from cultivated land (Li et al.,
2019) and grassland (Shimizu et al., 2013). The main
reason is that the experiment was carried out under
the condition of aerobic, and CH4 can be oxidized by
methanotroph, so it is not conducive to the production
of CH4 (Zhou et al., 2020). However, CH4 emissions do
exist during the whole incubation process (Figure 1c).
This could be due to uneven distribution of soil parti-
cles and water leading to the formation of anaerobic
microzone, resulting in CH4 emissions (Kong et al.,
2019). Moreover, Hurkuck et al. (2012) observed that
in addition to microbial activity, organic compounds
such as lignin and pectin showed substantial release
of CH4. The cumulative emissions of CH4 from each
treatment in a short period of 50 days were mainly

concentrated in negative values (Figure 1d), which can
be considered that the soil of the tea garden is the net
absorption sink of CH4 in a short time and be similar to
farmland (Jacinthe and Lal, 2005).

There was no significant difference between the CH4

fluxes among treatments. However, the cumulative CH4

fluxes in two treatments that mixed application of N fer-
tilizer and cake fertilizer (NR1, NR2) were significantly
higher than the other three (CK, N, R; Table 1). The R
treatment showed the highest CH4 absorption; it is possi-
ble that more abundant C sources were provided to
methanotroph than other treatments (Wang et al., 2019;
Zhou et al., 2020). However, compared with the N treat-
ment, NR1 and NR2 reduced CH4 absorption (Figure 1d),
and previous studies have reported that NH4

þ-N has a sim-
ilar molecular shape and size to CH4, and NH4

þ-N can be
used as a substrate for methanotroph to inhibit the
absorption of CH4 (Bedard and Knowles, 1989; Schimel,
2000). This is consistent with the results that the NH4

þ-N
content of NR1 and NR2 was higher in incubation (Figure
2c). In addition, NH4

þ-N produces NO2
– in the oxidation

process, which may poison methanotroph in a short time
and inhibit the oxidation of CH4 (Dunfield and Knowles,
1995). Although the N treatment had the highest NH4

þ-N
content, there is no C source for microorganisms to carry
out oxidation activities. This explains why NR1 absorbed
the least CH4 in this result (Figure 1d). The input of
oilseed rape cake provided available C sources for metha-
nogen and methanotroph (Seghers et al., 2005), but the
input of nitrogen affected microbial activities and indi-
rectly affected CH4 emission (Figure 4c). The N treatment
had the highest NO3

–-N content, and its cumulative CH4

emissions were lower than the control treatment (Table 2;
Figure 1d). Some studies have found that nitrate has an
inhibitory effect on CH4 production (Lu et al., 2000). On
the one hand, denitrification intermediates (NO2

–, NO,
N2O) from nitrate reduction can inhibit methanogens
(Clarens et al. 1998; Liu et al., 2017). On the other hand,
CH4 emission is reduced when nitrate reducers are more
competitive than methanogens for common substrates
(Bao et al., 2016). This was shown by the NO3

–-N, which
indicated a negative effect for CH4 as revealed by struc-
tural equation models (Figure 4d).

It is worth noting that the results of CO2 and CH4

emissions in this experiment were obtained by using tea
plantation soil under indoor incubation conditions rather
in the presence of tea plants. The uptake of soil nutrients
by tea plants, root exudates, water and climatic factors can
affect the soil CO2 and CH4 emissions under planting
conditions (Xiang et al., 2008; Kechavarzi et al., 2010;
Du et al., 2020). Besides, the soil sampled from tea plant
field was disturbed in terms of grinding and adding treat-
ments, and thus soil organic matter become more vulner-
able to the decomposition increasing the amount of
substrate for microorganisms and affecting greenhouse
gas emission (Six et al., 2000). Therefore, filed studies are
necessary to deeply and systematically exploration of
influencing rules and mechanisms pertinent to GHGs
from tea plant soils.
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5. Conclusions
The application of urea and oilseed rape cake fertilizer
showed a significant difference for the CO2 and CH4 fluxes
from tea plantation soil. The single application of N fer-
tilizer had no significant impact on soil CO2 emissions.
However, the addition of cake fertilizer significantly
increased soil MBC content and CO2 emissions, especially
the treatment of single cake fertilizer showed the highest
emissions. The C content of fertilizer was positively pro-
portional to the CO2 emissions of soil. The cumulative
emissions of CH4 from each treatment were mainly con-
centrated in negative values, which can be considered that
the soil of the tea garden is the net absorption and sink of
CH4 in a short time. Mixed application of N fertilizer and
cake fertilizer reduced the soil absorption of CH4. It is
likely that NH4

þ-N was involved in microbial oxidation
activity and inhibited the absorption of CH4. In addition,
soil pH, MBC, and DOC were the main factors affecting
CO2 fluxes, while CH4 fluxes were mainly affected by min-
eral nitrogen contents. In conclusion, under the condition
of low nitrogen addition, the single application of cake
fertilizer increased the CO2 emission but increased the
oxidation of CH4 and promoted soil C sequestration. The
mixed application of urea and oilseed rape cake fertilizer
reduced the emission of CO2 but also increased CH4 emis-
sions. These results are helpful to further understand the
CO2 and CH4 emission processes in tea plantation soil and
provide potential strategies to reduce CO2 and CH4 emis-
sions and improve soil C sequestration through improved
fertilization management.
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