In Memoriam, P. Michael Conn, PhD (1949–2016)
Bert W. O’Malley and William F. Crowley

The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids
Henrik Oster, Etienne Challet, Volker Ott, Emanuela Arvat, E. Ronald de Kloet, Derk-Jan Dijk, Stafford Lightman, Alexandros Vgontzas, and Eve Van Cauter

Immune Modulation of Brown(ing) Adipose Tissue in Obesity
Susan M. van den Berg, Andrea D. van Dam, Patrick C. N. Rensen, Menno P. J. de Winther, and Esther Lutgens

Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis
Rohit A. Sinha, Brijesh K. Singh, and Paul M. Yen

On the cover: Beige and brown adipogenesis. Model showing beige and brown adipocyte development in inguinal subcutaneous adipose tissue and interscapular brown adipose tissue. White adipocytes can derive from both Myf5⁺Pax3⁺ as well as Myf5⁺Pax3⁻ precursors. Beige adipocytes can either transdifferentiate from mature white adipocytes or directly differentiate from EBF2⁺PDGFRα⁺ preadipocytes, called de novo adipogenesis. EBF2 is a selective marker for brown and beige preadipocytes. In interscapular BAT, brown adipocytes are derived from a multipotent Myf5⁺Pax3⁺ expressing precursor population. When these precursors are exposed to myogenin they will develop into myocytes. PRDM16 and PPARγ promote brown adipocyte differentiation. Brown adipocytes in BAT can undergo whitening upon exposure to thermoneutrality, obesity, ageing or sympathetic denervation. EBF2, early B-cell factor 2; Myf5, myogenic factor 5; MyoD1, myogenic differentiation 1; Pax3, paired box 3; PDGFRα, platelet-derived growth factor receptor-α; PPARγ, peroxisome proliferator-activated receptor γ; PRDM16, transcriptional regulator PR domain zinc finger protein 16. See the review article by van den Berg and colleagues, pages 46–68.