Highly conserved protein kinases involved in the regulation of carbon and amino acid metabolism

Nigel G. Halford*, Sandra Hey, Deveraj Jhurreea, Sophie Laurie, Rowan S. McKibbin, Yuhua Zhang and Matthew J. Paul

Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK

Received 19 May 2003; Accepted 3 October 2003

Abstract

It has been clear for over a decade and a half that ancient signalling pathways controlling fundamental cellular processes are highly conserved throughout the eukaryotes. Two plant protein kinases, sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK1) and general control non-derepressible 2 (GCN2)-related protein kinase are reviewed here. These protein kinases show an extraordinary level of conservation with their fungal and animal homologues given the span of time since they diverged from them. However, close examination of the signalling pathways in which they operate also reveals intriguing differences in activation and function.

Key words: Amino acid metabolism, carbon metabolism, plant protein kinases, regulation, signalling.

The SNF1 family of protein kinases: similarities in structure and function conserved throughout the eukaryotes

The SNF1 (sucrose non-fermenting-1) gene of budding yeast (Saccharomyces cerevisiae) encodes a protein kinase (Celenza and Carlson, 1986) that is activated in response to low cellular glucose levels. It was first identified genetically in a screen of mutants that fail to express the invertase gene, SUC2, in response to glucose deprivation, although its functions have since been found to be far more wide-ranging. Snf1 mutants essentially require glucose to survive and will starve on a medium containing other sugars, including sucrose, galactose, and maltose or non-fermentable carbon sources such as glycerol or ethanol. The animal homologue of SNF1 is AMP-activated protein kinase (AMPK), while the plant homologue is SnRK1 (SNF1-related protein kinase-1).

The striking similarities between these protein kinases, will be considered first. Plants, animals and fungi are estimated to have diverged approximately 1.5 billion years ago. Yet SNF1, AMPK and SnRK1 are instantly recognizable as members of the same family. All three protein kinases are, in fact, heterotrimeric complexes (Fig. 1A). In animals these have a logical name, AMPKα, β and γ (Woods et al., 1996). The 63 kDa α subunit contains the protein kinase catalytic domain in the N-terminal half and a regulatory domain in the C-terminal half that interacts with the 36–38 kDa γ subunit. The third member of the complex is the 38–40 kDa β subunit. The catalytic subunit in yeast is 72 kDa and is encoded by the SNFI gene itself. The regulatory subunit homologous to AMPγ is a 36 kDa protein called SNF4 (Celenza et al., 1989).

The interaction between SNF1 and SNF4 appears to be regulated by glucose (Fig. 1A) and it has been proposed that SNF4 activates SNF1 by counteracting autoinhibition by the SNF1 regulatory domain (Jiang and Carlson, 1996). The third interacting protein in the SNF1 complex is one of a class of proteins that comprises SIP1 (110 kDa), SIP2 (54 kDa) and GAL83 (64 kDa). These three related proteins are interchangeable in the SNF1 kinase complex and may target the complex to different substrates (Yang et al., 1994). They contain two conserved domains, the ASC domain (association with SNF1 complex) (Yang et al., 1994; Jiang and Carlson, 1997) and the KIS domain (kinase interacting sequence) (Jiang and Carlson, 1997). Three further interacting factors have been identified (SIP3, SIP4 and MSN3) that may couple SNF1 complexes to transcriptional regulation (Hubbard et al., 1994; Lesage et al., 1994, 1996).
The plant homologue of SNF1 and AMPKα is a 58 kDa protein called SnRK1 (SNF1-related protein kinase-1). An SnRK1 gene was cloned for the first time in 1991 (Alderson et al., 1991) and homologues have since been cloned and characterized from many plant species (reviewed by Halford and Hardie, 1998; Halford et al., 2000). A SNF4/AMPγ homologue called AtSNF4 has been cloned from arabidopsis by partial complementation of a snf4 mutant (Kleinow et al., 2000).

Fig. 1. (A) Cartoon showing yeast SNF1 complexes in conditions of high and low glucose. Glucose causes the catalytic subunit SNF1 and regulatory subunit SNF4 to dissociate. The regulatory domain of the catalytic subunit folds over the catalytic domain, rendering the kinase inactive. Under conditions of glucose limitation the regulatory domain of the catalytic subunit binds to SNF4 and the kinase becomes active. Homologues of all three subunits are present in animals and plants as well as fungi. (B) Phosphorylation sites for SNF1, AMPK and SnRK1. Requisite residues (coloured) are the target serine residue, hydrophobic residues at +4 and −5 with respect to the serine and a basic residue at −3 or (less preferably) at −4. The top panel shows the consensus sequence and alternatives. The middle and bottom panels show the sequences of the SAMS and AMARA peptides, respectively, that are used as standard substrates in measurements of SNF1, AMPK and SnRK1 activity. (C) Cartoon showing the known mechanisms (unbroken arrows) and inferred mechanisms (dotted arrows) for activation of SnRK1. (D) Cartoon showing the interactions of protein kinase GCN2, translation initiation factor eIF-2α and transcription factor GCN4 in general amino acid control in yeast.
Genes related to the SIP1/SIP2/GAL83/AMPK family have been cloned from arabidopsis (AKINβ1 and AKINβ2) and potato (StubGAL83) (Bouly et al., 1999; Lakatos et al., 1999). AKINβ1 and AKINβ2 interact with SnRK1 in the two-hybrid system, but also with the yeast SNF1 and SNF4 proteins (Bouly et al., 1999). Potato StubGAL83 was isolated by screening a yeast two-hybrid cDNA library with a potato SnRK1 cDNA (Lakatos et al., 1999).

A maize homologue of AtSNF4 was given the name AKINβγ because it was found to contain an N-terminal KIS domain fused with a C-terminal domain similar to SNF4, AMPKγ and AtSNF4 (Lumberas et al., 2001). Reanalysis of the arabidopsis AtSNF4 gene shows that it too encodes a protein with this N-terminal KIS domain. The reason for this domain fusion is not clear.

The degree to which these protein kinases have been conserved is most evident in the catalytic subunit. SNF1, AMPK and SnRK1 show approximately 62% amino acid sequence identity in the kinase catalytic domain and 48% overall. There are also similarities in substrate specificity. All three recognize the target site shown in Fig. 1B (Halford and Hardie, 1998) although AMPK tolerates threonine in place of serine more readily than SNF1 or SnRK1. Peptides based on this sequence, such as the SAMS and AMARA peptides shown in Fig. 1B, are good substrates for all three protein kinases, enabling activity to be measured in a relatively easy assay (Davies et al., 1989).

SNF1, AMPK and SnRK1 all act in part through the inactivating phosphorylation of biosynthetic enzymes. SnRK1, for example, phosphorylates and inactivates 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMG-CoA reductase) (sterol/isoprenoid synthesis), sucrose phosphate synthase (SPS) (sucrose synthesis) and nitrate reductase (NR) (nitrogen assimilation) in vitro (reviewed by Halford and Hardie, 1998). As the different systems have diverged, however, some substrates have come under their control whereas some have moved out of it. Animal HMG-CoA reductase, for example, is a substrate (reviewed by Hardie and Carling, 1997), just as the plant one is, whereas yeast HMG-CoA reductase is not. Yeast and animal acetyl Co-A carboxylases (fatty acid synthesis) are substrates whereas plant acetyl Co-A carboxylase is not. SnRK1 has also been shown to be involved in the activation of ADP-glucose pyrophosphorylase (AGPase), but through redox modulation rather than direct phosphorylation (Tiessen et al., 2003).

All three protein kinases also exert their effects through the regulation of gene expression. Indeed, the classic snf1 phenotype of inability to use carbon sources such as sucrose, maltose, galactose, ethanol, glycerol, and other non-fermentable carbon sources derives from an inability to switch on the requisite genes in response to glucose deprivation (reviewed by Dickinson, 1999), not through direct effects on the phosphorylation state of metabolic enzymes. Clearly, transcription factors must be at the end of this branch of the signal transduction pathway and one, MIG1, has been identified as a substrate for SNF1 (Treitel et al., 1998). AMPK has been shown to inhibit gene activation by glucose in liver cells (Leclerc et al., 1998; Woods et al., 2000). Genes that respond to glucose levels in the liver include those involved in glucose and lipid metabolism, including, for example, pyruvate kinase and fatty acid synthase.

A role for SnRK1 in regulating gene expression was first shown by expressing an antisense SnRK1 sequence in transgenic potato. This caused a dramatic reduction in sucrose synthase gene expression in tubers and loss of sucrose-inducibility of sucrose synthase gene expression in leaves (Purcell et al., 1998). Subsequently, co-bombardment with an antisense SnRK1 gene was found to repress transient activity of an α-amylase (α-Amy2) gene promoter in cultured wheat embryos (Laurie et al., 2003).

Intriguing differences in interacting proteins, activation and influence

The similarities in structure between the SNF1, AMPK and SnRK1 complexes have been described above. However, there is evidence that the situation in plants is somewhat more complicated than in fungal and animal systems. For example, two families of plant proteins, in addition to AtSNF4, show similarity with SNF4. These are the PV42 family, which includes PV42 from bean (Phaseolus vulgaris) and AKINγ from arabidopsis (Abe et al., 1995; Bouly et al., 1999), and the SnIP1 family (Slocombe et al., 2002). These show 20–25% amino acid sequence identity with SNF4 and interact with SnRK1 in two-hybrid assays and in vitro. However, they do not complement the snf4 mutation in yeast and are unique to plants.

Both PV42 and SnIP1 will align with SNF4 and AMPKγ, but they show little sequence similarity with each other apart from a short, hydrophobic motif, called the SnIP motif (Halford et al., 2000; Slocombe et al., 2002). Part of this motif (Hyd-Xxx-Bas-Xxx-Xxx-Xxx-Xxx-Xxx-Hyd) resembles the SnRK1 recognition sequence without the target serine residue, and could represent a pseudosubstrate site similar to those observed in the regulatory subunits of the cAMP-dependent kinase, PKA, of mammals (Taylor et al., 1990).

SNF1, AMPK and SnRK1 also differ in their mechanisms of activation. Of the three, AMPK is probably the best understood in this respect. As its name suggests, AMPK is activated allosterically by 5’AMP (Carling et al., 1987, 1989). It is also regulated by phosphorylation through the action of an upstream protein kinase (AMP-activated protein kinase kinase (AMPKKK)) (Hawley et al., 1996). Activation of AMPK by AMP is antagonized by high (mM) concentrations of ATP and a high AMP:ATP ratio is symptomatic of low cellular energy levels.
SNF1 activity responds sensitively to glucose levels, but the exact mechanisms involved in sensing glucose levels and initiating a signal through the SNF1 pathway are not understood. The *SNF1* gene is expressed all of the time at the same level, so regulation occurs post-transcriptionally. Glucose deprivation results in rapid phosphorylation and activation of SNF1 (Wilson *et al.*, 1996). SNF1 can be inactivated by protein phosphatases and reactivated by AMPKK, and there is evidence of the presence of an AMPKK homologue in yeast. AMP levels correlate closely with SNF1 activity, but AMP does not itself activate SNF1 allosterically in the way that it does AMPK.

SnRK1 is regulated transcriptionally and post-transcriptionally. Like AMPK and SNF1 it is activated through phosphorylation by an upstream protein kinase. It is not activated directly by AMP, but AMP does affect its phosphorylation state (Sugden *et al.*, 1999a). There is also evidence that SnRK1 is inhibited by glucose-6-phosphate (Toroser *et al.*, 2000). Furthermore, it can be inferred from the fact that it is required for sucrose synthase gene expression and AGPase redox modulation that SnRK1 responds to sucrose as well as glucose levels, since these are sucrose- (not glucose-) inducible processes. This is summarized in Fig. 1C.

This more complicated mechanism for activation might explain why it has not been possible to demonstrate a clear response of SnRK1 activity to sugars supplied exogenously and is a reminder that sucrose and hexoses initiate antagonistic signals in some tissues.

The plant SnRK family has diverged and expanded

Another striking difference between animals, fungi and plants is that the family of SNF1-related protein kinases in plants has expanded and diverged into subfamilies. The SnRK1 gene family itself comprises three members in Arabidopsis (Halford *et al.*, 2003a), five to ten in potato (Man *et al.*, 1997) and 10–20 in barley (Halford *et al.*, 1992). The gene family in barley and other cereals subdivides into SnRK1a and b. SnRK1a is more closely related to the homologue present in dicotyledonous plants and is expressed throughout the plant, whereas SnRK1b is unique to cereals and is expressed at highest levels in the seed (reviewed by Halford and Hardie, 1998).

The divergence does not stop there. Plants contain two other subfamilies, SnRK2 and SnRK3, that are clearly within the SNF1 family, but are significantly less similar to SNF1 and AMPK than SnRK1 is. SnRK2s and 3s have 42–45% amino acid sequence identity with SnRK1, SNF1 and AMPK in the catalytic domain. They are unique to plants and the gene families are relatively large and diverse compared with SnRK1; analysis of the Arabidopsis genome sequencing project identified 10 members of the SnRK2 family and 29 members of the SnRK3 family (Halford *et al.*, 2003a). The family members that have been characterized (most have not) have different functions. For example, the SnRK2 subfamily includes PKABA1 from wheat, which is involved in mediating ABA-induced changes in gene expression (Anderberg and Walker-Simmons, 1992; Gómez-Cadenas *et al.*, 1999). The SnRK3 gene family includes SOS2, an Arabidopsis protein kinase involved in conferring salt tolerance (Halfter *et al.*, 2000; Liu *et al.*, 2000).

The use of peptide substrates for SnRK1 (Fig. 1B) allowed SnRK1 activity to be measured using a convenient assay. SnRK2 and SnRK3 might be expected to have similar substrate specificity to SnRK1. However, whenever SAMS or AMARA peptide kinase activity has been purified, SnRK1 has accounted for most of it. A minor SAMS peptide kinase activity has been tentatively assigned to SnRK2, but has not been characterized in detail (Ball *et al.*, 1994; Barker *et al.*, 1996; Sugden *et al.*, 1999b). This suggests that SnRK2 and SnRK3 require different recognition sequences to SnRK1.

GCN2 (general control non-derepressible)

Amino acid starvation of yeast causes a general reduction in protein synthesis and initiates changes in expression of a huge number of genes in a process known as general amino acid control (Hinnebusch, 1992) (Fig. 1D). Fundamental to general amino acid control is the protein kinase, GCN2 (general control non-derepressible 2) (Wek *et al.*, 1989). GCN2 phosphorylates the α subunit of eukaryotic translation initiation factor-2 (eIF2α) at serine-51 (Samuel, 1993). eIF2 can bind either GDP or GTP, but recycling of the GDP to GTP is essential for eIF2 to bind Met-tRNA to the 40S ribosomal subunit. Phosphorylation of eIF2α inhibits this recycling, thereby decreasing the rate of protein synthesis.

A wonderfully elegant mechanism enables the expression of amino acid biosynthesis genes to be activated despite this general reduction in protein synthesis. The expression of a transcriptional activator, GCN4 (Hinnebusch, 1997), is up-regulated at the translational level through the reduced availability of amino acid-tRNA molecules. Short open reading frames at the 5′ end of the GCN4 transcript that are translated under normal conditions are bypassed and translation starts from the initiation codon at the 5′ end of the GCN4 coding sequence (Hinnebusch, 1992, 1994). A total of 539 yeast genes have been shown to be induced through the action of GCN4 (Natarajan *et al.*, 2001), including genes in every amino acid biosynthetic pathway except cysteine.

The regulatory domain of GCN2 shows significant sequence similarity with histidyl-tRNA synthetases (Wek *et al.*, 1989) and is believed to interact with uncharged tRNA leading to activation of GCN2. Adjacent eIF2α...
kinase and histidyl tRNA synthetase domains are characteristic of GCN2-type protein kinases.

As with the SNF1 family, homologues of GCN2 have been identified in a wide range of eukaryotes, including Drosophila melanogaster (Santoyo et al., 1997), Neurospora crassa (Sattlegger et al., 1998) and arabidopsis (Zhang et al., 2003). So the GCN2-type protein kinases are another ancient family that evolved before the divergence of plants, animals and fungi. There are also two other eIF2α kinases that have similar catalytic domains to GCN2, but do not contain a histidyl-tRNA synthetase-like domain and respond to different stimuli. These are the haem-regulated inhibitor (HRI) that has been cloned from rabbit and rat (Chen et al., 1991; Mellor et al., 1994) and the double-stranded RNA-dependent kinase (PKR) that has been cloned from human (Meurs et al., 1990).

The arabidopsis GCN2 homologue, AtGCN2, has been characterized only recently (Zhang et al., 2003). As with the other members of the GCN2 family it includes adjacent protein kinase and histidyl tRNA synthetase-like domains and shows 45% sequence identity with GCN2 in the protein kinase domain. Expression of AtGCN2 in yeast gen2 mutants complements the mutation, enabling growth in the presence of sulfometuron methyl, an inhibitor of branched chain amino acid biosynthesis, and 3-aminotriazole, an inhibitor of histidine biosynthesis.

A key question is whether or not the identification of a GCN2 homologue in arabidopsis indicates that plants have a general amino acid control system similar to that of yeast. So far the evidence is conflicting. The target phosphorylation site at serine-51 of yeast eIF2α has been shown to be conserved in eIF2α from wheat. Yeast GCN2 will phosphorylate wheat eIF2α at this site (Chang et al., 1999, 2000) and a protein kinase activity present in wheat seedlings has been shown to do the same (Langland et al., 1996). This activity appears to be PKR- rather than GCN2-like, which is confusing since AtGCN2 is the only eIF2α kinase gene in the arabidopsis genome. Perhaps wheat contains a PKR-like activity that arabidopsis lacks, but this requires further investigation.

Further evidence supporting the hypothesis that plants have a system of general amino acid control comes from experiments showing co-ordinated regulation of genes encoding enzymes of amino acid biosynthesis. For example, arabidopsis genes encoding tryptophan biosynthesis pathway enzymes have been shown to be induced by amino acid starvation caused by glyphosate and other treatments (Zhao et al., 1998). Furthermore, blocking histidine biosynthesis in arabidopsis with a specific inhibitor, IRL 1803, has been shown to increase the expression of eight genes involved in the synthesis of aromatic amino acids, histidine, lysine and purines (Guyer et al., 1995). However, this study also revealed a difference between the yeast and plant systems in that starvation for aromatic or branched-chain amino acids did not initiate a general response. The question of general amino acid control in plants has also been addressed by measuring amino acid levels in wheat, potato and barley leaves taken from plants that were grown under different photosynthetic conditions (Noctor et al., 2002). Linear relationships were observed between the contents of most minor amino acids, consistent with (but not proving) the existence of a system that regulates expression of key enzymes co-ordinately.

Perhaps the main reason for doubt over the degree of conservation between yeast and plant amino acid control systems is the lack of a clear candidate for the role of GCN4 in plants. There is a database entry describing a GCN4-complementing gene called GCP1 from arabidopsis (accession number AJ130878), but, to our knowledge, a paper describing this gene has not been published.

C/N interactions: cross-talk between carbon and amino acid signalling pathways

It seems ‘obvious’ that signalling pathways controlling carbon and amino acid metabolism should cross-talk, since amino acids are based on carbon skeletons. Indeed, evidence that sucrose feeding causes an increase in the rate of nitrogen assimilation and amino acid synthesis in tobacco leaves has already been reported (Morcuende et al., 1998) These effects resulted from an increase in nitrate reductase (NR) activation (though not activity) and activation of amino acid biosynthesis pathways.

NR, of course, assimilates the nitrogen used for amino acid biosynthesis and is a substrate for SnRK1 at least in vitro (note that unlike sucrose phosphate synthase and HMG-CoA reductase, inactivation of NR by SnRK1 requires the binding of a 14-3-3 protein to the phosphorylation site). Regulation of NR is complex and undoubtedly responds to nitrogen, in addition to carbon availability, as well as other signals. Indeed, SnRK1 is one of several protein kinases that phosphorylate NR (Douglas et al., 1997). Nevertheless, this is one possible conduit through which the SnRK1 signalling pathway could regulate nitrogen assimilation and thereby amino acid biosynthesis.

Another potential route by which carbon availability could influence amino acid biosynthesis is through GCN2 and GCN4. In yeast, glucose limitation has been shown to induce GCN4 through the action of GCN2, but independently of the amino acid deprivation response (Yang et al., 2000). However, investigations into GCN2 activation and function in plants have only just begun and there is no evidence so far that plant GCN2 is activated in response to glucose limitation.
The importance of studying SnRK1 and GCN2 in plants

SNF1 and GCN2 signalling pathways in fungal and animal systems have attracted a lot of attention in the last decade and a half. Both have wide-ranging and profound effects on metabolism. Understanding how AMPK is activated and functions has implications for human health because AMPK is involved in the regulation of insulin action and secretion, type 2 diabetes mellitus and obesity. Mutations in AMPK are associated with a severe heart defect (hypertrophy and arrhythmia).

Studies of SnRK1 and GCN2 in plants lag well behind parallel studies in fungal and animal systems. The same, of course, is true for most studies involving genes that are not unique to plants. So is it necessary to study these genes and their associated signalling pathways in plants at all? We submit that it is. The differences between the plant systems and their yeast and animal counterparts that have been described are reason enough. In addition, we cite the profound effects on plant development that result from genetic manipulation of SnRK1 activity. For example, antisense SnRK1 potato tubers do not sprout at all if kept at 5 °C (Halford et al., 2003b), possibly because mobilization of stored starch to support sprouting is impaired. Furthermore, expression of an antisense SnRK1 sequence causes abnormal pollen development and male sterility in barley (Zhang et al., 1991). The pollen grains are small, pear-shaped, contain little or no starch, and are non-viable. It is possible that they are unable to respond to their carbon status and starve in a similar fashion to yeast snf1 mutants starving on sucrose medium. However, it would have been impossible to predict that this would happen without doing the experiment.

The continuing elucidation of SnRK1 and plant GCN2, their modes of action and the signalling pathways that they operate in will allow the design of more sophisticated and strategic modifications of their activity. Potentially, this could be used to affect carbohydrate metabolism, secondary metabolism, protein synthesis, nitrogen use efficiency and the partitioning of resources between and within different crop organs.

Acknowledgement

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.

References

Barker JHA, Slocombe SP, Ball KL, Hardie DG, Shewry PR, Halford NG. 1996. Evidence that barley 3-hydroxy-3-methylglutaryl-Coenzyme A reductase kinase is a member of the sucrose non-fermenting-1-related protein kinase family. Plant Physiology 112, 1141–1149.

Santoyo J, Alcalde J, Mendez R, Pulido D, de Haro C. 1997. Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2 alpha (eIF2α) kinase from...

Sugden C, Crawford RM, Halford NG, Hardie DG. 1999a. Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5′-AMP. *The Plant Journal* **19**, 433–439.

