RESEARCH PAPER

Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls

Michaela Klinghammer¹ and Raimund Tenhaken²,*

¹ University of Frankfurt, Plant Molecular Biology, Biocenter, D-60439 Frankfurt, Germany
² University of Salzburg, Plant Physiology, Hellbrunnerstr. 34, A-5020 Salzburg, Austria

Received 5 June 2007; Revised 5 August 2007; Accepted 8 August 2007

Abstract

Arabidopsis cell walls contain large amounts of pectins and hemicelluloses, which are predominantly synthesized via the common precursor UDP-glucuronic acid. The major enzyme for the formation of this nucleotide-sugar is UDP-glucose dehydrogenase, catalysing the irreversible oxidation of UDP-glucose into UDP-glucuronic acid. Four functional gene family members and one pseudogene are present in the Arabidopsis genome, and they show distinct tissue-specific expression patterns during plant development. The analyses of reporter gene lines indicate gene expression of UDP-glucose dehydrogenases in growing tissues. The biochemical characterization of the different isoforms shows equal affinities for the cofactor NAD⁺ (~40 μM) but variable affinities for the substrate UDP-glucose (120–335 μM) and different catalytic constants, suggesting a regulatory role for the different isoforms in carbon partitioning between cell wall formation and sucrose synthesis as the second major UDP-glucose-consuming pathway. UDP-glucose dehydrogenase is feedback inhibited by UDP-xylose. The relatively (compared with a soybean UDP-glucose dehydrogenase) low affinity of the enzymes for the substrate UDP-glucose is paralleled by the weak inhibition of the enzymes by UDP-xylose. The four Arabidopsis UDP-glucose dehydrogenase isoforms oxidize only UDP-glucose as a substrate. Nucleotide-sugars, which are converted by similar enzymes in bacteria, are not accepted as substrates for the Arabidopsis enzymes.

Key words: Cell wall precursor, gene expression, hemicellulose, nucleotide-sugar, UDP-glucose dehydrogenase.

Introduction

Plant cells are surrounded by a rigid but often flexible cell wall to counterbalance the high osmotic pressure inside the cells. Therefore, plant growth requires extensive synthesis of cell wall material during development. The principal composition of Arabidopsis cell walls, analysed from leaves of 4–5-week-old plants, was determined previously (Zablackis et al., 1995). This study indicates a high amount of pectic polymers and hemicelluloses, together forming the matrix polysaccharides, in which cellulose fibrils are embedded along with cell wall structural proteins. Matrix polysaccharides are synthesized in the Golgi apparatus by polymer synthases, which require nucleotide-sugars as glycosyl donors. Excellent reviews of the complex nucleotide-sugar interconversion pathways have been published recently (Gibeaut, 2000; Reiter and Vanzin, 2001; Seifert, 2004). Based on the study by Zablackis et al. (1995), one can calculate that ~50% of the cell wall biomass is derived from the precursor UDP-glucuronic acid (UDP-GlcA). This nucleotide-sugar is the direct precursor of UDP-galacturonic acid after epimerization (Mølhøj et al., 2004; Usadel et al., 2004), UDP-xylose and UDP-apiose after decarboxylation (Kobayashi et al., 2002), and UDP-arabinose derived from UDP-xylose by an epimerase (Burget et al., 2003). Plants have evolved two independent pathways for the synthesis of UDP-GlcA; this fact underscores the importance of this nucleotide-sugar for plant growth. One pathway involves the direct oxidation of UDP-glucose (UDP-Glc) into UDP-GlcA by the enzyme UDP-glucose dehydrogenase (UDP-D-glucose:NAD⁺ oxidoreductase; EC 1.1.1.22; UGD) (Tenhaken and Thulke, 1996). Alternatively, UDP-GlcA can be formed in a more complex reaction via ring
Materials and methods

Bioinformatics

To identify all UGD-like genes from Arabidopsis the public databases in GenBank were searched. All expressed sequence tag (EST) sequences with high similarity to UGD could be assigned to one of the four UGD genes present in the sequenced Arabidopsis genome.

A fifth UGD gene with a weaker similarity was detected at the top of chromosome 3. A detailed analysis suggested a partial sequence of an additional UGD gene (UGD5). To rule out any assembling error in the genome project, the genomic situation for this region was verified by PCR. The primers GCCGGAAACAGGATTAGGCTT and CTAGAGGAGACGCCCTGAAC from the flanking neighbouring genes amplified a product of the predicted size (1381 bp) according to the data in the genome project.

Reporter gene analysis

The promoter sequences of UGD1, 2, 3, and 4 were amplified by PCR using the primer combinations given in Table 1. Genomic DNA from Arabidopsis thaliana was used as template. PCR products were cloned in front of the uidA gene of vector pBI101 (Clontech MountainView, CA, USA) (UGD1, 2, and 3) or pGreen (http://www.pgreen.ac.uk) (UGD4) via the relevant restriction cleavage sites.

Cloning products were verified by DNA sequencing (Seqlab, Göttingen, Germany) and plasmids were transferred into Agrobacterium tumefaciens GV 3101. Subsequently, A. thaliana Col-0 plants were transformed by the floral dip method developed by Clough and Bent (1998). Several independent transformants were stained for β-glucuronidase (GUS) activity and a typical line was chosen for detailed analysis.

For reporter gene analysis, seedlings were grown sterile on 0.5× MS medium (#M0245, Duchefa Biochemie, Haarlem, The Netherlands), pH 5.7 (KOH) with 0.5% (w/v) sucrose and 0.25% (w/v) Phytagel™ (Sigma-Aldrich, Munich, Germany) or on soil in growth chambers (23 °C, 50% relative humidity). Plants were cultured either with an 8 h light period (fluorescent bulbs ~100 μE m⁻² s⁻¹) or in the dark. Seedlings of different developmental stages and distinct plant tissues were collected and stained with X-Gluc for GUS activity for 5 min–16 h, using the protocol of Jefferson (1987). Plants were photographed with a Leica stereo microscope (Leica MZFL III, Solms, Germany), equipped with a digital camera (Canon PowerShot S40). Pictures were assembled in Adobe Photoshop CS 8.0.1.

Total RNA isolation and real-time PCR

For total RNA isolation, seedlings were grown sterile on MS plates in growth chambers for 6 with 8 h light periods or in the dark as described above. About 100 mg of plant material (light-grown seedlings, etiolated seedlings, roots, and cotyledons/hypocotyl of seedlings) were collected, frozen in liquid nitrogen, and homogenized by a ball mill (Retsch MM200, 3 min, 40 Hz). Seedlings of different developmental stages and distinct plant tissues were collected and stained with X-Gluc for GUS activity for 5 min–16 h, using the protocol of Jefferson (1987). Plants were photographed with a Leica stereo microscope (Leica MZFL III, Solms, Germany), equipped with a digital camera (Canon PowerShot S40). Pictures were assembled in Adobe Photoshop CS 8.0.1.

Real-time PCR was performed using 1 μl of a 1/20 (v/v) dilution of first-strand cDNA reaction, 1× reaction buffer [10 mM TRIS-HCl ph 8.5, 50 mM KCl, 0.15% Triton X-100, 2.5 mM MgCl2 (Karsai et al., 2002)], 200 μM dNTPs, 200 nM of each primer, SYBR green (Roche, Mannheim, Germany) diluted to a 1:200 000 concentration, and 1.5 U of Taq (total reaction volume 30 μl) using a Stratagene Mx3000P QPCR system (Stratagene, La Jolla, CA, USA). For primer oligonucleotide sequences, see Table 1. PCR was conducted using the following amplification conditions: 94 °C for 3 min, 40× [94 °C for 30 s, 65 °C (UGD1 and 3), 57 °C (UGD2), or 58 °C (UGD4) for 45 s, 72 °C for 1 min], 95 °C for 1 min, 65 °C for 30 s. Each primer pair amplified a single product, as indicated by the melting curve of the amplicons. The resulting Ct
values were normalized to the average of the Ct values of the transcript of the housekeeping gene ubiquitin-5 (At3g62250) (Karsai et al., 2002) amplified under the following conditions: 94 °C for 3 min, 40× (94 °C for 15 s, 56 °C for 20 s, 72 °C for 20 s), 95 °C for 1 min, 65 °C for 30 s.

Expression vector constructs

For cloning into expression vectors, the open reading frame (ORF) of each UGD was amplified by PCR (Phusdon High-Fidelity DNA Polymerase Kit, New England Biolabs) using the primer combinations listed in Table 1 and full-length EST clones as templates:

- **UGD1**: 5'-GCCCTAGGATGATAGCCGTATTGTTAAAATACGC, 5'-TTGATCTCTTGATGTTTCAAAACGCTCTGTTT-3',
- **UGD2**: 5'-GTCTTCAGCAATGTCACCGCATCTCTGAGCT-3',
- **UGD3**: 5'-AAGCACGCCGACTAACTAGAG-3',
- **UGD4**: 5'-GTTTCCTCCATAGCCAGGTTGTA-3'.

The enzyme activity of UGD was determined photometrically at 340 nm (Beckmann photometer DU640) by the increase of NADH. The assays were performed for 1–10 min at room temperature in assay buffer [40 mM TRIS-HCl pH 8.7, 0.8 mM EDTA, 16% (v/v) glycerol, 0.5 mM NADH], after addition of 0.5 mM NAD+, 2 mM MgCl2, 2 mM 2-mercaptoethanol, 1 mM NAD+, 0.2 mM phenylmethylsulphonyl fluoride (PMSF, dissolved in isopropanol) by vigorous vortexing. Lysozyme at 200 μg/ml and 1% (v/v) Nonidet P-40 were added and shaken slowly on ice for 45 min to disrupt bacterial cells gently. Bacterial debris was removed by centrifugation for 10 min at 14,000 g and 4 °C. The supernatant was transferred into a new tube; 2.4 U/ml benzonase nuclease HC (Novagen, Darmstadt, Germany) was added and incubated for 15 min by shaking slowly on ice. The clear supernatant was confirmed by DNA sequencing (Seqlab, Göttingen, Germany).

The expression vector constructs were co-transformed with pGroESL (Amrinn et al., 1995) into the Escherichia coli expression strain Origami™ (Novagen, Darmstadt, Germany).

Protein expression and purification

The E. coli expression strains were routinely grown in LB medium containing 100 μg ml−1 ampicillin, 34 μg ml−1 chloramphenicol, 20 μg ml−1 tetracyclin and 50 μg ml−1 kanamycin at 37 °C overnight, inoculated at 1/100 dilution in LB medium (antibiotics as above), and cultured to an OD600 of ~0.4 under vigorous shaking. After cooling the cultures for 15 min at room temperature, protein expression was induced by addition of 500 μM isopropyl-b-D-thiogalactopyranoside (IPTG). The cultures were grown at 23 °C for a further 20 h.

After cooling the cultures by shaking for 15 min on ice, cells were harvested by centrifugation (10 min at 4500 g and 4 °C) and frozen in liquid nitrogen after discarding the supernatant. Subsequently, cells were thawed in 10 ml of FW chilled disruption buffer [50 mM sodium phosphate, 10 mM TRIS-HCl pH 8.0, 10% (v/v) glycerol, 2 mM MgCl2, 2 mM 2-mercaptoethanol, 1 mM NAD+, 0.2 mM phenylmethylsulphonyl fluoride (PMSF, dissolved in isopropanol)] by vigorous vortexing. Lysozyme at 200 μg/ml and 1% (v/v) Nonidet P-40 were added and shaken slowly on ice for 45 min to disrupt bacterial cells gently. Bacterial debris was removed by centrifugation for 10 min at 14,000 g and 4 °C. The supernatant was transferred into a new tube; 2.4 U/ml benzonase nuclease HC (Novagen, Darmstadt, Germany) was added and incubated for 15 min by shaking slowly on ice. The clear supernatant was applied to a Ni-NTA-agarose column (Qiagen, Hilden, Germany) equilibrated with NTA-1 buffer [50 mM sodium phosphate, 10 mM TRIS-HCl pH 8.0, 250 mM NaCl, 10% (v/v) glycerol, 0.5 mM NADH], after addition of 250 mM NaCl. The column was washed with 5 vols of NTA-1 buffer and 5 vols of NTA-2 buffer (NTA-1 buffer with 20 mM imidazole) to remove all weakly bound proteins. UGD proteins were eluted by addition of 2.5 vols of NTA-3 buffer (NTA-1 buffer with 250 mM imidazole). The enzymes were immediately transferred into storage buffer [20 mM TRIS-HCl pH 8.7, 50 mM KCl, 1% (v/v) glycerol, 0.5 mM NADH] by gel filtration on a PD10 column (Amersham Bioscience, Freiburg, Germany). The enzymes could be stored at −80 °C (>6 months) after being frozen in liquid nitrogen without any reduction in activity. UGD protein purification was verified by SDS-PAGE.

The yeast strain Toy4, expressing a His-tagged version of Arabidopsis UGD1, was a kind gift of Dr Y Jigami. UGD1 was expressed and purified from a yeast extract according to Oka and Jigami (2006).

Enzyme assays and kinetic analysis

The enzyme activity of UGD was determined photometrically at 340 nm (Beckmann photometer DU640) by the increase of NADH. The assays were performed for 1–10 min at room temperature in assay buffer [40 mM TRIS-HCl pH 8.7, 0.8 mM EDTA, 16% (v/v) glycerol, 0.8 mM NaN3]. For the determination of kinetic parameters, (i) saturated concentrations of NADH (500 μM) and various concentrations of UDP-glucose (0.01–1.5 mM) were used; or (ii) various NADH concentrations (0.01–1.5 mM) and a constant concentration of UDP-glucose (1 mM) were used.
UDP-glucose concentration (2 mM) were used. The amount of the UGD added was based on enzymatic activity and was set to 0.03 OD$_{340}$ units change per minute. The final reaction volume was set to 1 ml. Triplicate values were obtained for each measurement, and data were plotted with Microcal Origin 6.0G Professional. The K_m values were calculated from the hyperbolic curve using the least-square algorithm of the Origin-software.

Product analysis

The substrates and products of UGD enzyme assays were analysed by high-performance liquid chromatography (HPLC; Dionex U3000 system) using ion-pair chromatography on an RP18-column (Prontosil 120 C18 AQ-Plus 150×3 mm). Separation was performed in buffer A (25 mM tetraethylammonium acetate; pH 6) for 8 min, followed by a linear gradient to 25% buffer B (buffer A plus 20% acetonitrile) for 10 min using a flow rate of 0.5 ml min$^{-1}$. UV spectra were recorded from 240 nm to 300 nm and plotted for the wavelength 260 nm. The reference compounds UDP-Glc was from MP-Biomedical; UDP-Gal, UDP-glucuronic acid, and UMP were purchased from Sigma.

Results

Identification of the UGD genes in Arabidopsis

In *Arabidopsis*, the UGD gene family is represented by four transcribed members (UGD1–4) and one pseudogene (UGD1, At1g26570; UGD2, AT3g29360; UGD3, At5g15490; and UGD4, At5g39320). The *Arabidopsis* UGD described earlier (Seitz *et al.* 2000) is termed UGD2 herein. The four UGDs encode very similar proteins of 480–481 amino acids. The difference (including conserved exchanges) in the amino acid sequence is <10% between the four isoforms (Fig. 1). The schematic structure of the (pre)-mRNA

![Fig. 1. Schematic structure of primary RNA transcript protein sequences for UGD genes. (A) All four UGD genes contain a single intron in the 5' untranslated region, represented by small boxes. The larger boxes represent the ORFs of UGD1–4. Each single amino acid change from the consensus sequence is represented by a black line in the ORF. The double-headed arrow above the sequences shows the NAD$^+$-binding site. The downward pointing arrows above the sequences indicate the cysteine residue essential for catalysis in all UGDs. The upward pointing arrows below the bars indicate the position of all amino acids involved in glucose binding of UDP-Glc, which are positionally conserved between the UGDs from *Arabidopsis* and the UGD from *Streptococcus pyogenes*, for which a crystal structure is available (Campbell *et al.* 2000). (B) The table shows the percentage amino acid identity (left lower triangle) or similarity (right upper triangle) between the four different UGD isoforms. The sequences of UGD2, 3, and 4 are highly similar, but UGD1 differs significantly from the other sequences. (C) Alignment of some plant UGD sequences with ClustalX. The UGD1 from *Arabidopsis* clusters together with the two poplar sequences, distinct from the other *Arabidopsis* branch [At-UGD1-4 (this paper); Co-UGD1, *Cinnamomum osmophleum* gi|40317278; Glycine max Gm-UGD1, gi|68136119; *Nicotiana tabaccum* Nt-UGD2, gi|48093459; Ps-UGD1, *Pinus taeda* Unigene Pa.24139; Ps-UGD2, *Pinus taeda* Unigene Pa.8150; *Oryza sativa* Os-UGD1, Os03g31210; *Oryza sativa* Os-UGD2, Os03g40720; *Oryza sativa* Os-UGD3, Os03g55070; *Oryza sativa* Os-UGD4, Os12g25690; *Oryza sativa* Os-UGD5, Os12g25700; Pt-UGD1, *Populus trichocarpa* eugene3.00041110; *Populus trichocarpa* Pt-UGD2, eugene3.00101501).
is shown in Fig. 1. All of the four UGDs contain a single intron of variable length in the 5′ untranslated region whereas the full ORF is not disrupted by further introns. The amino acid sequence variations between the four isoforms are not uniformly distributed along the whole sequence and between all isoforms. Clustering of amino acid exchanges occurs between different pairs of UGDs, indicating that a simple recent gene duplication event does not account for the four UGD isoforms in Arabidopsis.

Based on the crystal structure of a UGD from Streptococcus pyogenes (Campbell et al., 2000), all of the amino acid residues involved in substrate binding and catalysis are absolutely conserved between the enzyme from bacteria and plants. The residues involved in binding the UDP-glucose are highlighted schematically in Fig. 1. Several plant UGD sequences were aligned using ClustalX to generate a bootstrapped Neighbor–Joining tree (Fig. 1C). The tree indicates a close proximity of Arabidopsis UGD2, 3, and 4, which cluster together with a UGD from soybean, but puts Arabidopsis UGD1 on a different branch. UGDs from rice cluster into groups of the same branch. Similarly, the two sequences from tobacco, Pinus tataea, and Populus each group together, suggesting gene duplication events after speciation. Further UGD sequences of EST libraries were not included because in many cases the algorithm for generating UNIGENE sequences in GenBank puts sequences from different isoforms into a single data set (e.g. tested for soybean; data not shown).

The pseudogene is lacking about two-thirds of the coding sequence including the NAD+–binding site, which is essential for catalytic activity. The chromosomal location at the very beginning of chromosome 3 suggests a segmental gene duplication during evolution, as indicated by the doubling of 37 recognized ORFs (At3g01010–At3g02020) matching a highly similar region on chromosome 5 (At5g15510–At5g14060).

Expression pattern of UGD genes in Arabidopsis
Promoter::GUS fusion constructs were used in stably transformed Arabidopsis plants to compare gene expression patterns of UGD1–4. The homozygous transgenic lines were analysed for each construct and a typical line was selected for a detailed analysis of the reporter gene activity. The pattern of the most abundantly active reporter UGD2::GUS is shown in Fig. 2 (compare also Fig. 4). UGD2::GUS activity is seen first during the germination process in 1-d-old seedlings, when the radicle breaks through the seed coat (Fig. 2a). In seedlings up to 5 d old, the activity of UGD2::GUS is restricted to the primary root (Fig. 2b). In particular, UGD2::GUS activity can be detected in roots tips, in young root hairs, and in the calyptra. In further growth phases, cotyledons show an even but low activity of the UGD2::GUS reporter gene, which is still highest in the roots (Fig. 2c, d). This pattern remains similar for the vegetative phase of the life cycle (Fig. 2e). Growth of seedlings in the dark leads to etiolated
and elongated hypocotyls showing a strong UGD2::GUS activity in the hypocotyl (Fig. 2f). This reporter gene activity is absent in light-grown seedlings (Fig. 2b). In roots of etiolated seedlings a similar expression pattern to that of light-grown seedlings can be detected. During germination and the vegetative phase of the life cycle, a close correlation between growth, requiring UDP sugars for the synthesis of matrix polysaccharides, and the activity of the UGD2::GUS reporter is generally seen. The more complex pattern of UGD2::GUS activity in flowers and siliques is shown in Fig. 2g–k. In young flowers, UGD2::GUS activity can only be detected in the pistil. At later development stages, sepals and petals also show reporter gene activity (Fig. 2g). Also, UGD2::GUS activity is found in staminalous and mature pollen (Fig. 2h). Siliques show UGD2::GUS activity in the abscission zone at the base and close to the top (Fig. 2k). No UGD2::GUS activity was observed in developing embryos or seeds. In general, the expression patterns of UGD2, 3, and 4 are very similar. However, UGD1 shows an expression pattern which is distinct from that of the other isoforms. A comparison of the activity of the different UGD reporter gene constructs is shown in Fig. 3. In seedlings up to 4 d post-germination, UGD2, 3, and 4::GUS activity can only be detected in roots (Fig. 3a). This is in contrast to an almost inverse organ-specific pattern seen for UGD1::GUS (Fig. 3a). At 5 d post-germination this effect disappears. Furthermore, in young leaves, UGD1 and UGD4::GUS show a cell type-specific activity in guard cells and in basal cells surrounding each trichome (Fig. 3e, f). All isoforms exhibit reporter gene activity in 3–4-week-old leaves at a low level, and differences in the activity pattern become visible again in the reproductive phase. Activity of all UGD::GUS reporter genes is seen in the stigma, the filaments, and the mature pollen (Fig. 3b, c). However, the activity of UGD1::GUS is limited to these tissues. UGD3 and 4::GUS reporter are also active in the flower bases. Only UGD2::GUS shows a strong activity in sepals and petals, and in pollen sacks (Fig. 3b, c). In developing siliques, the vascular system shows UGD1, 2, and 3::GUS activity (Fig. 3e, f), and UGD2, 3, and 4::GUS are strongly expressed in the abscission zone at the base of siliques (Fig. 3d).

Further analyses of expression of UGD genes in Arabidopsis via real-time PCR indicate that UGD2 is usually expressed at the highest level of all UGD genes in seedlings (Fig. 4, upper panel). In roots of seedlings, UGD2 and 3 are expressed at a very similar high level, while UGD4 is expressed only weakly and no UGD1 transcripts can be detected. Furthermore, in cotyledons and hypocotyl, UGD2 expression dominates again, in addition to lower levels of UGD3. Publicly available microarray data from AtGenexpress were also analysed. The RNA for the microarray hybridization was from 7-d-old hypocotyls and 17-d-old roots. The relative transcript amounts for each UGD gene are similar to our own data shown in the upper panel (Fig. 4, lower panel). As seen before with the reporter gene constructs, UGD1 expression can be demonstrated in cotyledons and hypocotyl. In etiolated seedlings, UGD2 and UGD3 are predominantly expressed.

Expression of recombinant UGD in E. coli

UGD converts UDP-Glc into UDP-GlcA and is located at a critical partitioning step for carbohydrates between the storage compound sucrose via the enzyme SPS and building blocks for matrix polysaccharides via the enzyme UGD. To obtain a deeper insight into the biochemical properties of the different UGD isoforms, the individual enzymes were expressed as recombinant proteins in E. coli by cloning the ORF of each UGD isoform into a His-tag expression vector. Though UGDs from different sources have been investigated as recombinant proteins, it was found to be necessary to optimize thoroughly the expression conditions for each of the highly homologous isoforms. Modifications of the procedure for soybean UGD expression in E. coli (Hinterberg et al., 2002) produced an adequate amount of active UGD2, 3, and 4 enzymes. An SDS–PAGE of the purified recombinant proteins, used for enzymatic analysis, is shown in Fig. 5. Several preparations of the recombinant proteins were analysed, which gave very similar data for the enzymatic activity. Expression of UGD1 could be obtained in E. coli but results in an inactive enzyme (data not shown). Several variations in E. coli culturing and protein purification conditions did not result in active recombinant UGD1 enzyme. Very recently Oka and Jigami (2006) published the expression of recombinant Arabidopsis UGD1 in yeast.

Enzyme kinetics

The affinity of the UGD isoforms for the cofactor NAD⁺ does not differ between UGD2, 3, and 4. All enzymes exhibit typical hyperbolic reaction kinetics, with a Kₘ of ~40–45 μM (Table 2). The high affinity of the enzyme for NAD⁺ suggests that UGDs are not limited by the NAD⁺ supply under physiological conditions.

In contrast to almost identical Kₘ values for NAD⁺, the kinetic constants for UDP-Glc are highly dissimilar. UGD2 shows the highest affinity (of the UGDs studied here) for the substrate UDP-Glc, with a Kₘ of 123 μM, followed by UGD4 (171 μM) and UGD3 (335 μM) (Table 2). The catalytic constant k_cat was determined for the different isoforms with a value between 1.17 s⁻¹ (UGD4) and 2.52 s⁻¹ (UGD3) (see Table 2). Thus the different isoforms differ in the turnover rate of UDP-GlcA formation.

In some bacteria the activity of UGDs is modulated by phosphorylation on Tyr10, a conserved residue within the NAD-binding site (Mijakovic et al., 2004). Recombinant UGDs were incubated with alkaline phosphatase, which can dephosphorylate the bacterial UGD (Mijakovic et al.,
2003, 2004), but no difference in the enzyme activity was found.

Fine tuning of UGD activity was reported to be mediated by feedback inhibition of the enzyme by UDP-xylose, a product obtained from UDP-GlcA after decarboxylation by the enzyme UDP-xylose synthase (Neufeld and Hall, 1965; Hinterberg et al., 2002). The K_i value for UDP-xylose was determined for each isoform in the presence of different concentrations of UDP-Glc. The inhibition is competitive to UDP-Glc and therefore is seen mostly at low concentrations of UDP-Glc in the assays. UGD2 is more sensitively inhibited by UDP-xylose

Fig. 3. UGD::GUS reporter gene expression in transgenic Arabidopsis thaliana plants reveals differential expression patterns for each UGD isoform (UGD1–4). (a) Two-day-old seedlings; (b) older flowers; (c) pollen sacs containing mature pollen; (d) base of siliques; (e, f) inside of siliques (manually opened; UGD1, 2, 3::GUS plants) and cotyledons with stained stomata (UGD1, 4::GUS plants).
(K_i ~83 μM) compared with UGD3 and 4, which exhibit a K_i of ~160 μM and 220 μM, respectively (Fig. 6a–c).

The superfamily of nucleotide-sugar dehydrogenases is quite conserved, and the substrate specificity cannot readily be predicted by bioinformatic tools. Therefore, different nucleotide-sugars were tested to determine if they are accepted as substrates for UGDs from Arabidopsis (Table 3). Unlike UDP, activated forms of glucose (ADP-Glc and TDP-Glc) are not converted into the corresponding NDP-GlcA derivatives, suggesting no direct interference with the starch biosynthesis pathway. In contrast to previous studies (Stewart and Copeland, 1998), no evidence for a direct oxidation of UDP-galactose into UDP-galacturonic acid was found. Products of the enzyme assay were separated by HPLC (Fig. 7). A time-dependent increase of the product UDP-GlcA was observed, directly correlating to the increase in NADH in the spectrophotometric assay. The product analysis for the substrate specificity assays is shown in Fig. 7 using recombinant UGD1. This isoform has the highest number of amino acid changes from the UGD consensus sequences (compare Fig. 1) and was thus considered to be the most likely candidate for a nucleotide-sugar dehydrogenase accepting substrates other than UDP-Glc. None of the four UGDs from Arabidopsis accepted UDP-galactose as a substrate (Fig. 7). In bacteria, members of the NDP-sugar dehydrogenase family use nucleotide-sugars such as GDP-mannose, UDP-galactose, UDP-N-acetylglucosamine or UDP-N-acetylgalactosamine as substrates. None of these potential substrates is accepted by the Arabidopsis UGDs. In summary, the data indicate that Arabidopsis has only true UGDs which accept UDP-Glc as their only substrate. The UGDs clearly prefer NAD+ as a cofactor. Exchanging NAD+ for NADP+ greatly reduces the enzyme activity to ~20% (Table 3).

Discussion

The cell wall of Arabidopsis contains large amounts of hemicelluloses and pectic polymers, which are predominantly
derived from the common precursor UDP-GlcA (Zablackis et al., 1995). Therefore, biochemical pathways for the formation of UDP-GlcA are of great importance for the supply of glycosyl donors for polymer synthases and glycosyl transferases in the Golgi apparatus. As the nucleotide-sugars derived from UDP-GlcA are almost exclusively used for the synthesis of cell wall material, the entry point of nucleotide-sugars into a pool for cell wall synthesis is tightly controlled. Previous studies have shown a close correlation between UGD transcripts and enzyme activity in Arabidopsis (Seitz et al., 2000). Furthermore, Gahan et al. (1997) and Johansson et al. (2002) have

![Fig. 6](https://academic.oup.com/jxb/article-abstract/58/13/3609/494413)

Fig. 6. Inhibitory effect of UDP-xylose on UGD2, 3, and 4 from Arabidopsis thaliana. Saturation curves of UDP-glucose at various inhibitor concentrations (25–350 μM) are shown. Additional plots represent the apparent K_m at different inhibitor concentrations revealing the K_i value. (a) UGD2; (b) UGD3; (c) UGD4.
Table 3. Substrate specificity of UGD1, 2, 3, and 4 from Arabidopsis thaliana

In standard enzyme assays either UDP-glucose or NAD$^+$ was substituted by alternative substrates. All nucleotide-sugars and cofactors were at a concentration of 1 mM. The detection limit is ~2–3% of the control.

<table>
<thead>
<tr>
<th>Nucleotide-sugar</th>
<th>Cofactor</th>
<th>Enzyme activity of isoforms (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UGD1</td>
</tr>
<tr>
<td>UDP-glucose</td>
<td>NAD$^+$</td>
<td>100%</td>
</tr>
<tr>
<td>UDP-glucose</td>
<td>NADP$^+$</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

"n.d., not detected.

regarded UGD as a marker enzyme for developing xylem cells from cambium meristems in trees, because of a tight correlation between cell division, growth, and UGD enzyme activity. These studies have been extended by analysing the whole gene family of UGD genes from Arabidopsis. The available sequence data from the genome project as well as the sequenced EST libraries suggest four highly similar members of the UGD gene family in Arabidopsis (UGD1–4) in addition to a pseudogene (partial sequence). In the rice genome, at least five sequences for putative UGD genes can be identified (compare the tree in Fig. 1C). The presence of isoforms for UGDs was ignored in previous studies (Tenhaken and Thulke, 1996; Stewart and Copeland, 1998; Seitz et al., 2000; Turner and Botha, 2002). The main reason seems to be highly conserved amino acid sequences, which result in proteins with similar chromatographic properties.

Nucleotide-sugar dehydrogenases represent a large family of quite well conserved proteins, which oxidize the primary alcohol group at C6 of various sugars into the corresponding uronic acid (Roychoudhury et al., 1989). In bacteria, diverse substrates are converted by different family members. Based on multiple protein sequence alignments, it is likely that some of the annotations regarding the substrates are falsely assigned (data not shown). The PFAM database (http://www.sanger.ac.uk/Software/Pfam/) for patterns in proteins annotated the UGD-like genes from Arabidopsis and rice, and also plant EST sequences as ‘UDP-glucose/GDP-mannose dehydrogenase family’ (PF03721). This suggests that the substrate specificity of enzymes from this family cannot be predicted accurately by bioinformatics but needs experimental support. By expressing the proteins UGD1, 2, 3, and 4 as recombinant proteins, it has been shown here that they are true UGDs.

In the light of the separate nucleotide-sugar pools for cell wall synthesis and for sucrose synthesis, it is important to know whether UDP-Glc is the only entry point of nucleotide-sugars into the cell wall pool. Previously Stewart and Copeland (1998) reported that one of the soybean UGDs also accepts UDP-galactose as a substrate, suggesting that the pectin precursor UDP-galacturonic acid may be directly derived from UDP-galactose. This possibility is excluded for the Arabidopsis UGDs based on the enzyme activity measurements with different potential substrates, which clearly indicate UDP-Glc as the only convertible substrate. As the measurement for UDP-Glc dehydrogenase activity in the study of Stewart and Copeland (1998) was based on an increase of NADH in the assay without analysis of the product, it seems possible either that the substrate UDP-galactose contained some residual UDP-Glc or that the enzyme preparation was contaminated with residual UDP-glucose-4-epimerase, which could have converted part of the UDP-galacto into UDP-Glc. The recent cloning of the genes encoding UDP-GlcA-4-epimerase (Mølhøj et al., 2004; Usadel et al., 2004), which produces UDP-galacturonic acid as glycosyl donor for pectic polymers, further supports this conclusion. Stewart and Copeland (1998) have purified a UDP-Glc dehydrogenase from soybean nodules, but the presence of isoforms was not considered. To our knowledge, only a single UGD from soybean has been characterized biochemically in more detail (Hinterberg et al., 2002), but evidence for the conversion of UDP-galactose was also not found in this study.

The biochemical data for the UGD isoforms from Arabidopsis showing a graded affinity for UDP-Glc and substrate turnover numbers suggest a role in the regulation of carbon fluxes into nucleotide-sugar pools for cell walls. During most of the life cycle of Arabidopsis, UGD2, 3, and 4 are co-expressed in the same tissues and thus different affinities for UDP-Glc and substrate turnover numbers might limit the use of too much UDP-Glc for cell wall polymers. In contrast, UGD1 has a high affinity for UDP-Glc (Oka and Jigami, 2006) but is expressed at low levels. Seitz et al. (2000) demonstrated a histochemical UGD activity stain in whole seedlings, which shows only...
a minor UGD activity in the hypocotyl compared with the primary root. In these seedlings, UGD1 is the major expressed isoform (compare Fig. 3). Kinetic constants for UGDs from different organisms vary over a wide range. One of the soybean UGDs, which has previously been characterized, has a high affinity for UDP-Glc \((K_m \approx 21 \mu M; \text{Hinterberg et al. 2002}) \) similar to a UGD from sugarcane \((K_m \approx 19 \mu M; \text{Turner and Botha, 2002}) \), whereas UGDs from maize \((K_m=380 \mu M \text{ and } 950 \mu M) \) show much higher \(K_m \) values \((\text{Kärkönen et al. 2005}) \). The Arabidopsis UGDs have an intermediate \(K_m \) for UDP-Glc, ranging from 123 \(\mu M \) to 335 \(\mu M \). Oka and Jigami \((2006) \) determined a high affinity \(K_m \) \((15.3 \mu M) \) for UDP-Glc for UGD1 from Arabidopsis. The high affinity of UGDs for UDP-Glc is correlated with a strong feedback inhibition by UDP-xylose \((\sim 10 \mu M \text{ in soybean}; 17 \mu M \text{ in sugarcane}) \) but with much higher \(K_i \) values for the Arabidopsis UGD2, 3, and 4 \((K_i = 80-220 \mu M) \) as indicated in Table 2. Interestingly, Oka and Jigami \((2006) \) determined the \(K_i \) of UDP-xylose for UGD1 to be 4.9 \(\mu M \). This particular isoform also has a high affinity for the substrate UDP-Glc \((15.3 \mu M) \), suggesting a structural modification of the enzyme substrate-binding pocket which increases the affinity for both the substrate UDP-Glc and the inhibitor UDP-Xyl. The \(k_{cat} \) values indicate a similar substrate conversion rate by the different isoforms, ranging from 1.17 \(s^{-1} \) for the slowest enzyme UGD4 to 2.52 \(s^{-1} \) for the fastest enzyme UGD3, and intermediate values for UGD2. These turnover rates agree well with data for the UGD from \(S. \text{pyogenes} \ (k_{cat}=1.8 \ s^{-1}) \) \((\text{Ge et al., 2004}) \) and the enzyme purified from bovine liver \((k_{cat}=2.92 \ s^{-1}; \text{calculated on the basis of } 50 \text{ kDa per subunit}) \) \((\text{Zalitis and Feingold, 1969}) \). In contrast, Bar-Peled \(\text{et al. 2004}) \) reported a much lower value for the UGD from \text{Cryptococcus neoformans} \((k_{cat}=0.27 \ s^{-1}) \). The 2-fold difference in the turnover number between the Arabidopsis isoforms may well be important. UGD3 has the lowest affinity for UDP-Glc but the highest turnover number, indicating that the flux of UDP-sugars into UDP-GlcA by UGD3 is significant under conditions of a non-limited supply of UDP-Glc. Though the exact concentration of UDP-Glc in Arabidopsis leaves is not known and probably depends on environmental conditions as well, it can be assumed to be in the range of 1 \(mM \). Dancer \(\text{et al. 1990}) \) estimated 3–4 \(mM \) UDP-Glc for spinach leaves. Farré \(\text{et al. 2001}) \) calculated 0.83 \(mM \) for the UDP-Glc concentration in potato tubers. The main competitor enzyme of UGDs for the substrate UDP-Glc is SPS, utilizing UDP-Glc for the biosynthesis of sucrose. The \(K_m \) values of SPSs for UDP-Glc are usually slightly higher than the \(K_m \) of UGDs reported here \((\text{Avigad, 1982}) \). In addition, cellulose is synthesized from UDP-Glc or sucrose cleaved via membrane-bound isoforms of sucrose synthase into UDP-GlcA and fructose. For example, cotton antisense plants for sucrose synthase have impaired cellulose trichomes, indicating an essential role for sucrose synthase in providing UDP-Glc for cellulose biosynthesis \((\text{Ruan et al., 2003}) \). The same mechanism may also apply to other \(\beta \)-glucan synthases \((\text{Buckeridge et al. 1999; Konishi et al., 2004}) \). These findings suggest a supply of UDP-Glc from sucrose for various \(\beta \)-glucan synthases, which is presumably independent of the soluble UDP-Glc pool. Whether UGD uses UDP-Glc from cleaved sucrose to a larger extent is not known. However, strong evidence for this use is lacking, as indicated by the analysis of single and double knockout mutants in sucrose synthase, which show no cell wall mutant phenotypes \((\text{Bieniawska et al., 2007}) \). The flux of UDP-Glc into either sucrose or UDP-GlcA \((\text{for cell wall hemicelluloses}) \) will therefore depend on several factors including the \(K_m \) for UDP-Glc of the enzymes, enzyme substrate turnover numbers, amount of enzyme, and post-translational
regulation of activity. In a recent paper by Park et al. (2007) the authors report on transgenic tobacco plants overexpressing an SPS gene, which have a reduced amount of arabinose and xylose in their cell wall. This indicates that the flux of UDP-Glc into hemicellulose material via UGD was displaced by favouring sucrose formation. Taking the data from reporter gene expression, real-time PCR, and knockout mutants (R Reboul, M Klinghammer, T Tenhaken, unpublished data), into account, it is concluded that UGD2 and UGD3 are the major contributing enzymes for the flux from UDP-Glc into UDP-GlcA in Arabidopsis.

Acknowledgements

We thank Christoph Klos and Beate Hinterberg for helpful suggestions. This work was supported by a grant from the German Science Foundation (DFG, Bonn, Germany).

References

Konishi T, Ohmiya Y, Hayashi T. 2004. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem. Plant Physiology 134, 1146–1152.

