RESEARCH PAPER

Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase

Inga Hebbelmann1,†, Jennifer Selinski1,†, Corinna Wehmeyer1, Tatjana Goss1, Ingo Voss1, Paula Mulo2, Saijaliisa Kangasjärvi2, Eva-Mari Aro2, Marie-Luise Oelze3, Karl-Josef Dietz3, Adriano Nunes-Nesi4,‡, Phuc T. Do4, Alisdair R. Fernie4, Sai K. Tallâ5, Agepati S. Raghavendra1,5, Vera Linke1 and Renate Scheibe1,§

1 Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrück, Germany
2 Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
3 Biochemistry and Physiology of Plants, University of Bielefeld, D-33501 Bielefeld, Germany
4 Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
5 Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India

* Present address: Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
† These authors contributed equally to this work.
‡ Present address: Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
§ To whom correspondence should be addressed. E-mail: scheibe@biologie.uni-osnabrueck.de

Received 12 May 2011; Revised 1 November 2011; Accepted 2 November 2011

Abstract

The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C₃ plant. Surprisingly, even when exposed to high-light conditions in short days, nadp-mdh knockout mutants were phenotypically indistinguishable from the wild type. The photosynthetic performance and typical antioxidative systems, such as the Beck–Halliwell–Asada pathway, were barely affected in the mutants in response to high-light treatment. The reactive oxygen species levels remained low, indicating the apparent absence of oxidative stress, in the mutants. Further analysis revealed a novel combination of compensatory mechanisms in order to maintain redox homeostasis in the nadp-mdh plants under high-light conditions, particularly an increase in the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts. There were indications of adjustments in extra-chloroplastic components of photorespiration and proline levels, which all could dissipate excess reducing equivalents, sustain photosynthesis, and prevent photoinhibition in nadp-mdh knockout plants. Such metabolic flexibility suggests that the malate valve acts in concert with other NADPH-consuming reactions to maintain a balanced redox state during photosynthesis under high-light stress in wild-type plants.

Key words: Malate valve, NADP-malate dehydrogenase, oxidative stress, poising mechanisms, redox homeostasis.

Introduction

Malate dehydrogenases catalyse the reversible conversion of oxaloacetate to malate using either NAD/H or NADP/H as oxidant/reductant, respectively. Additionally, these enzymes can indirectly function as a pacemaker of the transport of
reducing equivalents between subcellular compartments, in cooperation with the membrane-bound dicarboxylate transporters. NAD-dependent isoforms of MDH are present in mitochondria, peroxisomes, cytosol, and plastids. Chloroplasts additionally possess an NADP-malate dehydrogenase (NADP-MDH) with distinct regulatory properties. This nuclear-encoded NADP-MDH is the key enzyme of the malate valve (Scheibe, 2004). NADP-MDH converts oxaloacetate to malate using NADPH, facilitating the regeneration of the electron acceptor NADP⁺ in the chloroplasts, particularly when CO₂ assimilation is restricted.

The malate valve is suggested to balance the ATP/NADP ratio of the chloroplast as required by changing metabolic demands (Scheibe, 2004). Export of reducing equivalents, however, needs to be well controlled in order to avoid any imbalance or depletion of chloroplast energy carriers. The reductive activation of NADP-MDH is inhibited when the NADP/NADP(H) ratio is high (Scheibe and Jacquot, 1983; Faske et al., 1995). The activation of NADP-MDH, and consequently the rate of malate export from the chloroplast, is high, only when there is a shortage of NADP⁺. The activation state of NADP-MDH changes within seconds to minutes, due to this post-translational regulatory mechanism. Thus, the enzyme appears to play an important role in the short-term adjustment of the stromal NADP(H) redox state in response to changing environmental conditions, so as to ensure the maintenance of redox homeostasis (Scheibe et al., 2005).

Knockout mutants of Arabidopsis thaliana (L.) Heynh. (nadp-mdh) deficient in NADP-MDH activity were used to assess the role of the light-activated NADP-MDH in C₃ plants. Molecular and biochemical analyses of these plants grown in or transferred to challenging high-light (HL) conditions were conducted to understand potential compensatory mechanisms that counteract redox imbalances and oxidative stress. Amongst these systems are the NTRC/2-Cys peroxiredoxin (Prx) system in chloroplasts (Serrato et al., 2001; Perez-Ruiz et al., 2006), other antioxidant enzymes and low molecular weight antioxidants in different cellular compartments (Foyer and Noctor, 2009), photorepression (Wingler et al., 2000; Igamberdiev et al., 2001), and even the mitochondrial alternative oxidase (AOX) pathway (Yoshida et al., 2007; Strodtkötter et al., 2009). The detailed analysis presented here revealed that the nadp-mdh mutants employed a combination of multiple strategies to counteract the oxidative stress, and protect the chloroplasts from photoinhibition under HL.

Materials and methods

Growth of plant material

Wild-type (WT) and transgenic Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) plants were cultivated in a growth chamber in soil under short-day conditions with a 7.5 h daily light period, a light intensity of 50 μmol quanta m⁻² s⁻¹, and a temperature of 20 °C. These conditions are defined as growth light (GL). To apply stress conditions, plants were exposed to HL (750 μmol quanta m⁻² s⁻¹) for 7 h or for alternative periods as indicated. To analyse plant growth in early stages, single seeds were placed in pots in soil, and plants were grown under short-day conditions at a light intensity of 150 μmol quanta m⁻² s⁻¹ for 5 weeks. Then the fresh and dry weight of the above-ground biomass was determined in 100 seedlings of each genotype.

For growth analyses, single seeds were placed in Petri dishes on agar. The nutrient medium described by Wilson et al. (1990) was used with some modifications. The medium contained 2.5 mM KCl, 1.25 mM KH₂PO₄, 1 mM MgSO₄, 2 mM CaCl₂, 80 μM Fe-EDTA, 24 μM H₃BO₃, 4 μM MnCl₂, 0.2 μM CuSO₄, 0.4 μM ZnSO₄, 0.6 μM Na₂MoO₄, and 0.8% agar pro analysis (Carl Roth, Karlsruhe, Germany). The pH was adjusted to 5.7 with KOH, and the medium was supplemented with 1.8 mM nitrate. For uniform germination, the plates were initially incubated for 2 d in the dark at 4 °C. Seedlings were grown under sterile conditions. After 4 weeks of growth under short-day conditions at 150 μmol quanta m⁻² s⁻¹, the fresh weight of the total biomass was determined in 100 seedlings of each genotype.

Screen for nadp-mdh mutants

The Arabidopsis thaliana (L.) Heynh. (nadp-mdh) deficient in NADP-MDH activity were used to assess the role of the light-activated NADP-MDH in C₃ plants grown in or transferred to challenging high-light (HL) conditions (Wilson et al., 1990). The activation of NADP-MDH, and consequently the rate of malate export from the chloroplast, is high, only when there is a shortage of NADP⁺. The activation state of NADP-MDH changes within seconds to minutes, due to this post-translational regulatory mechanism. Thus, the enzyme appears to play an important role in the short-term adjustment of the stromal NADP(H) redox state in response to changing environmental conditions, so as to ensure the maintenance of redox homeostasis (Scheibe et al., 2005).

For northern blot analysis, total RNA was isolated from frozen leaf material by using the Purenscript RNA-extraction kit (Gentra Systems, Minneapolis, MN, USA). For RNA gel-blot hybridization, 10 μg of total RNA were denatured and separated on a 1.0% (w/v) agarose–2.5% (w/v) formaldehyde gel, transferred, and UV-cross-linked to a nylon membrane (Hybond-N, Amersham Healthcare, Freiburg, Germany). Membranes were washed twice for 15 min at 65 °C in Church buffer medium [0.25 M sodium phosphate buffer, pH 7.2, 1 mM EDTA, 7% (w/v) SDS, and 1% bovine serum albumin (BSA)]. Hybridization was performed with an [α-²P]dCTP-labelled NADP-MDH cDNA-specific probe (Ready-To-Go DNA-labelling beads, Amersham Biosciences, UK). Membranes were washed twice for 15 min at 65 °C in washing buffer [40 mM sodium phosphate buffer, pH 7.2, 1 mM EDTA, 0.5% (w/v) SDS, and 0.5% (w/v) BSA], then for 10 min at room temperature in washing buffer containing 1% (w/v) SDS. Finally, membranes were exposed to a Phosphor-Imager (GE Healthcare, Freiburg, Germany).

RT-PCR analysis

Non-competitive reverse transcription-PCR (RT-PCR) was performed essentially as described by Ahn (2002). cDNA was synthesized from 5 μg of total RNA using oligo(dT) as primer according to the manufacturer’s instructions (Fermentas ReverTaid™ First Strand cDNA Synthesis Kit, Fermentas GmbH, St. Leon-Rot, Germany). For a 25 μl PCR, 1 μl of cDNA was used as template. The PCR settings were: first cycle at 95 °C for 5 min, then for the optimized number of cycles for each gene product 1 min at 95 °C, 1 min at 47–67 °C, and 1 min at 72°C, and a final extension at 72 °C for 5 min. Oligonucleotides that were used for the detection of the transcripts are listed in Supplementary Table S1 available at JXB online. The intensity of each band after electrophoresis was determined with the Quantity One software (BioRad, Munich, Germany).
Microarray analysis

Arabidopsis thaliana 24k oligonucleotide arrays (MWG Biotech; http://www.mwg-biotech.com; ArrayExpress database accession no. A-ATM1-2; http://www.ebi.ac.uk/arrayexpress) were used to study changes in nuclear gene expression. Leaf samples from the WT and nadp-mdh knockout plants grown under standard conditions and treated for 7 h with HL (750 μmol quanta m⁻² s⁻¹) were collected. Following total RNA isolation (Piippo et al., 2006), cDNA synthesis, sample labelling, array hybridization and scanning, as well as spot intensity quantification were performed as in Kangasjärvi et al. (2008). The expression data were normalized and analysed by using the tool R/BioConductor limma (Smyth et al., 2003).

Western blot analysis and immunodetection

Equal amounts of soluble protein (50 μg per lane) were loaded on 12% discontinuous SDS–polyacrylamide gels using a vertical minigel system (Mini-Protean II, BioRad). The gel was blotted onto a nitrocellulose membrane. Immunodetection was performed essentially as described in Graeve et al. (1994). For the detection, polyclonal antiserum against NADP-MDH from pea leaves (1:3000), against the 2-Cys PrxA and B; Baier and Dietz, 1997) (1:5000), against the 2-Cys Prx BAS1 from barley (to detect the substrate as recommended by the supplier (GE Healthcare).

Enzyme measurements in crude extracts

Leaves were cut from the plant, immediately transferred and pulverised in liquid nitrogen, and stored until use at −80°C. For extraction, buffers as required for the various assays were added to aliquot portions of the powder. The total activity of NADP-MDH was determined after exhaustive reduction with reduced dithiothreitol (DTT) and corrected for unspecific NAD-MDH activity as described by Scheibe and Stitt (1988). The total capacities of catalase and APX were determined in extracts as described in Del Longo et al. (1993). The enzyme extraction and measurements of the activities of NADP-dependent glyceraldehyde-3-P dehydrogenase (NADP-GAPDH) were performed as in Baillmann et al. (1995), of non-phosphorylating GAPDH (NP-GAPDH) as in Rius et al. (2006), and of glyceral-3-P dehydrogenase (G3PDH) as in Shen et al. (2006).

Chlorophyll (Chl) fluorescence measurements

A portable photosynthesis system LI-6400XT (LI-COR Biosciences, Lincoln, NE, USA) was used to measure leaf Chl fluorescence in 800 μmol quanta m⁻² s⁻¹ actinic light (Table 2), while for measurements in 50 μmol quanta m⁻² s⁻¹ the closed FluorCam FC 800-C (Photon Systems Instruments, Brno, Czech Republic) was used. The intensity of the saturating pulse was 5000 μmol quanta m⁻² s⁻¹ with a duration of 800 ms. The dark adaption time was 20 min. Maximum quantum yield in dark-adapted leaves (Fm/Fo), the quantum yield of photosystem II [PSII; (ΦII)] and the quenching coefficients photochemical quenching (qP) and non-photochemical quenching (NPQ) were calculated according to Schreiber et al. (1986), Walker (1988), and Genty et al. (1989).

Photosynthetic and respiratory performance of mesophyll protoplasts

Mesophyll protoplasts were isolated from leaves of 11- to 12-week-old WT and nadp-mdh plants that had been maintained under the growth conditions as described above. Leaf sections without a midrib were freed of the lower epidermis mechanically with a forceps and subjected to enzymatic digestion with 1% (w/v) Cellulase Onozuka R-10 and 0.4% (w/v) Macerozyme R-10 (Yakult Pharmaceutical Industry, Tokyo, Japan) as described (Riazunnisa et al., 2007). The reaction medium for the latter, samples were incubated with 25 °C using a Clark-type O₂ electrode (Model DW2, Hansatech Ltd, King’s Lynn, UK). The reaction medium for both photosynthesis and respiration determination was 1 ml containing 0.65 M sorbitol, 1 mM CaCl₂, 1 mM MgCl₂, and 1 mM NaHCO₃ in 10 mM HEPES-KOH, pH 7.5, and protoplasts equivalent to 10 μg Chl (Riazunnisa et al., 2007). Illumination with 750 μmol quanta m⁻² s⁻¹ was provided by a 35 mm slide projector (halogen lamp: Xenophot 24 V:150 W). The inhibitors [SHAM, salicylhydroxamic acid (SHAM), glycine hydroxamate (GHA), and aminocetanitriile (AAN), all from Sigma-Aldrich Co., St Louis, MO, USA] were added to the reaction medium containing mesophyll protoplasts to obtain the required final concentration, and the protoplasts were pre-incubated in darkness at 25 °C for 5 min before switching on the light. The normal level of O₂ in air-equilibrated reaction medium was 410 nmol ml⁻¹. The reaction medium in the O₂ electrode chamber was bubbled with N₂₂, resulting in a marked decrease of O₂ to 85 nmol ml⁻¹.

Metabolite analysis

Starch content in leaves was determined according to Batz et al. (1995). Malate was determined enzymatically with glutamate-oxaloacetate transaminase (GOT; Sigma-Aldrich Co.) in a coupling reaction as described in a protocol of R-Biopharm GmbH (Darmstadt, Germany). Specifically, 100 μg of Arabidopsis leaves were frozen in N₂, ground to powder, resuspended in 1 ml of H₂O, and incubated at 95 °C for 8 min. The supernatant was used for the measurement in buffer containing 100 mM glycylglycine, 100 mM glutamate, 1 mM NAD⁺, and 1 μl ml⁻¹. The reaction was started by adding 1 U ml⁻¹ NAD-MDH (Sigma-Aldrich Co.). For proline determination, Arabidopsis leaves (500 mg) were frozen in N₂, ground to powder, and 0.5 ml of 0.3% sulphosalicylic acid was added. After mixing and centrifugation, 0.5 ml of the supernatant was transferred to a new reaction tube, and proline concentrations were measured colorimetrically using the ninhydrin method (Bates et al., 1973). Global metabolite analysis was performed by gas chromatography–mass spectrometry (GC-MS) as described by Liseck et al. (2006).

Glutathione determination

The amounts of reduced and oxidized glutathione (GSH and GSGG, respectively) were determined using the Total Glutathione Detection Kit (Enzo Life Sciences, Lörrach, Germany). For each genotype and treatment, Arabidopsis leaves from five plants were frozen in N₂ and then ground to powder, and 50 mg of the tissue was used to prepare the extract. For this, 1 ml of ice-cold 5% metaphosphoric acid was added to the powder and vortexed for 30 s. After centrifugation, 50 μl aliquots of supernatant each were used for total glutathione and oxidized glutathione, respectively. For the latter, samples were incubated with 2-vinylpyridine at room temperature for 1 h prior to the assay. The absorbance was measured at 405 nm using a plate reader (SPECTRAmax Plus 348, Molecular Devices, Sunnyvale, CA, USA) at 1 min intervals over...
a 10 min period. For analysis of the data, the software SoftMax Pro 5.3 (Molecular Devices) was used.

Reactive oxygen species (ROS) determinations

H$_2$O$_2$ was quantified in leaf extracts prepared immediately after exposure to HL for 5 h, as described by Liu et al. (2010). The extract was diluted accordingly and then used for H$_2$O$_2$ determination with an Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes, Eugene, OR, USA). The values were obtained from three samples, each from two plants, and the standard error was calculated. The data were analysed by analysis of variance (ANOVA), and means were compared using a Student’s t-test.

Chl and protein determination

To determine leaf Chl a and b contents, extraction, photometric measurements, and calculation were performed as described in Sims and Gannon (2002). The protein content in the soluble leaf extracts was estimated according to Bradford (1976), with BSA as the standard.

Results

Verification of NADP-MDH gene knockout in two independent lines of A. thaliana

Two independent nadp-mdh-T-DNA insertion lines were identified in *Arabidopsis*. The lines *At1g58330::*tDNA-50 and *At1g58330::*tDNA-119 harbour a T-DNA insertion at positions 54 200 and 55 324, respectively, of chromosome 5 (Fig. 1A). The combination of the *NADP-MDH*-specific primers 119LP and 119RP for line 119 allowed for amplification of the expected PCR product (1028 bp) on genomic DNA from the WT, but not on DNA from homozygous nadp-mdh knockout plants from line 119 (Supplementary Fig. S1A at *JXB* online). For line 50, the gene-specific primers 121 and 84 were used and the corresponding PCR product had a size of 1320 bp (Supplementary Fig. S1B). PCR products were amplified in reactions containing the T-DNA left border primer LBa1 and one gene-specific primer on DNA from both homozygous nadp-mdh mutant lines, but not on DNA from WT plants (Supplementary Fig. S1A, B). The PCR result and the sequencing of the PCR products confirmed that in both cases homozygous T-DNA plants had been obtained.

Both homozygous lines lacked the *NADP-MDH* transcript as indicated by northern blot analysis (Supplementary Fig. S2A at *JXB* online) and RT-PCR (data not shown), and were devoid of the NADP-MDH protein as demonstrated by western blot analysis (Supplementary Fig. S2B). NADP-MDH activity, when corrected for the unspecific activity with NADPH oxidation derived from NAD-MDH isoforms (Scheibe and Stitt, 1988), was also completely absent (data not shown). The results validated both insertion lines as full nadp-mdh knockout lines. Given that the two insertion lines exhibited identical phenotypes, further work was concentrated on line 50, but selected results were also confirmed using line 119.

Phenotypic appearance of nadp-mdh plants

The phenotype of nadp-mdh plants under standard growth conditions (GL: 50 μmol quanta m$^{-2}$ s$^{-1}$, short-day) on soil was indistinguishable from that of the WT (Fig. 1B). Likewise, Chl a, Chl b, and protein contents as well as fresh weight and water content were not significantly altered in the nadp-mdh plants (Table 1).

Cultivation of WT plants under stress conditions such as HL, low temperature, or fluctuating light stimulates expression of NADP-MDH, indicating the requirement for an increased capacity of the malate valve (Becker et al., 2006). In this study, nadp-mdh plants treated with either HL or low temperature also revealed an unaltered phenotype compared with the WT. The GL-acclimated nadp-mdh mutant plants that were transferred to HL for 1 week (Fig. 1C), as well as the plants that were cultivated under HL for the complete growth period (Fig. 1D, E), developed a WT-like phenotype. Even under the more variable climatic conditions of a greenhouse, the potted mutants developed like the WT (data not shown).

HL effects on ROS formation and antioxidative systems

Accumulation of NADPH in the nadp-mdh plants could stimulate the Mehler reaction and concomitantly increase ROS formation during HL conditions. In the mutants, a decreased level of ROS was apparent compared with the WT, in HL as well as GL (Fig. 2A). The reduced and oxidized glutathione increased in both the WT and mutants upon exposure to HL, but the redox state was unaffected by the lack of chloroplast NADP-MDH (Fig. 2B). The protein levels, transcript amounts, and activities of selected Beck–Halliwell–Asada pathway enzymes were examined in WT and nadp-mdh mutant plants. No difference could be detected in either protein levels of the various APX isoforms (Fig. 2D) or the total APX activity (Fig. 2E). Semi-quantitative RT-PCR analysis revealed a strong up-regulation of sAPX transcript and a slight up-regulation of tAPX, dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) after HL treatment (Fig. 2C; Supplementary Fig. S3 at *JXB* online).

To address the ascorbate-independent water–water cycle, the expression of NTRC and the various chloroplast Prx isoforms in leaves of WT and nadp-mdh plants was analysed, after 7 h HL. NTRC transcript and protein levels were increased in the nadp-mdh plants after 7 h of HL (Fig. 3A, B), as were the transcript levels of chloroplast 2-Cys Prx isoforms PrxIIE and PrxQ (Fig. 3A), whereby the increase of the PrxA/B and PrxIIE transcripts was significant. In contrast to transcript regulation, the amount of 2-Cys PrxA/B protein (named BAS1; Baier and Dietz, 1997) was unchanged in both genotypes after HL treatment (Fig. 3C).

Transcriptome profiling revealed an increase in some transcripts, among the most prominent being a C3HC4 zinc finger RING-type protein (At4g26400), a WRKY-family (At4g31550), and a MYB-related (At4g01060) transcription factor (Supplementary Fig. S3 at *JXB* online). These transcription factors are also found to be increased in EXECUTER mutants where signalling from the chloroplast to the nucleus is affected (Lee et al., 2007).
Photosynthetic performance and photorespiratory components in WT and nadp-mdh plants under HL conditions

Photosynthetic CO₂ assimilation rates as a function of light intensities were quite similar in leaves of nadp-mdh and WT plants (data not shown). Chl fluorescence was used to monitor the redox state of PSII in WT and nadp-mdh plants after growth in moderate light (GL), after growth in HL (750 μmol quanta m⁻² s⁻¹) for long-term acclimation, and during a HL treatment in the measurement (~20–30 min) after growth in GL for short-term acclimation. Under all conditions, no significant differences in the efficiency of...
dark-adapted PSII (F_a/F_m), qP, NPQ, and flux through PSII (Φ_{II}) were apparent in the mutants as compared with the WT (Table 2). Also P700 absorption in leaves under GL as well as HL conditions was not significantly altered between the WT and mutant (data not shown). These observations indicate that neither a higher reduction state of the primary electron acceptor QA in PSII, nor a higher rate of cyclic electron transport, nor photooinhibition occurred in the mutants under HL.

Excess photosynthetic reductant could be consumed during the reactions of photorespiration, depending on the levels of CO$_2$ and O$_2$. Gas exchange experiments on leaves indicated a possibly increased photorespiratory component in nadp-mdh mutants (data not shown). Therefore, an effect of HL on photorespiratory activity was further investigated in protoplasts of nadp-mdh knockout and WT plants. The photosynthetic rates of mesophyll protoplasts from WT leaves were not significantly changed at low O$_2$ compared with ambient O$_2$ when assayed at 1 mM bicarbonate in the assay medium, while in the mutants photosynthesis was strongly inhibited at low O$_2$ compared with normal air (Fig. 4A). Further, the transcript levels of GDC1 and GDC2 (P-protein) were higher in the mutant than in the WT after 7 h of HL treatment (Fig. 4B), while the immunoblot indicated only a slight increase or no change in P-protein in the mutant (Fig. 4C). Other activities related to photorespiration, namely catalase and hydroxypyruvate reductase, were not affected in whole leaf extracts following 7 h of HL treatment, either in the WT or in the mutant plants (data not shown).

Table 1. Leaf characteristics of WT and nadp-mdh Arabidopsis plants

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>nadp-mdh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific fresh weight (mg cm$^{-2}$)</td>
<td>18.09±1.14</td>
<td>17.93±1.10</td>
</tr>
<tr>
<td>Water content (%)</td>
<td>92.49±0.31</td>
<td>92.11±0.41</td>
</tr>
<tr>
<td>Chl a (µg cm$^{-2}$)</td>
<td>5.21±1.34</td>
<td>5.56±1.66</td>
</tr>
<tr>
<td>Chl b (µg cm$^{-2}$)</td>
<td>2.10±0.55</td>
<td>2.2±0.59</td>
</tr>
<tr>
<td>Protein (µg cm$^{-2}$)</td>
<td>157.30±6.89</td>
<td>157.18±15.20</td>
</tr>
<tr>
<td>Starch as glucose units (µmol mg$^{-1}$ Chl)</td>
<td>27.35±0.37a</td>
<td>27.49±2.20a</td>
</tr>
</tbody>
</table>

a After 1 d of HL treatment.

The AOX1A transcript level increased to a similar extent in both genotypes when transferred from GL to HL (Fig. 5B). However, the inhibitory effect of SHAM on photosynthesis of protoplasts was more pronounced in mutants than in the WT (Fig. 5A), suggesting an important role for mitochondrial AOX in compensating the loss of chloroplast NADPH-MDH. This was true both at low O$_2$ and in normal air (Fig. 5A).

Metabolite profiling using GC-MS revealed differences in relative metabolite contents between WT and nadp-mdh plants under GL (the full data set is presented in Supplementary Table S2 at JXB online). However, the relative differences in metabolite contents were pronounced following a 7 h HL treatment. The most significant metabolic differences between the WT and mutants are presented in Fig. 6 and include increases in aspartate, proline (>2-fold), and succinate, along with decreases in glutamine, 5-oxoproline, malate, and, tentatively, ascorbate (Fig. 6). The levels of sucrose and starch were unaltered between mutant and WT plants (Fig. 6, Table 1). Starch levels decreased to very low levels during the following dark phase in both genotypes (Table 1).

The decreased malate level in the mutants after 7 h of HL was confirmed by an enzymatic determination yielding 18.0 µmol g$^{-1}$ fresh weight in the WT and 15.0 µmol g$^{-1}$ fresh weight in the mutant (Fig. 7A). Intriguingly, there was a 2.1-fold increase in proline in the mutants following the exposure to HL, while it increased only 1.5-fold in the WT (Fig. 7B).

Enzyme activities of alternative shuttle systems

Indirect transfer of reducing equivalents from the chloroplast to the cytosol and subsequently into mitochondria might alternatively be mediated by oxidoreductases other than MDH, in conjunction with appropriate transporters. The enzyme activities of NADP-GAPDH of the Calvin cycle, cytosolic NP-GAPDH, and mitochondrial NAD-dependent G3PDH, thought to be involved in a mitochondrial shuttle for reducing equivalents (Shen et al., 2006) were therefore determined. The activity of only NADP-GAPDH was increased in the nadp-mdh mutants (Table 3).

Effect of lacking NADP-MDH on early seedling growth

Although there was no difference in biomass between the WT and mutants at the mature stage (Fig. 1), in the early stages of growth the mutants had a clear advantage, either when directly cultivated as single plantlets on soil, or on agar under sterile conditions with minimal medium containing 1.8 mM nitrate (Fig. 8). The mutant seedlings had a significantly increased biomass after either 4 weeks of growth on agar or 5 weeks of growth on soil, when grown under 150 µmol quanta m$^{-2}$ s$^{-1}$.

Discussion

Flexibility in redox metabolism prevents phenotypic alterations in nadp-mdh plants

Experimental evidence and theoretical considerations suggest that the malate valve can counteract over-reduction of the photosynthetic electron transport chain (Scheibe, 2004). Therefore, it was surprising to observe the WT-like performance of nadp-mdh plants even when cultivated under HL conditions, for example with respect to photosynthetic performance and development (Table 1; Fig. 1). Obviously, these mutants do not use excess reducing equivalents in the Calvin cycle for CO$_2$ fixation and for biomass production as
evidenced by the identical CO₂ assimilation rates of leaves, similar photosynthesis rates in isolated protoplasts (Fig. 4A), and unaltered levels of the photosynthetic products, sucrose and starch (Fig. 6, Table 1). An inhibitory effect on the growth rate was detected in antisense tobacco plants expressing <10% of WT amounts of NADP-MDH when grown under natural light conditions in a greenhouse (Faske et al., 1997). Overexpression of NADP-MDH...
stimulated tobacco plant development until the pot size became limiting (Faske et al., 1997).

In this study, the photosynthetic electron transport was also broadly unaffected by altered NADPH+H⁺ oxidation.
Likewise, potato plants expressing minimal amounts of NADP-MDH (<10% of the WT) are able to adjust photosynthesis and CO2 assimilation for unaffected performance, most probably by employing various energy-dissipating cycles at PSI and PSII (Laisk et al., 2007). Since there is no evidence for over-reduction at PSII even in the nadp-mdh A. thaliana plants under HL conditions (Table 2), it is expected that these mutants use compensatory strategies to protect themselves from excess reductant in chloroplasts and subsequent oxidative stress.

A set of diverse mechanisms can help to avoid development of oxidative damage (Noctor and Foyer, 1998; Niyogi, 2000; Scheibe et al., 2005; Hanke et al., 2009; Scheibe and Dietz, 2011). The analysis of the mutants, lacking nadp-mdh, revealed a novel combination of different mechanisms to cope with excess reducing equivalents as discussed below: (i) a stimulated NTRC/2-Cys Prx system; (ii) adjustments in photorespiratory metabolism; and (iii) possibly, proline biosynthesis.
One might expect stimulated electron transfer to O₂, and thus increased ROS production and oxidative stress, in plants lacking the malate valve. Glutathione (GSH) and ascorbate are important to protect plants from oxidative damage (Noctor and Foyer, 1998; Mullineaux and Rausch, 2005), through the Beck–Halliwell–Asada pathway (Foyer and Halliwell, 1976) and in the GSH–glutaredoxin-type II Prx pathway (Tripathi et al., 2009). However, there were no marked changes in either glutathione (Fig. 2B) or ascorbate/DHA (Fig. 6). Expression of various enzymes of the Beck–Halliwell–Asada cycle in nadp-mdh plants was also unchanged, even in HL (Fig. 2C–E). This suggests that the ROS-scavenging systems, based on the ascorbate/glutathione and Beck–Halliwell–Asada pathway, are unaffected in nadp-mdh plants. However, the mutant plants showed increased levels of the NTRC/Prx system.
NADP-malate dehydrogenase knockout induces multiple strategies

Fig. 8. Seedling growth on agar under sterile conditions and on soil. (A) Sterilized seeds were placed on agar containing 1.8 mM nitrate as an N source, and seedlings were grown for 5 weeks under short-day conditions in sealed Petri dishes. The fresh weight of 100 seedlings of each genotype with standard deviations is given. (B) Seeds were grown in pots with soil, and the fresh weight of the above-ground biomass was determined for 100 seedlings of each genotype at 5 weeks of age. Asterisks indicate that the differences (P < 0.05) between WT and nadp-mdh mutants are statistically significant as determined by the t-test.

Besides the Beck–Halliwell–Asada pathway, the NTRC/Prx system quenches H$_2$O$_2$ in the chloroplast (König et al., 2002; Serrato et al., 2004; Pérez-Ruiz et al., 2006) and this peroxide detoxification cycle was named the ascorbate-independent or Prx-dependent water–water cycle (Dietz et al., 2006). Recent studies using knock-down plants show that the NTRC-dependent regeneration of 2-Cys Prx is more important than the thioredoxin-dependent one (Pulido et al., 2010). In nadp-mdh mutants under HL, 2-Cys Prx B and NTRC transcripts, as well as NTRC protein increased compared with WT plants (Fig. 3A, B). Data from Spinola et al. (2008) indicate that the NTRC system plays a specific role in eliminating ROS in the dark, and this point explains that stress treatment in the dark has more effect on Arabidopsis ntrc knockout lines than on WT plants (Pérez-Riuz et al., 2006). In nadp-mdh plants too, the Prx-dependent water–water cycle appears to function as an alternative poising system that is increased to use up dependent water–water cycle appears to function as an alternative poising system that is increased to use up

Adjustments in components of photorespiration, mitochondria, and proline biosynthesis may all compensate for the lack of malate valve

Despite being a major source of ROS, photorespiration is crucial for maintaining the redox state in plant cells (Foyer et al., 2009; Bauwe et al., 2010). Therefore, in nadp-mdh plants, the photorespiratory pathway may provide an alternative mechanism to transport excess reducing equivalents from the chloroplast to the mitochondrion, facilitating electron transfer to O$_2$ via the cytochrome c oxidase pathway or AOX (Fig. 9). Transcript profiling of mutant plants lacking NTRC had increased transcript levels for photorespiratory genes such as those coding for catalase, P-protein, and hydroxypropyruvate reductase, and showed multiple signs of metabolic imbalances (Lepistö et al., 2009). The marked decrease in photosynthesis of protoplasts under low oxygen (Fig. 4A), high expression of GDC (Figs. 4B, C), and a shift in the glycine-to-serine ratio (Fig. 6) suggest altered patterns in photorespiration of nadp-mdh mutants.

Inhibition of AOX or lack of the AOX1A isoform in mitochondria of transgenic plants is known to cause over-reduction of the photosynthetic electron transport chain in the light (Padmasreee and Raghavendra, 1999; Yoshida et al., 2007; Strodtkötter et al., 2009). The increase in protein and activity of AOX under HL and drought (Clifton et al., 2006; Giraud et al., 2008) suggest that AOX plays an important role in the consumption of excess reducing equivalents exported from the chloroplasts in light. Although the malate valve-dependent transport was disabled, the increase in AOXIA transcript levels in nadp-mdh mutants was similar to that in WT plants after HL treatment (Fig. 6C), indicating activation of alternative pathways for NADH re-oxidation in the mitochondria of both the WT and mutants. Interestingly, transgenic tomato plants with decreased mitochondrial NAD-MDH exhibited even enhanced photosynthetic performance (Nunes-Nesi et al., 2005), indicating the redundancy of some of the oxidative processes involved in optimizing photosynthesis. In double mutants expressing neither mitochondrial MDH isoform, photorespiration was increased (Tomaz et al., 2010).

Possible function of proline in nadp-mdh knockout plants

The increased proline contents of nadp-mdh mutants in HL (Figs. 6, 7B) might represent a strategy of the plants to increase stress tolerance, since proline functions as a compatible solute in drought/salt stress (Hare et al., 1999) and stabilizes the redox status of the cell (Bellinger and Larher, 1987; Hare et al., 1999; Szabados and Savouré, 2009). Further experiments are needed to confirm that the accumulation of proline in the nadp-mdh mutants under HL can help to consume excess NADPH (Fig. 9).

Early seedling growth

A highly reproducible increase in biomass occurred in the mutant plants during early development when grown on soil, or on agar under sterile conditions with 1.8 mM nitrate

References cited in the text:

- Foyer et al., 2009
- Bauwe et al., 2010
- König et al., 2002
- Serrato et al., 2004
- Pérez-Ruiz et al., 2006
- Dietz et al., 2006
- Pulido et al., 2010
- Spinola et al., 2008
- Lepistö et al., 2009
- Padmasreee and Raghavendra, 1999
- Yoshida et al., 2007
- Strodtkötter et al., 2009
- Clifton et al., 2006
- Giraud et al., 2008
- Nunes-Nesi et al., 2005
- Hare et al., 1999
- Szabados and Savouré, 2009
- Bellinger and Larher, 1987
- Tomaz et al., 2010
in minimal medium (Fig. 8). The compensatory responses in the nadph-mdh plants seem to become established early to achieve a metabolic pattern and altered redox state which are even beneficial under certain conditions.

Conclusions

The nadp-mdh mutants employ a combination of mechanisms to compensate for the lack of the malate valve function under HL conditions. Higher capacity of the NTRC system, along with increased expression of Prxs could facilitate balancing the NADP/NADPH ratio in the chloroplasts and sustain ROS scavenging. Adjustments in photosynthetic components might also reflect the need to dissipate excess reducing equivalents and prevent photoinhibition. Further experiments are required to establish the role of proline as a protective mechanism against oxidative stress in nadp-mdh mutants. It is suggested that ROS may act as a ‘prime’ to trigger changes initially in chloroplasts and then in other compartments of plant cells, resulting in acclimation of nadp-mdh plants.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. PCR analyses for proof of homozygous T-DNA insertion and NADP-MDH gene knockout.

Figure S2. Northern blot (A) and western blot with immunodecoration (B) to document the NADP-MDH (At5g58330) gene knockout in the lines 119 (Salk_063444) and 50 (Salk_012655).

Figure S3. Heatmap showing up- and down-regulated genes in the HL-treated (7 h at 1000 μmol quanta m⁻² s⁻¹) nadp-mdh versus WT plants grown for 5 weeks under 100 μmol quanta m⁻² s⁻¹, 8/16 h light/dark rhythm. Results from three independent experiments with | log2(expression ratio) | > 1 and P-value <0.06 are shown. The analysis was run in R/BioConductor using topTable and heatmap.2 functions.

Table S1. Oligonucleotides used for RT-PCR.

Table S2. Relative metabolite content in WT and nadp-mdh mutants grown under low light (GL) and exposed to HL for 7 h.

Acknowledgements

This study was financially supported by the Deutsche Forschungsgemeinschaft to V.L. and R.S. (EM166/1), grants from the Department of Science and Technology-Deutscher Akademischer Austauschdienst (DAAD, to A.S.R. and R.S.), the DAAD-Finland program (to R.S. and E.-M.A.), and by a DFG-Mercator Visiting Professorship to A.S.R. Funds were also received from the Academy of Finland to E.-M.A. (118637, 8133293), P.M. (130075), and S.K. (130595). The authors thank Dr Francisco Javier Cejudo (Sevilla) for the gift of anti-NTRC serum as well as probes for NTRC, and Dr Eevi Rintamäki for the antibody against Arabidopsis APXs. We thank Professor Hermann Bauwe (Rostock) for probes and antiserum against GDC (P-protein). We also thank Giuseppe Forlani (Ferrara, Italy) for providing P5C, and Dietmar Funck (Konstanz, Germany) for advice concerning proline metabolic enzyme measurements. Thanks are due to Silke Walter for expert technical assistance. We also thank Heike Wolf-Wibbelmann and Kirsten Jäger for cultivating the plants, and
Heike Schwiderski and Nicolas König for their help with the preparation of the manuscript.

References

Pérez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ. 2006. Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. The Plant Cell 18, 2356–2368.

