Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes

Diogo Denardi Porto¹, Maryline Bruneau², Pâmela Perini³, Rafael Anzanello⁴, Jean-Pierre Renou², Henrique Pessoa dos Santos⁵, Flávio Bello Fialho⁵, Luís Fernando Revers⁵,*

¹ Centro de Pesquisa Agropecuária do Trópico Semi-Árido, Empresa Brasileira de Pesquisa Agropecuária, BR-428, Km 152, 56302–970, Petrolina, PE, Brazil
² Institut de Recherche en Horticulture et Semences (IRHS), A, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
³ Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Rua General Osório, 348, Centro, 95700-000, Bento Gonçalves, RS, Brazil
⁴ Fundação Estadual de Pesquisa Agropecuária, RSC-470, Km 170, 95330-000, Veranópolis, RS, Brazil
⁵ Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento, 515, 95700-000, Bento Gonçalves, RS, Brazil

* To whom correspondence should be addressed. E-mail: luis.revers@embrapa.br

Received 5 September 2014; Revised 16 January 2015; Accepted 28 January 2015

Abstract

Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57 000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene’s chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy.

Key words: Apple, bud dormancy, Castel Gala, chilling requirement, FLC-like, microarray, Royal Gala.

Introduction

Perennial growth in temperate regions demands tolerance to harsh winter conditions. In the autumn, plants growing in such locations may exhibit bud formation and growth cessation as a mechanism of tolerance to forthcoming winter stresses. This phenomenon, called dormancy, protects sensitive meristematic tissues from damage. Dormancy in buds is classified
as para-, endo-, or ecodormancy when the growth inhibition is driven either by other structures of the same plant, by the dormant bud itself, or by environmental conditions, respectively (Lang et al., 1987). Dormancy is triggered by short photoperiods and/or low temperatures and is released after a certain period of cold exposure, when the bud is left in a quiescent, ecodormant state and is capable of resuming growth when the conditions (temperature, nutrients, and water) are favourable (Cooke et al., 2012; Horvath et al., 2003).

One of the goals of temperate fruit crop breeders is to establish cultivars fully adapted to their growing environment (Denardi et al., 1988; Labuschagné et al., 2002). To have an approximate prediction of phenological behaviour of cultivars during the winter, breeders rely on models of dormancy progression. The classical chilling hour model predicts that each crop species and cultivar requires a certain amount of chilling hours (CH), i.e. hours of temperatures between 0 and 7.2 °C, for endodormancy release (Chandler et al., 1937). This numeric quantity of CH is known as the chilling requirement (CR).

The molecular mechanisms controlling bud dormancy have been the subject of intensive research in the last decade, and many genes are believed to play roles in dormancy establishment and release (Ruttink et al., 2007; Horvath et al., 2008; Gai et al., 2013). In *Populus trichocarpa*, the timing of bud set was largely attributed to the expression levels of *PtFT1*, an orthologue of the *Arabidopsis* florigen *FLOWERING LOCUS T (FT)*. *PtFT1* is induced by the aspen version of *CONSTANS (CO)*, whose expression is affected by day length (Böhlenius et al., 2006). Further investigations established *PtFT1* as a determinant of reproductive onset and its paralogue, *PtFT2*, as an inhibitor of growth cessation and bud set (Hsu et al., 2011).

In *Arabidopsis*, *FT* expression, which leads to flowering, is controlled by pathways that respond to autonomous and environmental signals. The acquisition of flowering competence by prolonged cold exposure, also known as vernalization, requires silencing of the flowering repressor *FLOWERING LOCUS C (FLC)* (Amasino and Michaels, 2010). The physiological similarities between vernalization and dormancy release led to the hypothesis that a molecular mechanism analogous to vernalization could be responsible for dormancy release, with the participation of an FLC-like repressor (Horvath et al., 2003; Rohde and Bhalerao, 2007). At the present time, the most promising repressors are the *DORMANCY-ASSOCIATED MADS-box* (*DAM*) genes. They were discovered by positional cloning after linkage map analysis of the *evergrowing* peach mutant, which is unable to enter dormancy (Bielenberg et al., 2008).

Circadian rhythm and gibberellin response genes were also shown to participate in dormancy cycling in *Populus* trees. Downregulation of *P. trichocarpa* *LATE ELONGATED HYPOCOTYL (PtLHY)* expression, a circadian clock core component, compromised cold acclimation and delayed bud burst (Ibáñez et al., 2010). Gibberellin application can substitute chilling, and gibberellin-induced expression of β-1,3-glucanases was reported to have an important role in dormancy release (Rinne et al., 2011).

It is believed that almost all major plant hormones play a role in at least one dormancy stage (Horvath, 2009). In potato, cytokinins are essential to break dormancy in buds (Hartmann et al., 2011). However, the role of cytokinins in endodormancy has not been studied extensively (Cooke et al., 2012). The role of abscisic acid is unclear, but it may participate in dormancy-related processes, such as bud formation and cold acclimation (Cooke et al., 2012). Finally, auxins are a major component of paradormancy, and auxin-mediated inhibition of bud break has been demonstrated in apple (Faust et al., 1997).

The CR in apple is highly variable across cultivars, ranging from 200 to 1100 CH (Labuschagné et al., 2002), and it can be considered a genetically determined trait. The Gala Standard cultivar requires approximately 600 CH to break its dormancy, and the same is true for most cultivars derived from it (e.g. ‘Royal Gala’). Conversely, the Castel Gala cultivar is a ‘Gala Standard’ mutation featuring a low CR of approximately 300 CH while retaining all other traits (Anzanello et al., 2014). This provides a unique opportunity for dormancy research because it allows the comparison between two nearly identical genetic backgrounds that, to the best of our knowledge, differ only in the CR.

Genetic segregation studies on CR are complicated by the quantitative nature of bud dormancy and the influence of environmental factors such as temperature, drought, and nutrient availability. Because there is no genetic marker for CR in apple and it is a trait that manifests only after the dormancy cycles commence, breeding efforts for CR adjustment usually take several years. Recently, a major quantitative trait locus (QTL) for the timing of bud break, a trait closely associated with CR, was found to be associated with regions of chromosome 9 (van Dyk et al., 2010; Celton et al., 2011). Celton et al. (2011) positioned the confidence interval for the QTL in the first 4 Mb of this chromosome (hereafter called LG9-QTL), a result also found by our group in an independent mapping population (Tessele, 2012). However, genomic dissection of the QTL revealed no unique strong candidate gene for the control of timing of bud break. Furthermore, transcriptomic studies comparing apple buds across dormancy stages have not been reported, with the exception of the work by Pichler et al. (2007). They analysed transcripts from autumn and winter buds on a 15K oligonucleotide chip designed using sequences from available expressed sequence tag (EST) libraries. Microarray analyses revealed a significant number of genes up- and downregulated during winter. However, no inferences were made from these data from the perspective of functional genomics. One reason for this could be that, at the time of the study, there was insufficient literature on the molecular control of bud dormancy, as well as a relatively low availability of databases for apple and other temperate fruit trees.

Since then, the number of resources for high-throughput functional genomics analyses has grown exponentially, including for apple (Troggio et al., 2012). In 2010, a genome sequence of apple was made publicly available, which greatly accelerated apple genomics research (Velasco et al., 2010). Apple genome data analysis estimated a number of 57K
genes, which was the basis for the design of a full genome microarray chip for apple, the AryANE chip (Celton et al., 2014). This work aimed to identify differential expression of apple genes across bud dormancy stages. Closed terminal buds exhibiting distinct dormancy status were screened for differential gene expression using the AryANE chip. These results were analysed by singular enrichment analysis, and differential expression for 15 selected transcripts was confirmed by reverse transcription followed by quantitative PCR (RT-qPCR). Cold-treated buds exhibited a great number of differentially expressed (DE) genes when compared with buds in the field. DE genes were enriched in Gene Ontology (GO) terms related to photosynthesis, the citrate cycle, ribosome biogenesis, and flavonoid biosynthesis. RT-qPCR analysis of selected genes corroborated the microarray results, and supported the selection of putative transcription factors located inside the LG9-QTL as candidates for regulating dormancy release.

Materials and methods

Location of orchards

The apple trees used for this study were grown in a commercial orchard located at the city of Papanduva, SC, Brazil (26°26’68”S, 50°05’47”W, 788 m altitude). In this region, the climate is classified as Cfb according to the Köppen climate classification. March, April, and May (autumn) have historical mean minimum temperatures of 9–14 °C and mean maximum temperatures of 18–25°C. June and July (winter) have mean minimum temperatures of 5–8 °C and mean maximum temperatures of 18–20°C. The annual rainfall totals 1300–1500 mm and is evenly distributed. Field temperatures were recorded hourly by an automatic weather monitoring station.

Plant material and cold treatments

‘Royal Gala’ trees, at the time of first harvesting (2009), were 5 years old, grafted on ‘Marubakaido’ rootstock with ‘M9’ as the interstock, while ‘Castel Gala’ trees were 3 years old and grafted on ‘M9’ rootstock. The difference in the grafting system was shown not to alter the timing of bud phenology (Petri et al., 2012). All trees were in the adult stage and fully productive. ‘Royal Gala’ and ‘Castel Gala’ twigs (~20 cm, no more than 10 samples per tree) bearing a dormant, terminal flower bud (A stage according to Fleckinger, 1964) were sampled in March, May, and June 2009 (autumn and winter in the southern hemisphere). Twigs were wrapped in moist paper and shipped to the laboratory, where they were surface sterilized. For the bud break assay, 40 twigs were fixed in floral foam inside a growth chamber under forcing conditions (25 ± 1.5 °C, 12 h photoperiod, 70% relative humidity). The percentages of maximum bud break were determined from the total number of terminal buds showing green tips after 35 d of forcing treatment.

For cold treatments, twigs were placed in BOD-type chambers at 6 °C in the vertical position. After 1- or 2-week intervals, 40 twigs were forced as described above, and 10–20 terminal buds were frozen in liquid N2 and stored at –80 °C. A schematic representation of the 2009 treatments and harvesting points is depicted in Fig. 1.

Samplings were repeated in April, May, June, and July 2010 to select comparisons from a different growth cycle as biological replicates. Several cold treatments were tested, and the ones that better replicated the results from 2009, with respect to the total CH accumulated (both CH from the field and from controlled conditions) and the change in percentage of maximum bud break, were used. A description of the 2009 and 2010 biological replicates can be found in Supplementary Table S1 at JXB online.

Hybridizations

RNA samples were screened for differential gene expression by hybridization with the AryANE chip (INRA), according to Celton et al. (2014). Approximately 400 ng of total RNA was amplified using an Ambion messageAmp II kit (Ambion, Austin, TX, USA). Amplified RNAs (5 μg) were used for sample labelling by RT in the presence of Cy3- or Cy5–CTP. After purification and quantification, labelled samples were combined as 30 pmol for each dye and co-hybridized to the AryANE 12 × 135K arrays. After washing and drying, the fluorescence signals were read by a MS200 scanner (NimbleGen, Madison, WI, USA). NimbleScan Software v.2.4 was used to extract pair-data files from the scanned images. For each comparison, two biological replicates, one from each growth

Fig. 1. Experimental design. Samples from closed terminal buds of ‘Royal Gala’ and ‘Castel Gala’ apple trees were harvested in May and June 2009 and exposed to 1 or 2 weeks of cold treatments. Circles denote buds frozen in the field, and hexagons represent cold-treated buds. Numbers inside the shapes are the bud break rates for each sample. Arrows demonstrate the pairs of samples compared in the hybridizations. Five-letter codes alongside the arrows are comparison names (see Materials and methods for their designation). (This figure is available in colour at JXB online.)
cycle (2009 and its 2010 counterpart; see Supplementary Table S1), were analysed in a dye-switch design, as described in Depuydt et al. (2009).

All statistical analyses were performed using the R language (R Development Core Team, 2014). The data were normalized using the LOWESS method, the differential expression analyses were performed using the lmFit function, and the Bayes moderated t-test was performed using the package LIMMA (Smyth, 2005) from the Bioconductor project. Genes considered to be DE showed transcript level variation greater than 1.5-fold in at least one comparison, for \(P<0.01 \). The normalized microarray data were deposited at NCBI’s Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession code GSE64717.

Comparisons were designed in the most comprehensively form possible in order to follow transcript accumulation changes during dormancy entrance and release. Because each sample had a particular set of properties (bud break rate, cultivar, etc.), a five-letter code representing sample conditions in each comparison was devised. The code rationale is as follows: the first and second letters are the cultivar (R, ‘Royal Gala’; C, ‘Castel Gala’) and treatment (f, field-harvested; c, cold-treated), respectively, for the first sample. The third and fourth letters indicate the same for the second sample. Finally, the fifth letter shows whether the bud break rate of the second sample was higher (B, bud break) or lower (D, dormancy) than the first sample. This labelling is shown graphically in Fig. 1.

Singular enrichment analysis
DE genes (>1.5-fold change, \(P<0.01 \)) were tested for enrichment in GO functional classifications using the Blast2GO program (Götz et al., 2008). GO term annotations were downloaded from the apple genome and validated in the program (i.e. only the most specific terms for each ontology branch were kept). DE genes were also tested for enrichment in KEGG metabolic pathways using the KOBAS software (Xie et al., 2011).

Validation by real-time PCR
Gene-specific primers for each selected transcript were designed using Primer3 (Rozen et al. 2000) and checked for stable putative secondary structures with IDT’s OligoAnalyzer (http://www.idtdna.com/analyze/applications/oligoanalyzer). From each RNA sample, cDNAs were synthesized using a GeneAmp RNA PCR Core kit (Life Technologies) following the manufacturer’s instructions. The amplification reactions were performed in a StepOnePlus™ Real-Time PCR System (Life Technologies) as follows: 10 μl of diluted cDNA (1:100), 200nM of each primer, 50 μM of each dNTP, 0.25 units of Platinum™ Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA), 1× Buffer Solution (Invitrogen), 1.5 mM MgCl₂, 1× SYBR Green™ (Invitrogen), and 1× ROX reference dye (Invitrogen). The reactions were performed in technical quadruplicates for each sample. RT-qPCR assays were conducted with the following cycling program: 95 °C for 10 min for enzyme activation, 40 amplification cycles at 95 °C for 15 s and 60 °C for 1 min, and finally a dissociation curve between 60 and 95 °C. Relative expression calculations followed Pfaffl mathematicians (Pfaffl, 2001) for the following three reference genes established previously as being constitutively expressed in apple buds (Perini et al., 2014): Accumulation and replication of chloroplast 5 (AR5, MDP0000138874), Malate dehydrogenase (MDH, MDP0000197620), and a WD40 domain-containing protein (WD40, MDP0000168479). Primer specificity was checked by dissociation curves, agarose gel electrophoresis, and Sanger sequencing of generated amplicons.

Results
In an attempt to discover DE genes during dormancy in terminal buds of apple, this work explored the changes in steady-state mRNA levels in buds with diverse dormancy status (i.e. bud break rates). The differences in dormancy were a result of either cold treatments in controlled conditions, the dormancy progression under field conditions, as evaluated by the comparison of samples harvested in different dates, or genotype-specific effects in buds from ‘Royal Gala’ and ‘Castel Gala’ trees placed side by side and sampled on the same date. A schematic diagram of the experimental design can be found in Fig. 1.

To obtain a more robust result, bud samples from two different years were used as biological replicates. Because these samples originated from other growth cycles and have had slightly different cold treatments, we relied on CH accumulation and changes in bud break rate as indicators of dormancy status (Fig. 1 and Supplementary Table S1). In March 2009, for both cultivars, samples failed to respond to cold treatments, and budbreak rates of field-harvested buds were very close to those of the May 2009 samples. Hence, the March 2009 samples were not included in the comparisons.

Over 8000 genes (8193) were DE across the comparisons, most of them identified in cold-treated ‘Royal Gala’ buds compared with buds frozen in the field (Table 1). Chilled ‘Castel Gala’ buds, however, did not show the same number of DE genes when compared with chilled ‘Royal Gala’ buds. Unexpectedly, in 2010, constant cold temperatures (3 °C) did not significantly alter the competence of ‘Castel Gala’ terminal buds to break. Another set of buds, exposed to an alternative temperature regime (3 and 15 °C at 12-h intervals) did show an increase in bud break rates. These samples were used as a biological replicate to 2009 ‘Castel Gala’ buds exposed to constant cold. This difference over replicates may account for the lower number of DE genes in CfCcB compared with the ‘Royal Gala’ assays.

A large number of genes were DE in more than one comparison. A pairwise table of comparisons containing the number of genes up- or downregulated is shown in Table 2. More than 800 genes were downregulated in both comparisons involving chilling of ‘Royal Gala’ buds. This number fell to approximately 400 for upregulated genes in common for these comparisons (Table 2).

To test for functional enrichment among DE genes, GO terms and KEGG pathway over-representation were assessed using the Blast2GO and KOBAS tools, respectively (Götz et al., 2008; Xie et al., 2011). Only coincident term enrichment results for both programs are described. Full reports are available online (Supplementary Table S2 at JXB online).

Table 1. Total number of DE genes across comparisons

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Induced</th>
<th>Repressed</th>
<th>Total DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RfRcD</td>
<td>1181</td>
<td>2424</td>
<td>3605</td>
</tr>
<tr>
<td>CiCcB</td>
<td>281</td>
<td>161</td>
<td>442</td>
</tr>
<tr>
<td>CoCcB</td>
<td>124</td>
<td>374</td>
<td>498</td>
</tr>
<tr>
<td>RffRd</td>
<td>137</td>
<td>332</td>
<td>469</td>
</tr>
<tr>
<td>CiCcB</td>
<td>226</td>
<td>282</td>
<td>508</td>
</tr>
<tr>
<td>RfCcB</td>
<td>91</td>
<td>77</td>
<td>168</td>
</tr>
<tr>
<td>RfRcB</td>
<td>2127</td>
<td>2228</td>
<td>4355</td>
</tr>
<tr>
<td>RfRcB</td>
<td>170</td>
<td>287</td>
<td>457</td>
</tr>
</tbody>
</table>
In the RfRcD comparison, both programs detected a down-regulation of transcripts related to photosynthesis and an upregulation of transcripts involved in ribosome biogenesis. Photosynthesis terms were also observed more frequently in downregulated transcripts of the RfRcB comparison. The programs also found an over-representation of flavonoid biosynthesis genes among downregulated transcripts in RcRcB and of tricarboxylic acid (TCA) cycle genes in upregulated transcripts of RfRcB. Microarray data for the groups of genes presenting functional terms that were significantly enriched are depicted in Figs 2 and 3.

Two subgroups of photosynthesis-related genes showed differential regulation during dormancy

Hierarchical clustering of photosynthesis-related gene expression results found a group of 11 genes, most of them encoding components of photosystem I and II, with transcriptional induction in RcRcB, CcCcB, and, to a lesser extent, RfRcD (Fig. 2). Promoter sequences (1 kb upstream of the predicted translational start site) for eight of these genes were available in the apple genome database (Velasco et al., 2010), as well as for 166 of the remaining DE photosynthesis-related genes. In an attempt to identify candidate signalling pathways that influence the expression of these genes, promoter sequences were scanned for conserved cis-acting elements using the PLACE database (Higo et al., 1999). Of the eight promoters of photosynthesis genes induced at the end of dormancy, only one (12.5%) contained a G-box conserved motif (CACGTG) or a G-box-like sequence (ACGTG). However, of the 166 promoters scanned for the remaining genes, 65 (39.1%) presented at least one G-box motif and 123 (74.0%) contained the G-box-like sequence. No other conserved element presented this contrasting representation between these two promoter sets (data not shown).

Some non-coding transcripts showed differential expression during bud dormancy

The AryANE microarray chip also features oligonucleotides designed for the detection of microRNA (miRNA) genes and antisense transcripts. This work identified a number of conserved miRNA genes as DE, almost all down-regulated (Table 3). Their potential targets included AUXIN RESPONSE FACTORS (ARFs), HD-zip transcription factors, and GAMYB-like coding transcripts. A significant number of putative antisense transcripts (1557) was differentially regulated in the samples analysed. Almost half (735, 47.2%) of the predicted apple genes showing this differential antisense expression were also DE as evaluated by sense oligonucleotides (Supplementary Table S3 at JXB online). Among these 735 genes, 345 (46.9%) exhibited the same expression profile between sense and antisense transcripts in all comparisons.

Validation of microarray results highlights participation of flowering time, the circadian clock, and hormone signalling pathways

Gene selection for microarray validation gave priority to predicted genes that fitted in one or more of the following criteria: (i) DE in more than one comparison; (ii) located inside the LG9-QTL; and (iii) functions in dormancy and/or flowering time regulation, according to current models (Horvath et al., 2003; Amasino and Michaels, 2010; Rinne et al., 2011). Confirmation of differential expression was accomplished by RT-qPCR employing the same RNA samples isolated for the hybridizations. Microarray and RT-qPCR results for selected predicted transcripts are shown in Fig. 4. For the sake of clarity, the names of the best matches to Arabidopsis and/or NCBI databases are used to refer to the selected transcripts, except for genes already characterized for apple (AFL1, MdFT, and MdDHN2). Genome codes for selected predicted genes, BlastX results, and the primers used are available in Supplementary Table S4 at JXB online.

The expression of two apple genes, AFL1 and MdFT1, previously found to be involved in flowering time (Kotoda et al., 2010), was repressed in RfRcB. Interestingly, MdFT1 was 2.5-fold induced in 'Royal Gala' field-harvested buds entering dormancy (RfRfD; Fig. 4). The apple dehydrin gene MdDHN2 (Liang et al., 2012), on the other hand, was induced in CcCcB. Several uncharacterized putative transcription factors in apple were also DE. A predicted gene similar to Arabidopsis ATARR9, a response regulator involved in cytokinin signalling (Ishida et al., 2008), was downregulated in both CcCcB and RfRcB comparisons. Similar results were observed with a gene highly similar to Arabidopsis PACLOBUTRAZOL RESISTANCE 1 (AtPRE1), which was also induced in RfCfB as seen by microarray analysis (Fig. 4). The putative

Table 2. Number of coincident DE genes between pairs of comparisons

<table>
<thead>
<tr>
<th></th>
<th>RfRcD</th>
<th>CcCcB</th>
<th>RfCfB</th>
<th>RfRfD</th>
<th>CcCcB</th>
<th>RfRcB</th>
<th>RcRcB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RfRcD</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>11</td>
<td>0</td>
<td>393</td>
</tr>
<tr>
<td>CcCcB</td>
<td>68</td>
<td></td>
<td></td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>RfRfD</td>
<td></td>
<td>5</td>
<td></td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>CcCcB</td>
<td>26</td>
<td></td>
<td></td>
<td>26</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>RfCfB</td>
<td>19</td>
<td>12</td>
<td></td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>RfRcB</td>
<td>1</td>
<td>0</td>
<td></td>
<td>7</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>RcRcB</td>
<td>810</td>
<td>55</td>
<td></td>
<td>12</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
apple orthologue of *AtPRE1* is located at 3 Mbp from the start of chromosome 9, which is inside the LG9-QTL.

The RfRcB comparison yielded DE genes putatively encoding the main floral development regulators. In this comparison, a potential *REVEILLE1* (*RVE1*) orthologue was highly induced, as well as an *APETALA2* (*AP2*)-like transcript, while *WITH NO LYSINE KINASE* (*WNK*) was downregulated (Fig. 4). In addition to putative floral regulators, a phosphoenol-pyruvate carboxylase gene was induced in RfRcB but was downregulated after one more week of chilling (RcRcB). A chlorophyll AB binding protein gene was repressed in RfRcB as well as in RfRcD. In this last comparison, a gene putatively encoding a *LOW OSMOTICALLY RESPONSIVE 2* (*LOS2*) orthologue was downregulated. Finally, an LHY-like transcript was upregulated in CcCcB according to microarray analysis, although real-time PCR results were not conclusive.

A gene similar to the one coding for the abscisic acid receptor PYL2 was more expressed as buds entered into dormancy (RfRcD and RfRcD; Fig. 4). In these comparisons, a gene model (MDP0000207984) annotated as *FLC*-like by similarity with a pear *FLC*-like protein, was also induced. Another gene model that was similarly annotated (MDP0000126259) was induced in ‘Castel Gala’ chilled buds (CcCcB; Fig. 4). Real-time analysis confirmed the upregulation of MDP0000126259 transcripts in CcCcB samples. Surprisingly, while microarray analysis detected no differential expression for this predicted gene in other comparisons, RT-qPCR showed that MDP0000126259 expression was significantly affected in at least five comparisons. This may be due to the low specificity for the oligonucleotide designed for this predicted transcript (data not shown), which could be hybridizing to other similar genes non-specifically.

On the other hand, MDP0000207984 was confirmed as being strongly upregulated in RfRcD and RfRcD (Fig. 4). BLAST searches in the *Arabidopsis* genome revealed no significant similarity between these genes and *FLC*, and returned other MADS-box domain-containing proteins as more similar. MDP0000126259 resembled *Arabidopsis* *APETALA1*, while MDP0000207984 returned MADS AFFECTING FLOWERING2 (*MAF2*) as the best hit, although both results yielded a relatively high expect value (0.0005 and 0.0004, respectively). *MAF2* is an *FLC* paralogue with a role in avoiding premature flowering after short cold periods (Ratcliffe et al., 2003). In addition to having no bona fide homologues in the *Arabidopsis* genome, BlastX searches in the NCBI non-redundant database using either gene as a query returned few significant matches (data not shown). Hence, MDP0000126259 will be referred to as *FLC*-like and MDP0000207984 as *MAF2*-like.

A contig assembled from apple EST databases and very similar to *FLC*-like can be found at the Rosaceae genome database (http://www.rosaceae.org, Malus_v4_Contig6253). An alignment of *FLC*-like, *MAF2*-like, and the contig is shown in Fig. 5. Both transcripts were predicted from genomic sequences anchored to apple chromosome 9 and were distanced by approximately 23 million base pairs. *FLC*-like was located approximately 700 000 bp from the start of chromosome 9, therefore lying inside the LG9-QTL.

Discussion

The complex nature of dormancy cycling is challenging, with its well-defined physiological states despite few or no morphological changes, potentially resulting from independent and synchronous molecular mechanisms (Cooke et al., 2012). Because cold exposure is the main requirement for dormancy release, this work tried to determine the biological effects of cold, in the form of gene expression regulation, with respect to dormancy progression.
A series of hybridizations was performed comparing RNA isolated from field-harvested buds and buds chilled under controlled conditions. The dormancy status from all materials was monitored by forcing, and an attempt was made to identify transcripts associated with changes in dormancy status. Transcript profiling studies of bud dormancy usually involve comparison of samples either harvested in the field, with CR being fulfilled under field conditions (Horvath et al., 2008; Liu et al., 2012) or forced to release dormancy by chilling or chemical treatments (Mazzitelli et al., 2007; Gai et al., 2013). This work intended to use both approaches in parallel, while taking advantage of the model ‘Royal Gala’ versus ‘Castel Gala’. Overall, this strategy deals with three sources of influence over dormancy status: cold treatments, genotype effects, and harvesting dates.
Day length shortening and cold treatments are known to induce and release bud dormancy, respectively, under controlled conditions. In apple, however, day length seems not to be perceived as an environmental cue to elicit growth cessation (Heide and Prestrud, 2005). In this work, we were able to induce apple bud dormancy under controlled conditions by low-temperature exposure, but the effectiveness of this treatment was highly variable. ‘Royal Gala’ buds seem to be more responsive to constant cold than ‘Castel Gala’ buds, and for both cultivars, treatments yielded the expected results more often during late autumn and winter (May, June, and July) than during early autumn (March and April). A possible reason is that apple buds are responding to environmental signals other than cold at the time of growth arrest. This may be related to the counter-intuitive finding that apple trees respond to day length when expressing a peach CBF gene (Wisniewski et al., 2011). Despite being part, presumably, of a cold signalling pathway, the transgene was able to connect day length perception with dormancy induction, demonstrating that mechanisms other than cold perception may act on apple bud dormancy entrance.

Cold treatments had a great impact on the apple bud transcriptome, with 3605 and 4355 genes DE in RfRcD and RfRcB, respectively, and repressed transcripts in these two comparisons were enriched in photosynthesis-related terms. Cold exposure is known to downregulate photosynthesis genes that are not a target of PIF proteins may be perceived as an environmental cue to elicit growth cessation (Yamane et al., 2008; Lazar and Goodman, 2006). Auxin levels and transport rate control the growth of dormant buds (Ferguson and Beveridge, 2009). In addition, a positive regulator of expression of flavonoid biosynthesis genes, MAX1, is required for the repression of auxillary bud outgrowth in Arabidopsis thaliana (Lazar and Goodman, 2006). MAX1 is reported to induce the transcription of CHS, CHI, F3H, and FLS, among others, resulting in enhanced apical dominance and inhibiting the growth of auxillary buds. Therefore, repression of flavonoid production may be playing a role in development of apple buds after CR fulfilment.

Table 3. Members of conserved miRNAs that were DE in the microarrays

<table>
<thead>
<tr>
<th>Family</th>
<th>Member</th>
<th>Up- or downregulated in comparison(s)</th>
<th>Target</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR159</td>
<td>miR159e</td>
<td>RfRcB</td>
<td>GAMYB-like</td>
<td>Alonso-Peral et al. (2010)</td>
</tr>
<tr>
<td>miR159</td>
<td>miR159g</td>
<td>RfRcB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR159</td>
<td>miR159k</td>
<td>RfRcB, RfRcD, CcCcB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR159</td>
<td>miR159p</td>
<td>RfRcB, RfRcD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR160</td>
<td>miR160h</td>
<td>RfRcD</td>
<td>ARF10, ARF16, ARF17</td>
<td>Mallory et al. (2005)</td>
</tr>
<tr>
<td>miR162</td>
<td>miR162a</td>
<td>RfRcB</td>
<td>DICER-like</td>
<td>Xie et al. (2003)</td>
</tr>
<tr>
<td>miR166</td>
<td>miR166a</td>
<td>CcCcB</td>
<td>HD-zip</td>
<td>Rhinoes et al. (2002)</td>
</tr>
<tr>
<td>miR166</td>
<td>miR166d</td>
<td>RfRcD, RfRcB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR166</td>
<td>miR166i</td>
<td>RfRcB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR168</td>
<td>miR168a</td>
<td>RfRfD</td>
<td>ARGAONATE</td>
<td>Vaucheret et al. (2004)</td>
</tr>
<tr>
<td>miR168</td>
<td>miR168b</td>
<td>RfRcD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR168c</td>
<td>miR168c</td>
<td>RfRcB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR390</td>
<td>miR390c</td>
<td>RfRcD, RfRfD</td>
<td>ARF3, ARF4</td>
<td>Fahlgren et al. (2006)</td>
</tr>
<tr>
<td>miR390</td>
<td>miR390d</td>
<td>RfRcD, RfRcB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR394</td>
<td>miR394b</td>
<td>RfRcD, RfRfD</td>
<td>LCR</td>
<td>Song et al. (2012)</td>
</tr>
<tr>
<td>miR399</td>
<td>miR399g</td>
<td>RfRcD, CcCcB</td>
<td>PHO2</td>
<td>Pant et al. (2008)</td>
</tr>
</tbody>
</table>
Cold treatments (RfRcB and RfRcD) also induced clusters of genes with a putative role in ribosome biogenesis (Fig. 3B). Upregulation of steady-state levels of mRNAs coding for ribosomal proteins by low temperatures was reported for soybean (Kim et al., 2004), Brassica napus (Sáez-Vásquez et al., 2000), and in dormant buds of pear (Liu et al., 2012). The link between RNA metabolism and low-temperature responses has been shown by the characterization of the A. thaliana low osmotically responsible (los) mutants. Protein elongation under cold environmental conditions is diminished in los1 plants, impairing their cold acclimation (Guo et al., 2002), while disruption of RNA export in los4 mutant plants compromises cold signalling and tolerance to low temperatures (Gong et al., 2002, 2005). Enrichment tests also detected increased transcription of genes related to the TCA in ‘Royal Gala’ buds exposed to cold (Fig. 3C). Transcription of genes encoding TCA enzymes were induced during chilling treatment in dormant buds of Paeonia ostii (Gai et al., 2013) and poplar (Rohde et al., 2007).

The microarray chip used in this study also featured probes designed for the detection of non-coding transcriptional information. A class of small non-coding RNAs, called...
miRNAs, is involved in development, stress responses, and other processes, and some of its members are conserved across plant families (Cuperus et al., 2011). Most of the miRNA genes that were DE in the comparisons were downregulated, and at least three miRNA families represented have gibberellin and auxin signalling genes as targets, namely miR159, miR160, and miR390. Both hormones are involved in bud dormancy (Ferguson and Beveridge, 2009; Rinne et al., 2011). Furthermore, miR160 and miR390 genes, which target auxin response factors, were DE only in comparisons that resulted in a decrease in bud break rate (dormancy entrance). Both miRNAs are involved in the regulation of leaf and floral organ patterning, and loss of miR390 function is reported to accelerate juvenile-to-adult phase transition (Mallory et al., 2005; Fahlgren et al., 2006). In addition, a miR166 gene, which was downregulated in several comparisons, is involved in the differentiation of protoxylem into metaxylem, and its absence is important for meristem maintenance (Sparks et al., 2013). Finally, miR394 is also involved in meristem organization, being required for the proper delimitation of the organizing centre stem cell zone (Knauer et al., 2013; Sparks et al., 2013). An important miRNA controlling adult phase transition, miR156, was not DE in our data but did show differential regulation in poplar (Wang et al., 2011). However, many predicted homologues of its target genes SQUAMOSA PROMOTER BINDING-LIKE PROTEIN were DE, mainly in RIRcD and RIRcB comparisons (data not shown). This indicates that apple miR156 may be acting in buds, but this was not detected in the hybridizations.

In addition to miRNAs, regulation of gene expression by non-coding transcripts may occur via antisense RNAs (Wang et al., 2005). In this work, approximately half of all DE genes also showed differential expression of antisense transcripts. Of these antisense RNAs, approximately half were DE in the same manner as their sense counterparts. Antisense transcription in apple was recently found in all major organs, especially in fruits and seeds (Celton et al., 2014). The biological significance of these results was further shown by high-throughput sequencing of small RNAs. The number of small RNAs derived from each predicted transcript was correlated with its level of antisense expression (Celton et al., 2014). The data indicated that antisense transcription is a major resource for regulating gene expression in apple. We hypothesize that antisense RNAs are actively regulating the expression of the DE genes found in this study that were positive for differential antisense transcription, and that this is particularly true for the genes exhibiting different profiles between sense and antisense expression.

Microarray results were reassessed by real-time PCR for 15 DE genes, chosen by potential relevance to dormancy and flowering time regulation and responsiveness across comparisons. The responsiveness criterion has the same rationale as the whole experiment design. It is difficult to address dormancy-related roles to genes after differential expression studies because dormancy is tightly associated with other processes such as cold acclimation and tolerance to water deficit (Cooke et al., 2012). Hence, genes that are DE in several comparisons, each involving dormancy changes resulting from different conditions (chilling accumulation, genotype effects, etc.), have a higher probability of being involved with the dormancy itself, rather than with the condition responsible for changing the dormancy status.
The expression of *MdFT1* and *AFL1*, apple orthologues of *Arabidopsis* *FT* and *LEAFY*, respectively, was repressed in RiRcB. These two genes encode flowering pathway integrators decisive for the timing of flowering (Nilsson et al., 1998; Amasino and Michaels, 2010). Transcription of *Arabidopsis* *FT* is known to be repressed by the action of MADS-box transcription factors such as FLC, MAF2, and SVP, which in their turn are downregulated by prolonged ambient low temperatures (Horvath, 2009; Seo et al., 2009). However, the transposition of this *Arabidopsis*-based model to tree buds is not straightforward. For example, in poplar, there are two *FT* paralogues with very distinct expression patterns and roles in flowering and growth (Hsu et al., 2011). Apple has two *FT* homologues as well, with different expression profiles (Kotoda et al., 2010), and although functional studies in heterologous systems addressed similar roles to both, they may act in different contexts during growth–dormancy cycles.

Two other potential apple orthologues of flowering time controlling genes, *AP2* and *WNK*, were induced and repressed in the RiRcB comparison, respectively. In *Arabidopsis*, *AP2* is a repressor of flowering independent of *FLC* (Yant et al., 2010) and is highly induced by cold (Lee et al., 2005). WNKs are protein kinases most likely involved in the photoperiod signalling pathway, and *wnk* mutants may present early or late flowering (Wang et al., 2008).

Several components of the circadian clock have been shown to participate in cold signalling and dormancy progression. In poplar, *PtLHY* was upregulated at the onset of dormancy induction by short days (Ruttink et al., 2007), and in peach a *PSEUDO RESPONSE REGULATOR 7*-like gene accumulated in dormant buds (Leida et al., 2010). In poplar, disruption of *PtLHY* expression impairs freezing tolerance and delays bud burst, while *PtTOCI* silencing renders the plants more tolerant to freezing (Ibáñez et al., 2010). In this work, a potential apple orthologue of *LHY* was induced during chilling-induced dormancy release. Two other clock-related genes, *RVE1* and *ARR9*, were DE as well. *Arabidopsis* *RVE1* is a member of the *LHY* family but is not a clock component. Rather, it functions as a clock output to control diurnal variations of auxin levels (Rawat et al., 2009). Auxins have a prominent role in dormancy regulation, mainly during paradormancy (Horvath et al., 2003), and also in the control of axillary bud outgrowth (Lazar and Goodman, 2006). In addition, *RVE1* was recently implicated in multiple dormancy responses in leafy spurge (Doğramacı et al., 2014). Auxins also inhibit the production and signalling of cytokinins (Shimizu-Sato et al., 2009). Accordingly, in the same comparison where *RVE1* was induced, a putative cytokinin-induced response regulator, *ARR9*, was downregulated. In *Arabidopsis*, *ARR9* is also clock regulated (Ishida et al., 2008), contributing to the notion that bud dormancy is influenced by the circadian clock.

Gibberellin signalling is one of the major control mechanisms of dormancy cycling (Horvath et al., 2003; Rinne et al., 2011). The microarrays detected differential expression for a gene highly similar to *PRE1*, a transcriptional activator related to gibberellin responses (Lee et al., 2006). *PRE1* expression is early gibberellin inducible and its overexpression causes early flowering. More recently, *PRE1* was shown to be part of a regulatory module integrating brassinosteroids, gibberellin, and light signalling pathways (Bai et al., 2012). This *PRE1*-like gene was DE in three comparisons and localized inside the LG9-QTL, which makes it a strong candidate for a role in the control of apple dormancy.

Despite presenting differential expression during dormancy in other studies of our group (Falavigna et al., 2014; D. D. Porto et al., unpublished data), *DM* genes did not appear as DE in this work. Instead, other MADS-box genes, *FLC*-like and *MAF2*-like, emerged as promising candidates for playing roles in apple dormancy. These genes are very similar to each other (Fig. 5), and one of them, *FLC*-like, localizes inside the LG9-QTL. From all the selected candidates, the most responsive to the treatments was the *FLC*-like gene, which showed a remarkable induction towards dormancy release. A very similar result was found for leafy spurge, which showed a *MAF*-like gene highly induced in ecodormant buds (Doğramacı et al., 2014). Interestingly, while *A. thaliana* *FLC* is highly expressed during winter, being downregulated after chilling exposure, apple *FLC*-like and leafy spurge *MAF*-like showed the opposite trend. It is important to note that ecodormant buds are, by definition, still dormant, and proper environmental conditions to grow are required. Both *FLC*-like from apple and *MAF*-like from leafy spurge may be playing roles in the repression of bud outgrowth during ecodormancy.

In this work, differential expression of apple genes across various stages of bud dormancy was assessed. DE genes of some comparisons were enriched in functional classifications, including photosynthesis, flavonoid biosynthesis, ribosome biogenesis, and the TCA. The overall data indicated that control of auxin production and transport may be an important regulatory node in dormancy release of apple buds. Several candidate genes, such as *PYL4*, *MAF2*, and *PRE1*, were DE in comparisons that had little in common but changes in dormancy status, reinforcing a potential role in dormancy. The data revealed two transcription factors, *PRE1* and *FLC*-like, as strong candidates for participants in dormancy regulation. These transcription factors may play important roles in cell division and growth under the control of internal and external stimuli.

Supplementary data

Supplementary data are available at *JXB* online.

Supplementary Table S1. A detailed description of bud samples, including date of harvesting, accumulated CH and dormancy status.

Supplementary Table S2. The full list of enriched functional categories across comparisons according to both Blast2GO and KOBAS programs.

Supplementary Table S3. The expression profile of both sense and antisense transcripts for all predicted apple genes represented in the array.

Supplementary Table S4. Annotations and primer sequences for differential expression validation of selected transcripts by quantitative PCR.
Acknowledgements
This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Financiadora de Estudos e Projetos (FINEP, Brazil), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS, Brazil), and Empresa Brasileira de Pesquisa Agropecuária Embrapa. We thank Décio Amorim for the availability of apple orchards, M. Sc. Diana Muratt for technical assistance, and Dr François Laurens for very helpful discussions. We also thank the ANAN Platform of the SFR QuaSiv for microarray facilities.

References

