RESEARCH PAPER

Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis

Rui Xu1,2,*, Yuhan Wang1,*, Hao Zheng1,*, Wei Lu1, Changai Wu1, Jinguang Huang1, Kang Yan1, Guodong Yang1 and Chengchao Zheng1,†

1 State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
2 Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China

* These authors contributed equally to this study.
† To whom correspondence should be addressed. E-mail: cczheng@sdau.edu.cn

Received 11 March 2015; Revised 22 May 2015; Accepted 28 May 2015

Editor: Ramanjulu Sunkar

Abstract

Salt stress is one of the major abiotic stresses in agriculture worldwide that causes crop failure by interfering with the profile of gene expression and cell metabolism. Transcription factors and RNA-directed DNA methylation (RdDM) play an important role in the regulation of gene activation under abiotic stress in plants. This work characterized AtMYB74, a member of the R2R3-MYB gene family, which is transcriptionally regulated mainly by RdDM as a response in salt stress in Arabidopsis. Bisulphite sequencing indicated that 24-nt siRNAs target a region approximately 500 bp upstream of the transcription initiation site of AtMYB74, which is heavily methylated. Levels of DNA methylation in this region were significantly reduced in wild type plants under salt stress, whereas no changes were found in RdDM mutants. Northern blot and quantitative real-time reverse transcription PCR analysis showed that the accumulation of 24-nt siRNAs was decreased in WT plants under salt stress. Further promoter deletion analysis revealed that the siRNA target region is essential for maintaining AtMYB74 expression patterns. In addition, transgenic plants overexpressing AtMYB74 displayed hypersensitivity to NaCl during seed germination. These results suggest that changes in the levels of the five 24-nt siRNAs regulate the AtMYB74 transcription factor via RdDM in response to salt stress.

Key words: Arabidopsis, AtMYB74, RNA-directed DNA methylation, salt stress, siRNA, transcription, transcription factor.

Introduction

High salinity is a crucial problem affecting plant growth and crop production in many parts of the world. Recently, many salt-stress responsive genes and protein have been identified by both forward and reverse genetics approaches. The transcription factors, such as CCAAT-binding transcription factors (CBFs), NAM, ATAF1/2 CUC2 transcription factors (NACs), and WRKYs, act as key regulators in response to salt stress in plants (Singh et al., 2002). The MYB proteins also function as transcription factors that play regulatory roles in the defence responses of plants (Jin and Martin, 1999; Zheng et al., 2012). R2R3-MYB is the largest subfamily of the MYB family, which includes 126 members and can be further
categorized into 22 subgroups (Stracke et al., 2001). To date, several R2R3-MYB proteins have been reported to be involved in the abiotic stress responses of Arabidopsis. Overexpression of AtMYB2 results in the enhanced expression of RD22 (a dehydration-responsive gene) and AtADH1 (alcohol dehydrogenase), and the transgenic plants display higher sensitivity to abscisic acid (Abe et al., 2003). The mutants of AtMYB108 are hypersensitive to salt, drought, and oxidative stresses, which are possibly mediated by reactive oxygen intermediates (Mengiste et al., 2003). Subgroup 11 consists of three members, AtMYB41, AtMYB102, and AtMYB74. AtMYB41 is involved in the control of primary metabolism and negative regulation of short-term transcriptional responses to osmotic stress (Lippold et al., 2009). AtMYB102 functions as a key factor in both osmotic stress and wounding signalling pathways in Arabidopsis (Deneckamp and Smeekens, 2003). AtMYB74, as one of the stress-upregulated genes, has been reported in a general profile of the expression pattern of the MYB family (Kranz et al., 1998). However, the molecular mechanism of the response of AtMYB74 to abiotic stress is largely unknown.

Genome expression is mainly influenced by chromatin structure, which is governed by processes often associated with epigenetic regulation, including histone post-translational modification and DNA methylation (Bender, 2004; Zhang, 2008). In histone modification, arginine and lysine methylation is also involved in transcriptional regulation (Liu et al., 2010). Recent evidence indicates that DNA methylation and siRNA participate in the regulation of gene expression in plants in response to environmental stresses (Chinnusamy and Zhu, 2009; Zhang et al., 2013). DNA methylation occurs in the contexts of CG, CHG, and CHH (where H is adenine, cytosine, or thymine) in plants. Methyltransferase 1 (MET1), chromomethylase 3 (CMT3), and domains rearranged methyltransferase (DRM) 2 have been characterized to function as DNA methyltransferases that transfer a methyl group to the cytosine bases of DNA to form 5-methylcytosine (Cao and Jacobsen, 2002; Lindroth et al., 2001; Ronemus et al., 1996). MET1 and CMT3 are mainly in charge of the maintenance of CG and CHG methylation. DRM2 is responsible for de novo DNA methylation and exhibits the most prominent role in CHH methylation (Cao et al., 2003).

RNA-directed DNA methylation (RdDM), which was first discovered in viroid-infected tobacco, is an important regulatory phenomenon involved in repressive epigenetic modifications that can trigger transcriptional gene silencing (TGS) (Matzke and Mosher, 2014; Wasseneeger et al., 1994). Many key components of the RdDM pathway, such as nuclear RNA polymerase (NRP) D1/NRPE1, RNA-dependent RNA polymerase 2 (RDR2), argonaute 4/6, and dicer-like 3 (DCL3), have been identified, and its molecular mechanism has been established (He et al., 2011; Herr et al., 2005; Li et al., 2006; Wierzbicki et al., 2008; Xie et al., 2004; Zheng et al., 2007). In plants, DNA demethylation depends on four bifunctional 5-methylcytosine glycosylases, repressor of silencing 1 (ROSI), DEMETER, DEMETER-like protein (DML) 2, and DML3 (Choi et al., 2002; Gong et al., 2002; Ortega-Galisteo et al., 2008). ROS1 has been found to counteract the robust RdDM pathway at hundreds of discrete regions across the plant genome together with DML2 and DML3 (Ortega-Galisteo et al., 2008; Penterman et al., 2007). Recent evidence reveals that Arabidopsis zinc finger DNA 3’ phosphoesterase is a DNA phosphatase that interacts with ROS1 and functions downstream of ROS1 in one branch of the active DNA demethylation pathway (Martinez-Macias et al., 2012).

The gain or loss of DNA methylation is correlated with a considerable decrease or increase in the corresponding amount of mRNA abundance and with the presence or absence of 24-nt siRNAs at each silenced epiallele (Schmitz et al., 2011). Withdrawal of the inducing siRNA signal could result in active or passive demethylation, which in turn leads to the loss of TGS (Gong et al., 2002; Morales-Ruiz et al., 2006). Approximately one-third of methylated DNA loci in Arabidopsis is associated with siRNA clusters (Zhang et al., 2006), implying a primary determinant role of siRNAs in DNA methylation. In plants, the most abundant class of siRNAs includes heterochromatic siRNAs that originate from different sources, such as inverted repeats, pseudogenes, and natural cis-antisense transcript pairs. Increasing evidence has shown that the activity of siRNAs could be triggered by various environmental stimuli to affect the targeting chromatin structure. In Craterostigma plantagineum, an endogenous siRNA is induced during dehydration, which may contribute to dehydration tolerance (Furini et al., 1997). Salt stress also results in a dramatic change in the accumulation of three siRNAs in wheat seedlings (Yao et al., 2010). In Arabidopsis, the 24-nt SRO5-P5CDH natural antisense transcript siRNA is involved in the cleavage of P5CDH mRNA, which in turn increases proline accumulation under salt stress (Borsani et al., 2005). Exposure of Arabidopsis plants to salt, UVC, cold, heat, and flood stresses increases global genome methylation in the progeny, in which Dicer-like protein is involved (Boyko et al., 2010).

With the development of bisulphite sequencing, recent studies have revealed previously uncharted subsets of the epigenome and provided insights into the complex interplay between DNA methylation and transcription (Lister et al., 2008; Zhang et al., 2006). Although the salt stress signal transduction pathway has been intensively studied, whether or not DNA methylation/demethylation is involved in this pathway remains unclear. Despite the fact that salinity stress alters the global DNA methylation level in plants (Ferreira et al., 2015; Wang et al., 2014), the mechanism of how siRNA mediates DNA methylation by RdDM to respond to salt stress also needs to be elucidated. The present study shows that the expression of AtMYB74 is regulated by RdDM, and the accumulation of 24-nt siRNAs is the major contributor to RdDM. The findings provide a new insight into salt stress regulation in plants and allow a better understanding of the role of siRNAs in controlling the RdDM pathway to regulate gene expression in response to abiotic stress.

Materials and methods

Plant growth conditions, seed germination assay, and stress treatment

Arabidopsis thaliana (Col-0) was used as the wild type (WT) and the genetic background for transgenic plants in this study. Dry seeds were collected and stored in a dehumidifier cabinet for at
Salt stress-related RdDM regulates AtMYB74

least 2 months before the seed germination test was performed. Seeds were stratified and sown on agar plates containing 1% Suc as described previously (Abe et al., 2003) at 4 °C for 2 days and then transferred to 23 °C. Arabidopsis seedlings were grown under continuous light (70 μmol·m⁻²·s⁻¹) at 23 ± 1 °C. Soil-grown Arabidopsis and Nicotiana benthamiana plants were grown under a 16 h light/8 h dark photoperiod at 23 ± 1°C. For the germination assay, at least 100 seeds of each genotype were sterilized and sown on Murashige and Skoog (MS) medium supplemented with or without phytohormones or chemicals. Germination was defined as the first sign of radicle tip emergence and scored daily, and the germination results were calculated based on at least three independent experiments. At 3 days post-germination, the plants of the 5-azacytidine (5-azaC) group were transferred to 50 mM 5-azaC. 14-day-old seedlings were subjected to NaCl treatments by transfer to MS liquid medium with 150 mM NaCl for durations as indicated, respectively. All these treatments were carried out under a growth condition of 16 h light/8 h dark at 23 °C unless otherwise mentioned.

Plasmid constructions

The binary vector pBI121 used for overexpression of AtMYB74 and the binary vector pFGC5941 used for RNAi were introduced into Agrobacterium tumefaciens strain GV3101 and the Arabidopsis thaliana (Col-0) plants by floral dipping. All constructs were verified by sequencing. The transgenic plants were screened on MS medium containing 50 μg ml⁻¹ kanamycin for pBI121 and 10 μg ml⁻¹ chloramphenicol for pFGC5941. T1 transgenic Arabidopsis plants were identified by quantitative real-time reverse transcription PCR (qRT-PCR). The corresponding T2 transgenic seedlings that segregated at a ratio of 3:1 (resistant:sensitive) were selected to propagate T3 individuals. RNAi-3 and RNAi-6 were used for further analysis.

Transient expression in N. benthamiana

Different constructs were transformed into A. tumefaciens strain GV3101. Overnight cultures were harvested and mixed at a 1:1 ratio with the different construct groups. After incubation for 3 h at room temperature in 10 mM MgCl₂, 10 mM 2-(N-morpholino)ethanesulfonic acid hydrate, pH 5.6, and 150 mM acetosyringone, the Agrobacterium suspension was co-infiltrated into 3-week-old N. benthamiana leaves. Infected leaves were harvested 48 h after infiltration. β-Glucuronidase (GUS) activity and small RNA extraction were performed as described below. Each assay was obtained from at least five independent lines and repeated three times.

Histochemical GUS staining and fluorometric GUS assay

The promoter sequence of AtMYB74 was acquired from the TAIR database (http://www.arabidopsis.org/). The promoter–GUS recombinant construct was transformed into A. tumefaciens strain GV3101 and then introduced into Arabidopsis by the floral dip method. Primers for amplifying the promoter sequence are shown in Supplementary Table S1 at JXB online. Histochemical localization of GUS activities in the transgenic seedlings or different tissues was performed after the transgenic plants had been incubated overnight at 37°C in 1 mg ml⁻¹ 5-bromo-4-chloro-3-indolyl-glucuronic acid, 5 mM potassium ferrocyanide, 0.03% Triton X-100 and 0.1 M sodium phosphate buffer, pH 7.0. After incubation, the tissues were cleared with 70% ethanol. The cleaned tissues were then observed and photographed were taken by using a stereoScope. For examination of the detailed GUS staining, the tissues were observed with a bright-field microscope and photographed. These GUS staining data were representative of at least five independent transgenic lines for each construct.

Tobacco transgenic plants (100 mg) were ground with a mortar with 1000 μl GUS extraction buffer (50 mM NaH₂PO₄, 10 mm EDTA, 0.1% Triton X-100, 0.1% sarcosyl) and centrifuged at 5000 rpm for 10 min at 4 °C. The crude extract of total protein was obtained from the supernatant. The protein concentration of the extract was determined using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific). Fluorometric GUS assays were performed as previously described (Jefferson et al., 1987). GUS activity was measured with 4-methylumbelliferyl-β-D-glucuronic acid as substrate with a Hitachi F-4500 Fluorescence Spectrofluorometer. The standard curves were prepared with 4-methylumbelliferone. GUS activity was expressed as pmol methylumbelliferone min⁻¹ mg⁻¹ protein. Average GUS activity was obtained from at least five independent transformants and each assay was repeated three times.

RNA extraction and qRT-PCR analysis

For RNA isolation, leaves and roots of seedlings were harvested separately, frozen in liquid nitrogen, and stored at –80°C until use. Total RNA was isolated from different Arabidopsis thaliana seedlings (100 mg) with TRIzol reagent (Invitrogen 15596-026). Contaminated DNA was removed with RNase-free DNase I. First-strand cDNA synthesis was performed with 1 μg RNA using oligo(dT) primer or gene-specific primers. A Prime script RT reagent kit with gDNA Eraser (Takara RR047A) was used for all reactions according to the manufacturer’s protocol. cDNAs were diluted 1/50 for qRT-PCR, and qRT-PCR was performed using the FastStart Essential DNA Green Master (Roche 46047211001) and a CFX96 Real-Time System (Bio-Rad). The reaction volume was 15 μl and included 2×FastStart Essential DNA Green Master, 6 μl diluted cDNA, and 1.5 μl of 10 μM primers. Cycle conditions were: 95°C for 10 min; 45 cycles of 95°C for 10 s, 60°C for 15 s, and 72°C for 20 s. Fluorescence was read following each annealing and extension phase. Melting curve analysis of real-time PCR products was performed to verify amplification of a single product. The qRT-PCR experiment was carried out at least three times under identical conditions using tubulin as an internal control. Primers for amplifying genes were designed according to the sequences from the TAIR database (http://www.arabidopsis.org/). Details of primers are listed in Supplementary Table S1. Gene expression was normalized by subtracting the Cᵥ value of the control gene from the Cᵥ value of the gene of interest. Average expression ratios were obtained from the equation 2⁻ⁿᵃᵗ⁻¹, according to a previously described protocol (Czechowski et al., 2004; Livak and Schmittgen, 2001).

Northern blot analysis and siRNA qRT-PCR

The RNA blot analysis was carried out as described previously (Yan et al., 2012; Zheng et al., 2007), 50 μg of each RNA was subjected to electrophoresis on a 15% TBE-urea, Criterion gel (Bio-Rad 345-0091) and electroblotted onto Hybond-N+ filter paper (Amersham RPN303B) using a TransBlot-SD apparatus (Bio-Rad 170–3940). The filter then was hybridized at 37°C in Hybexpression buffer with a 32P-labeled probe to detect the five 24-nt siRNAs targeting the AtMYB74 promoter. The 300 bp probe was made by labelling a DNA template that was amplified by primers (listed in Supplementary Table S1) with the Prime-a-Gene Labeling System (Promega U1100) and 32P. The filters were washed twice at 37°C in buffer containing 2×SSC (0.3 M NaCl and 0.03 M sodium citrate) and 0.5% SDS.

Small RNA for siRNA qRT-PCR was isolated with the miRCute miRNA Isolation kit (TIANGEN DP401), and first-strand cDNA synthesis was performed with the miRCute miRNA first-strand cDNA synthesis kit (TIANGEN KR201-02). siRNA qRT-PCR analysis was performed with 0.5 μg small RNA and a miRcute miRNA qPCR detection kit (TIANGEN FP401). The experiments were performed at least three times under identical conditions using U6 RNA as an internal control (Schmittgen et al., 2004; Yan et al., 2012). Details of primers are listed in Supplementary Table S1.

Bisulphite sequencing

Aliquots of 800 ng DNA were treated with sodium bisulphite using the EZ DNA Methylation-Gold kit (ZYMO RESEARCH
D5005) according to the manufacturer’s instructions. The chloroplast genome of every sample was used to calculate the conversion efficiency. Conversion efficiency was >98% for each bisulphite-treated sample. DNA was amplified by PCR with ExTaq (Takara RR01CM). Primer sequences are shown in Supplementary Table S1. PCR products were cloned into the pMD18-T Simple Vector (Takara D103B) and the clones were sequenced. For each region, more than 20 independent top-strand clones were sequenced from each sample. Sequenced results were calculated by using CyMATE (http://www.cymate.org/).

Accession numbers
Sequence data from this article can be found in the Arabidopsis Genome Initiative or GenBank/EMBL databases under the following accession numbers: MYB74 (At4g05100), dm1-2 (SALK_031705), dm2-2 (SALK_150863), cmt3-11 (SALK_148381), rdr2-1 (SAIL_1277H08), dcl3-1 (SALK_005512).

Results
AtMYB74 is induced by salt stress and overexpression lines are hypersensitive to salt stress during seed germination
Transcriptome analysis revealed that AtMYB74 expression level in Arabidopsis was increased dramatically by NaCl treatments. To determine the biological function of AtMYB74 and to test the responses to NaCl, overexpression (OE) and RNAi transgenic Arabidopsis lines were generated. In the T3 generation, two independent OE lines and two independent RNAi lines were selected for further experiment (Fig. 1A). Overexpression of AtMYB74 also induced the expression of a set of known stress marker genes, including AtRD29B, AtRAB18, and AtRD20, all of which contain the conserved MYB recognition sites (TAACTG) in their promoter regions (Fig. 1B). These observations suggest that AtMYB74 acts as a transcription factor of the salt stress-induced marker genes involved in the salt signalling pathway. Under normal growth conditions, the germination rates of both the OE and RNAi lines were almost the same as those of WT plants, which all achieved rates of 100% at day 2 (Fig. 1C). However, after NaCl treatment, the germination of OE transgenic seeds was inhibited more severely than that of WT seeds, reaching 80% at day 7, when the germination of WT seeds reached almost 100%. The germination rates of RNAi transgenic seeds were similar to those of WT seeds (Fig. 1D). In addition, for 21-day-old seedlings, the percentage seedling survival of OE transgenic lines was much lower than that of WT and RNAi plants under salt stress conditions (Fig. 1E). The reduced germination rates and seedling survival of the OE lines further indicate that AtMYB74 is involved in the response to salt stress in plants.

AtMYB74 encodes a putative R2R3-MYB transcription factor and is differentially expressed in various tissues
The full-length cDNA corresponding to the AtMYB74 mRNA is 975 bp in length and encodes a putative protein of 324 amino acids. The R2 and R3 MYB domains (amino acids 13–65 and 66–117, respectively) of AtMYB74 are highly conserved with all other MYB proteins in Arabidopsis and in other plant species (Fig. 2A).

To describe the temporal and spatial expression patterns of AtMYB74 in greater detail, qRT-PCR and promoter–GUS analysis were performed. The highest number of AtMYB74 transcripts was found in flowers, followed by rosette leaves and cauline leaves, with the roots, stems, and siliques exhibiting the fewest transcripts (Fig. 2B). The tissue pattern of GUS staining was consistent with the qRT-PCR analysis (Fig. 2C). These results suggest that AtMYB74 is constitutively expressed in various tissues at low abundance.

To detect the subcellular localization of the AtMYB74 protein in plant cells, the AtMYB74 coding region was fused in the frame to the coding region for the C-terminal side of GFP under the control of the cauliflower mosaic virus 35S promoter. Onion epidermal cells transformed with an expression plasmid for the AtMYB74–GFP fusion protein exhibited GFP fluorescence in the nucleus (Fig. 2D). However, GFP fluorescence was observed in the entire region of the cell when intact GFP was expressed. These results illustrate that AtMYB74 is localized in the nucleus.

Dynamic DNA methylation results in AtMYB74 activation in response to salt stress
Nucleotide sequence analysis revealed that substantial DNA methylation and siRNA target sites exist in the AtMYB74 promoter region (http://neomorph.salk.edu/epigenome/epigenome.html; http://bioinfo.uni-plovdiv.bg/starpro/). To investigate whether the RdDM pathway regulates AtMYB74 responses to salt stress, qRT-PCR was used to compare the expression of AtMYB74 in WT Col-0, 5-azaC (an inhibitor of DNA methylation)-treated WT, ddc (drm1/drm2/cmt3 triple mutant), dcl3 (dicer-like 3 mutant), rdr2 (RNA-dependent RNA polymerase 2 mutant), ros1-4 (ros1 mutant), and rdr (ros1/drm2/dml3 triple mutant) in response to 150 mM NaCl treatment. As shown in Fig. 3A, the level of AtMYB74 transcripts increased significantly (~8-fold) in response to NaCl treatment in WT plants, indicating that AtMYB74 responds to salt stress signals at the transcriptional level. Additionally, the GUS staining assay confirmed that NaCl could enhance AtMYB74 promoter activity in all tested tissues (Fig. 2C). WT plants treated with 5-azaC, which were used as a control, exhibited a small increase in AtMYB74 expression under salt stress, indicating the effect of DNA methylation on AtMYB74 (Fig. 3A). Besides DNA methylation, this result may suggest the presence of other minor factors that may control the expression of AtMYB74. For RdDM mutants, the accumulation of AtMYB74 mRNA in methylation mutants (ddc, rdr2, and dcl3) showed much less change than that in WT plants under salt stress, whereas the deficiency of active DNA demethylation in ros1-4 and rdr mutants resulted in an obvious decrease in AtMYB74 expression after salt treatment (Fig. 3A). These results reveal that dynamic DNA methylation results in AtMYB74 activation in response to salt stress in Arabidopsis.

To further understand the mechanism by which RdDM regulates AtMYB74 expression, the 200 bp promoter region
Salt stress-related RdDM regulates AtMYB74

approximately 500 bp upstream of the transcription initiation site of AtMYB74 was analysed by bisulphite sequencing. WT plants treated with NaCl exhibited a visible reduction in total 5-methylcytosine content compared with controls (Fig. 3B, Supplementary Fig. S1, Supplementary Fig. S2). Interestingly, the percentage of CHH methylation was nearly halved in the treated WT plants (Fig. 3C), whereas only ~10% reduction in CG contexts was detected (Fig. 3D). No CHG contexts were found in the 200 bp region. Moreover, fewer methylated sites in CHH contexts were observed in the RdDM mutants and pharmaceutically treated plants, whether under salt stress or not. Additionally, the three DNA demethylases might not participate in the demethylation of CHH sites in the AtMYB74 promoter region. The reduction of AtMYB74 expression in ros1-4 and rdd mutants under salt stress might be regulated by its upstream regulators, which are affected by the demethylases (Fig. 3A, C). These findings suggest that the dynamic balance of DNA methylation and...
demethylation is crucial for the transcriptional regulation of AtMYB74.

Time-course analysis revealed that the level of AtMYB74 mRNA under salt stress showed a peak from 0.5 h, with the highest levels at 3 h, accompanied by the lowest percentage of CHH methylation. After 6 h, AtMYB74 expression under salt stress maintained a high level (~7-fold) in treated plants compared with that in the controls, and a lower percentage of CHH methylation was maintained in WT plants (Fig. 3E). These results demonstrate that the increase of AtMYB74 transcripts was correlated with the lower level of CHH methylation during the NaCl treatment, suggesting that the

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession</th>
<th>Length</th>
<th>Demethylated</th>
<th>Methylated</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtMYB74</td>
<td>R2</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>AtMYB102</td>
<td>R2</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>AtMYB41</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>AtMYB49</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>AtMYB95</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>AnMYB3</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>HvMYB33</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>PhMYB1</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>PpMYB2</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
<tr>
<td>LeMYB16</td>
<td>R3</td>
<td>65</td>
<td>117</td>
<td>65</td>
</tr>
</tbody>
</table>

Fig. 2. Expression of AtMYB74 and subcellular localization of AtMYB74 protein. (A) Protein sequence comparison between AtMYB74 and other plant MYB proteins. (B) qRT-PCR analysis of AtMYB74 expression in various tissues. Results were normalized to the expression of tubulin. Error bars represent SD (n = 3). R: root, S: stem, RL: rosette leaf, CL: cauline leaf, F: flower, Si: silique. (C) Tissue patterns of a 2 kb putative promoter of AtMYB74-driven GUS expression in seedlings at different ages or in different tissues: (a) 7-day-old seedling, (b) euphylla, (c) lateral root primordium, (d) 2-week-old seedling, (e) flower, (f) silique, (g) seed, (h) 7-day-old seedling treated with 150 mM NaCl for 3 h. Scale bars = 0.5 mm. (D) Nuclear localization of AtMYB74 protein in onion epidermal cells. Images in the right column show the control plasmid expressing only GFP and those in the left column show the AtMYB74–GFP fusion protein expressed in onion epidermal cells. The cells were examined with UV fluorescence (top) and bright-field (middle) microscopy, and as a merged image (bottom) showing either the diffuse (control plasmid) or nuclear localization of the proteins. Scale bars = 20 μm. (This figure is available in colour at JXB online.)
stress-increased expression of \textit{AtMYB74} resulted from a reduction in dynamic DNA methylation, mainly in the CHH context.

\textit{Decreased DNA methylation is controlled by the level of 24-nt siRNAs targeting the \textit{AtMYB74} promoter}

To investigate why CHH hypomethylation occurs in WT plants under salt stress, a sequence analysis of \textit{AtMYB74} was performed using starPRO DB v1.0 (\url{http://bioinfo.uni-plovdiv.bg/starpro/}). Five 24-nt siRNAs (ASRP215119, ASRP41948, ASRP27256, ASRP13208, and ASRP2423) were identified to target a narrow region (–603 to –477 bp) of the 2.9 kb promoter of \textit{AtMYB74}. These five 24-nt siRNAs were located in a cluster in the promoter region (Fig. 4A). Moreover, bisulphite sequencing analysis of individual clones showed that DNA methylation considerably changed in or near the siRNA target region (Fig. 4B). However, no obvious changes were detected in 5-azaC-treated WT or RdDM mutants (Supplementary Fig. S1), indicating that CHH
Fig. 4. Effect of salt stress on the accumulation of 24-nt siRNAs. (A) Diagram of the AtMYB74 gene structure; +1 indicates the transcription initiation site. The short lines indicate the five 24-nt siRNAs. Black squares represent CHH configurations. Scale bar = 200 bp. (B) Analysis of the cytosine methylation of a 200 bp segment spanning the AtMYB74 promoter in WT plants. Twenty clones per DNA sample were analysed. Filled circles represent methylcytosines in CHH contexts, empty circles represent unmethylated contexts. (C) qRT-PCR analysis of the accumulation of the five 24-nt siRNAs in WT. Results was normalized to the expression of U6. Error bars represent SD (n = 3). * and ** indicate statistically significant differences at P < 0.05 and P < 0.01, respectively (Student’s t-test). (D) Northern blot analysis of the NaCl-induced regulation of five 24-nt siRNAs targeting the AtMYB74 promoter. miR171 and U6 RNA were probed as a control. Numbers under each lane indicate relative expression.
hypomethylation is dependent on RdDM in or near the siRNA target region.

To reveal the role of the siRNAs in RdDM, siRNA qRT-PCR and northern blot analysis were performed. The accumulation of 24-nt siRNAs was substantially reduced under salt stress in WT plants compared with that in dcl3 plants (Fig. 4C, D), suggesting that decreases in DNA methylation caused by the reductions in 24-nt siRNA accumulation lead to the activation of \(\text{AtMYB74} \) under salt stress.

Exogenous 24-nt siRNAs direct RdDM in the \(\text{AtMYB74} \) promoter in vivo

To demonstrate whether the ectopic expression of 24-nt siRNAs affects \(\text{AtMYB74} \) promoter activity, \(A. \text{tumefaciens} \)-mediated transient cotransformation in tobacco (\(N. \text{benthamiana} \)) leaves was performed. Considering that the siRNAs diced from the hairpin RNA could induce transcriptional silencing of the target genes, two types of expression cassettes were constructed to generate siRNAs and express the reporter gene (Fig. 5A). For siRNA expression cassettes in pFGC5941, the 300 bp \(\text{AtMYB74} \) promoter containing the siRNA target region that harbors an inverted DNA repeat was used to generate a double-strand RNA as a silencer (R1). A 300 bp inverted cDNA sequence of \(\text{AtMYB74} \) was employed as a control (R2). In the reporter gene cassettes of pBI121, \(\text{gusA} \) was driven by the 35S promoter (P1), \(\text{AtMYB74} \) promoter (P2), and mutated \(\text{AtMYB74} \) promoter with the deletion of a 200 bp region where these siRNAs are targeted (P3). As shown in Fig. 5B, GUS activities between groups P1 and P1-R1, P2 and P2-R2, and P2 and P3-R1 did not show obvious changes after transient cotransformation. The GUS activity of group P2-R1 was obviously lower than that of group P2, indicating that promoter activity is affected by the targeted siRNA. In addition, bisulphite sequencing analysis revealed that DNA methylation in the 200 bp promoter region increased by 43% due to the siRNAs yielded by the hairpin RNA (Fig. 5C, D). To confirm the accumulation of 24-nt siRNAs in the infection zones of transformed leaves, siRNA northern blot analysis was carried out. The constructs R1, P1-R1, P2-R1, and P3-R1 could efficiently generate siRNAs in the transformed tobacco (Fig. 5E). Overall, these findings demonstrate that the ectopic expression of artificial siRNAs targeting the \(\text{AtMYB74} \) promoter also can regulate GUS expression through RdDM.

Discussion

RdDM, which controls the expression of a number of genes in many developmental processes and abiotic stress responses, has been considered an important epigenetic pathway (Borsani et al., 2005; Chan et al., 2006; Henderson and Jacobsen, 2008; Saze and Kakutani, 2007). However, only a few transcription factors regulated by RdDM, such as \(b1 \) and \(C-LEC1 \), have been identified (Alleman et al., 2006; Shibukawa et al., 2009). Although many members of the R2R3-MYB family, such as \(\text{AtMYB2} \), \(\text{AtMYB108} \), \(\text{AtMYB41} \), and \(\text{AtMYB102} \), are reported to be involved in abiotic stress responses in plants (Abe et al., 2003; Denekamp and Smeekens, 2003; Lippold et al., 2009; Mengiste et al., 2003), little is known about whether and how RdDM participates in this response pathway. The present study characterized \(\text{AtMYB74} \), a putative R2R3-MYB member. DNA methylation of the promoter of \(\text{AtMYB74} \) negatively correlates with gene expression under salt stress. Moreover, when the RdDM region is deleted from the \(\text{AtMYB74} \) promoter, transgenic plants display higher GUS activity, suggesting that RdDM as a repressive epigenetic modification affects transcription of \(\text{AtMYB74} \) (Fig. 5). Using transgenic \(\text{Arabidopsis} \) overexpressing siRNAs (R1) further confirmed this conclusion (Fig. S3). Overall, this study demonstrates that RdDM directly controls the expression of \(\text{AtMYB74} \), providing a novel regulatory pathway in the R2R3-MYB family. Using a gain-of-function approach, and according to the phenotypes of \(\text{AtMYB74} \) overexpressing and RNAi transgenic plants, the findings suggest that there may be functional redundancy of the R2R3-MYB family, as reported by Millar and Gubler (2005). These results may point to the existence of a network of inter-regulated MYB genes, including \(\text{AtMYB2} \) and other members of the subgroup of \(\text{AtMYB74} \), that respond to abiotic stresses in plants.

Previous studies have indicated that siRNAs and long non-coding RNAs could be involved in de novo DNA methylation (Wierzbicki et al., 2008). Comparison of genome-wide methylation patterns and small RNAs in \(\text{Arabidopsis} \) reveals that ~37% of the methylated loci are related to siRNA clusters (Schmitz et al., 2011; Zhang et al., 2006), suggesting a close relationship between DNA methylation and siRNAs. The present study identified a cluster of siRNAs that directly mediates DNA methylation in or near the target region of \(\text{AtMYB74} \) in \(\text{Arabidopsis} \). Transformation in tobacco using artificial siRNAs yielded by hairpin RNA further demonstrated the involvement of RdDM in the native siRNA-targeted region. Interestingly, artificial siRNAs can also direct DNA methylation in the 200 bp region, separately from the native siRNA-targeted region (Fig. 5), implying that any artificial siRNA may regulate promoter activity via DNA methylation in its target region. The accumulation of 24-nt siRNAs and changes in CHH DNA methylation have similar tendencies in \(\text{Arabidopsis} \) under salt stress, suggesting that the accumulation of 24-nt siRNAs is the trigger of RdDM, in agreement with a previous study (Melnyk et al., 2011). In rice, it was reported that siRNAs generated by \(OsRDR6 \) regulate the post-transcriptional gene silencing of the isocitrate lyase (ICL) gene (Yang et al., 2008). Taken together, the present observations reveal that the RdDM component may affect the accumulation of 24-nt siRNAs and then trigger DNA methylation of \(\text{AtMYB74} \) under salt stress, providing strong evidence of epigenetic modification in the plant response to abiotic stress. Further work is necessary to determine the mechanisms of RdDM components that affect the accumulation of 24-nt siRNAs and the biochemical function of \(\text{AtMYB74} \) in response to salt stress.

The salt stress signal transduction pathway is far more complex than has been suggested previously. As shown in Fig 6, previous studies have shown that some R2R3-MYB
transcription factors, such as AtMYB2, AtMYB20, and AtMYB73, participate in the regulation of gene expression under salt stress (Abe et al., 2003; Cui et al., 2013; Kim et al., 2013). The present study demonstrated the involvement of AtMYB74, a R2R3-MYB family member, which is regulated by RdDM in controlling the positive regulation
of transcriptional responses to salt stress. Salt stress induces the RdDM pathway via repressing the accumulation of siRNAs to activate AtMYB74 expression, which then transduces the related signalling into downstream processes that endow resistance to such stress.

Supplementary data

Supplementary data are available at JXB online.

Supplementary Fig. S1. Bisulphite sequencing analysis of promoter methylation status of AtMYB74 promoter in 14-day-old 5-azaC treated WT, ddc, dcl3, rdr2, ros1-4, and rdr mutants after 150 mM NaCl treatment.

Supplementary Fig. S2. A schematic of the AtMYB74 promoter sequence with bisulphite sequencing region.

Supplementary Fig. S3. RdDM regulation of AtMYB74 expression in transgenic Arabidopsis.

Supplementary Table S1. Primers and probes used in this study.

Acknowledgements

The authors would like to thank Dr Joseph R. Ecker (The Salk Institute for Biological Studies, USA) for the kind gift of the mutant ddm1-2, ddm2-2, cmt3-11 triple mutant, termed ddc; Dr Zhizhong Gong (China Agricultural University, China) for ros1-4, rdr1 mutants; and Dr James C. Carrington (Oregon State University, USA) for dcl3-1, and rdr2-1 mutants. This work was supported by the National Basic Research Program (Grant No. 2012CB114200), the National Natural Science Foundation (Grant No. 31370305), and the Genetically Modified Organisms Breeding Major Projects (Grant No. 2014ZX08009-003-002) in China.

References

the members of the R2R3-MYB gene family from Arabidopsis thaliana. The Plant Journal 16, 263–276.

