RESEARCH PAPER

Comparative cell-specific transcriptomics reveals differentiation of C₄ photosynthesis pathways in switchgrass and other C₄ lineages

Xiaolan Rao¹,², Nan Lu¹, Guifen Li³, Jin Nakashima³, Yuhong Tang²,³ and Richard A. Dixon¹,²,*

¹ Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
² BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA
³ Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA

* Correspondence: richard.dixon@unt.edu

Received 23 September 2015; Accepted 10 December 2015

Editor: Susanne von Caemmerer, ANU Canberra

Abstract

Almost all C₄ plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C₄ photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C₄ subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C₄ plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C₄ photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C₄ lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C₄ photosynthesis in the two cell types within C₄ species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C₄ plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C₄ photosynthesis, while distinct C₄ subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C₄ species.

Key words: C₄ photosynthesis, carbon fixation, cell-specific transcriptomics, comparative transcriptomics, switchgrass.

Introduction

C₄ species are among the world’s most important food, feed, and bioenergy crops, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), and switchgrass (Panicum virgatum) (Brutnell et al., 2010; John et al., 2014). C₄ plants have evolved the C₄ cycle pathway, which creates a CO₂ pump that concentrates CO₂ around the carboxylating enzyme Rubisco (Christin et al., 2009). In most C₄ species, this is achieved through integrating the two CO₂
assimilation pathways spatially into two discrete cell types, namely mesophyll (M) and bundle sheath (BS) cells (Sheen, 1999; John et al., 2014). C₄ plants can achieve high photosynthetic efficiency and consequently decrease photorespiration. These characteristics enable C₄ plants to thrive in tropical and subtropical environments that induce high rates of photorespiration in C₃ plants (Bruntell et al., 2010).

In C₄ plants, CO₂ fixation is a two-step process. Atmospheric CO₂ is initially fixed by phosphoenolpyruvate carboxylase (PEPC) in the cytosol of M cells. The resulting four-carbon dicarboxylic acid oxaloacetate (OAA) is converted to malate or aspartate. These C₄ acids are then transferred into the inner compartment of the BS, where they are decarboxylated to release CO₂ to the Calvin cycle (Hatch, 1987; Furbank and Taylor, 1995; Furbank et al., 2004). The mechanism of decarboxylation in BS cells has been traditionally divided into three different C₄ types; NAD-malic enzyme (NAD-ME), NADP-malic enzyme (NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK) (Hatch, 1987), with some degree of flexibility or co-existence (Wang et al., 2014) (Fig. 1). However, only NAD-ME and NADP-ME subtypes are considered to be exclusive subtypes from specific lineages; both contain the PEPCK cycle as the supplementary photosynthetic pathway (Wang et al., 2014; Liu and Osborne, 2015).

C₄ photosynthesis is thought to have first arisen ~30 million years ago and is found in >66 independent lineages of monocotyledons and dicotyledons (Aubry et al., 2014; Burgess and Hibberd, 2015) (Fig. 1). Most of the C₄ species occur in the grasses (~4600) and sedges (~1600) of monocots, while only 1600 C₄ species are found in the dicots (Gowik and Westhoff, 2011). The mechanism of establishment of C₄ photosynthesis is still unclear. Genes involved in C₄ photosynthesis recruited existing C₃ chloroplastic ancestors and did not evolve de novo (Gowik and Westhoff, 2011; Maier et al., 2011). C₄ photosynthesis may have emerged through gene duplication, promoter insertion, alteration of leaf structure, and establishment of the photorespiratory CO₂ pump (Gowik and Westhoff, 2011; Maier et al., 2011).

A distinct set of transcripts are preferentially expressed in the fully specialized M or BS cells to enable their co-operation in carbon fixation (Majeran et al., 2005). Comparison of transcriptomes for M and BS cell-specific gene expression in different lineages of C₄ plants will provide insight into the commonality and differentiation of regulatory mechanisms for the compartmentalization of C₄ photosynthesis in its independent evolutionary origins (Burgess and Hibberd, 2015). Only limited lineages have so far been assessed for M and BS cell-specific profiles; two for the monocot NADP-ME subtype and one for the dicot NAD-ME subtype. Chang et al. (2012) and Li et al. (2010) generated M and BS transcriptome profiles from mature leaves of maize, a monocot NADP-ME subtype. Pairwise comparisons of M and BS transcriptomes have been conducted for maize versus Setaria viridis (monocot NADP-ME subtype), and maize versus Cleome gynandra (dicot NAD-ME subtype) (Li et al., 2010; Chang et al., 2012; Aubry et al., 2014; John et al., 2014). However, the transcript expression profiles of M and BS cells in a monocot NAD-ME subtype C₄ plant have yet to be determined, resulting in the absence of a global comparison of cell-specific transcriptomes in the two distinct subtypes of monocot and dicot C₄ plants.

Switchgrass (Panicum virgatum L.) is being targeted as a source of biomass for biofuel production (McLaughlin et al., 2016).
and Kszos, 2005; Bouton, 2007), and is here selected as the representative of the monocotyledonous NAD-ME-type C₄ plant (Christin et al., 2009). We first defined the transcriptomic profiles of M and BS cells from switchgrass by manually isolating M and BS cells from mature leaves. We further applied comparative transcriptome analysis to dissect the evolutionary convergence and divergence of monocot and dicot C₄ plants: switchgrass, maize, Setaria viridis, and Cleome gynandra. Our study provides an overview of the functional differentiation and co-ordination of M and BS cells in the C₄ photosynthesis pathway, and provides insights into the possible evolutionary pathway of differentiation in C₄ photosynthesis.

Materials and methods

Plant material, growth conditions, and enzyme assays

Switchgrass plants (cultivar Alamo-AP13) were grown in the greenhouse at 28 °C and 16/8 h day/night conditions, using supplemental lighting from halide lamps (250 mol photons m⁻² s⁻¹). For age gradient experiments, leaves were harvested from the first fully expanded leaves to the fourth leaves of three-node stage plants. For leaf developmental gradient experiments, leaves were harvested as the top, middle, and base sections from the second or third leaf of three-node stage plants. Samples were immediately frozen in liquid nitrogen and extracted as described (Sommer et al., 2012). Enzyme activity measurements of NAD-ME, NADP-ME, PEPC, aspartate aminotransferase (AspAT), and alanine aminotransferase (AlaAT) were conducted using coupled spectrophotometric assays as described previously (Sommer et al., 2012). All assays were performed at 28 °C. The concentration of total soluble protein was determined by the Bradford method (Bradford, 1976) using the Bio-Rad protein assay reagent at 595 nm.

Fixation, cryosectioning, and cell-specific micro-dissection

The middle sections from the second or third leaf of three-node stage plants were fixed and subsequently used for micro-dissection. A Leica CM 1850 cryostat (Leica Microsystems Inc., Bannockburn, IL, USA) was used for obtaining cross-sections of switchgrass leaves, which were processed by fixation and cryoprotection as described previously (Srivastava et al., 2010). We found that the optimum longitudinal section thickness was 10 μm. For obtaining M and BS cells, leaf sections were manually dissected with a scalpel blade under a fluorescence stereo microscope. Around 1000 cells were collected into each tube and stored at −80 °C, and every 5–10 tubes were used together for RNA isolation.

RNA extraction and analysis

Total RNA was extracted from manually harvested M and BS cells using an RNeasy Micro Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. RNA quality and quantity were estimated using an RNA 6000 Pico chip on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). The concentration of total soluble protein was determined by the Bradford method (Bradford, 1976) using the Bio-Rad protein assay reagent at 595 nm.

Real-time quantitative reverse transcription–PCR

Total RNA was isolated from the second and third leaf, leaf sheath, and stem of three-node stage switchgrass plants. cDNA synthesis, primer design, and real-time quantitative reverse transcription–PCRs (qRT–PCRs) were performed as previously described (Rao et al., 2014). qRT–PCR was performed in triplicate for each sample, and three biological replicates were evaluated for each gene tested. Data were collected and analyzed using PikoReal Software (Thermo Scientific). PCR efficiency was estimated using PikoReal software, and transcript levels were determined by relative quantification using the actin gene as a reference (Gimeno et al., 2014).

Determination of transcript abundance

All paired-end Illumina reads were trimmed using in-house PERL scripts with two filters, quality scores of ≤20 from the end of each read, and poly(A) (forward sequencing) or poly(T) (reverse sequencing) tails >15 bp in length. Reads <50 bp in length after trimming were discarded along with their mates. The trimmed reads were mapped to the Switchgrass genome Panicum virgatum v1.1 (http://phytozome.jgi.doe.gov/) using Bowtie 2 version 2.0.0 (Langmead and Salzberg, 2012) and TopHat version 2.0.10 (Kim et al., 2013) in conjunction with SAMtools version 0.1 (Li et al., 2009) with default parameters. Based on Panicum virgatum v1.1 annotation, normalized gene expression levels were calculated in FPKM (fragments per kilobase of exon model per million mapped fragments) (Trapnell et al., 2010) using Cufflinks version 2.1.1 (default settings, set to 100 mean inner distance for paired-end reads; Trapnell et al., 2013) and in TPM (transcripts per million) (Wagner et al., 2012) using RSEM version 1.2.23 (default settings; Li and Dewey, 2011). For differential expression testing, alignments of reads from Tophat v2.0.10 were counted to genes using HT-SEQ with union mode (Anders et al., 2015), then analyzed using DESeq2 (Love et al., 2014). A Benjamini–Hochberg corrected P-value of <0.05 was set to identify differentially expressed genes. Raw data are provided in Supplementary Table S1 at JXB online.

Data annotation

Panicum virgatum v1.1 gene annotation was downloaded from the Phytozome v10.3 website (http://phytozome.jgi.doe.gov/). Classification for cell type-enriched genes was based on MapMan mappings of their Arabidopsis homologs (Thimm et al., 2004). Significant functional enrichment was determined using Fisher’s exact test with Benjamini–Hochberg multiple testing correction [false discovery rate (FDR) ≤0.1]. Identification of transcription factors (TFs) in Panicum virgatum v1.1 genes was based on their Arabidopsis and rice homologs and the annotation from the Plant Transcription Factor Database v3.0 (Jin et al., 2014). Identification of homologous genes among switchgrass, maize, and S. viridis was performed using alignments of Panicum virgatum v1.1, Setaria italica v2.1, and Zea mays v5b.60 protein sequences obtained from Phytozome v10.3 using blast+ tools. The syntenic gene set of maize, sorghum, and race was obtained from Schnable et al. (2012) and that of switchgrass, S. viridis, and maize was generated for pairwise comparisons using SynMap (Lyons et al., 2008) with default parameters (score ≥90).

Construction of cDNA libraries and sequencing procedure

As previously described (Rao et al., 2014), 1 μg of total RNA for each sample was used to construct an RNA sequencing (RNA-seq) library using TruSeq RNA Sample Prep Kits v2 (Illumina Inc., San Diego, CA, USA), according to the manufacturer’s instructions, at the Genomics Core Facility at the Noble Foundation (Ardmore, OK, USA). Each library was indexed. Six libraries with different indexes were pooled together in one lane for 100 bp paired-end sequencing. The TruSeq v2 run was conducted at the Genomics Core Facility of the Oklahoma Medical Research Foundation (Oklahoma City, OK, USA).

Fixation, cryosectioning, and cell-specific micro-dissection

The middle sections from the second or third leaf of three-node stage plants were fixed and subsequently used for micro-dissection. A Leica CM 1850 cryostat (Leica Microsystems Inc., Bannockburn, IL, USA) was used for obtaining cross-sections of switchgrass leaves, which were processed by fixation and cryoprotection as described previously (Srivastava et al., 2010). We found that the optimum longitudinal section thickness was 10 μm. For obtaining M and BS cells, leaf sections were manually dissected with a scalpel blade under a fluorescence stereo microscope. Around 1000 cells were collected into each tube and stored at −80 °C, and every 5–10 tubes were used together for RNA isolation.

RNA extraction and analysis

Total RNA was extracted from manually harvested M and BS cells using an RNeasy Micro Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. RNA quality and quantity were estimated using an RNA 6000 Pico chip on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). RNA was then amplified using an Arcturus® RiboAmp® HS PLUS 2-round kit (Life Technologies, CA, USA) following the manufacturer’s protocol (Li et al., 2010). At least 1 ng of starting total RNA was used for amplification of each replicate. The quality of amplified RNA was checked with the Bioanalyzer 2100, using the RNA 6000 nanochip.

Real-time quantitative reverse transcription–PCR

Total RNA was isolated from the second and third leaf, leaf sheath, and stem of three-node stage switchgrass plants. cDNA synthesis, primer design, and real-time quantitative reverse transcription–PCRs (qRT–PCRs) were performed as previously described (Rao et al., 2014). qRT–PCR was performed in triplicate for each sample, and three biological replicates were evaluated for each gene tested. Data were collected and analyzed using PikoReal Software (Thermo Scientific). PCR efficiency was estimated using PikoReal software, and transcript levels were determined by relative quantification using the actin gene as a reference (Gimeno et al., 2014).
In situ hybridization

For *in situ* hybridization, samples of middle sections from the second or third leaf of three-node stage switchgrass plants were harvested. Tissue fixation, dehydration, and paraffin embedding were performed according to Long’s protocol (http://www.its.caltech.edu/~plantlab/protocols/insitu.pdf). Pre-hybridization, hybridization, and washing were conducted on the robotic GenePaint™ system (Tecan Inc., Durham, NC, USA) following the manufacturer’s instructions (Zhou et al., 2011).

Construction of phylogenetic trees

For phylogenetic reconstruction, multiple protein sequences were aligned using the ClustalW algorithm (Larkin et al., 2007). Neighbor–Joining (NJ) phylogenetic trees were generated by the MEGA 6.0 program (Tamura et al., 2013), using 1000 replicates of bootstrap analysis. Protein sequences were obtained from a previous report (Maier et al., 2011).

Accession numbers

The data sets supporting the results of this article are available in the NCBI Sequence Read Archive (SRA) repository, NCBI SRA accession no. SRX1160366.

Results and Discussion

Activity of C₄ enzymes in the switchgrass leaf

To determine the differences in CO₂ fixation enzymes along a developmental gradient in switchgrass leaves as a basis for selection of tissues for transcriptomic analysis, we measured the activities of enzymes involved in C₄ photosynthetic pathways in crude leaf extracts. For the age gradient experiment, we selected from the first to the fourth leaf blades as young, mature, and old samples from plants with three nodes, in the elongation stage of the plant (Moore et al., 1991). The three decarboxylating enzymes NAD-ME, NADP-ME, and PEPCK were assayed, as well as AspAT and AlaAT (Supplementary Table S2). This analysis confirmed that switchgrass performs C₄ photosynthesis of the NAD-ME type with a minimal PEPCK decarboxylating pathway (Warner et al., 1987). Compared with young and old samples, the mature leaves (the second and third leaves) showed significantly higher activity of NAD-ME, AspAT, and AlaAT. A base to top gradient experiment was further conducted on the second and the third leaves to assess area-related differences in C₄ enzyme activities of mature leaves. The classical NAD-ME subtype enzymes NAD-ME and AlaAT showed lower activities in the base section of leaves compared with the top or middle sections. This is consistent with the results of transcriptomic and C₄ enzyme activity assays in maize leaves, since cells in the leaf base are younger with minimal photosynthetic activity (Li et al., 2010; Pick et al., 2011). Considering the C₄ enzyme activity and the size of the leaf cells, the middle sections in the mature zones of the second and third leaves were selected for subsequent experiments.

Isolation of bundle sheath and mesophyll cells

Cross-sections from selected parts of the switchgrass leaf showed the typical Kranz anatomy structure of NAD-ME subtype C₄ plants; a layer of small M cells surrounding the layer of large BS cells with the inner mestome sheath and vascular tissue (Supplementary Fig. S1) (Edwards and Walker, 1983; Edwards et al., 2001). As observed in a previous study (Warner et al., 1987), the >10 µm width of BS and M cells makes hand dissection feasible (Supplementary Fig. S1). Hand dissection has been successfully applied for tissue-specific and single-cell analysis in plant research, and can be simply carried out by use of a razor blade (Outlaw and Zhang, 2001). In this study, leaf fragments were cut into longitudinal cryosections with optimal thickness of 10 µm, and BS and M cells were obtained by manual micro-dissection under a fluorescence stereo microscope (Supplementary Fig. S1). RNA isolated from BS and M cells (Supplementary Fig. S2) was of suitable quality for amplification, library construction, and sequencing.

Deep sequencing, read mapping, and identification of expressed genes

Duplicated BS and M cell samples from switchgrass leaves were sequenced on the HiSeq™ Sequencing System to generate paired-end reads. Clean sequence reads for BS and M samples were mapped to the switchgrass reference genome *Panicum virgatum* v1.1, resulting in 79% of the cleaned reads mapped to the reference genome (*Table 1*). Considering the high complexity of the tetraploid switchgrass genome...
Normalized transcript levels were calculated using RSEM version 1.2.23 (Li and Dewey, 2011) and Cufflinks version 2.1.1 (Trapnell et al., 2013) in terms of TPM (Wagner et al., 2012) and FPKM (Trapnell et al., 2010). To define ‘differentially expressed genes’, we used the criterion of adjusted $P \leq 0.05$ between the two RNA samples. On this basis, 5122 and 4630 genes were considered as differentially expressed in BS and M cells, respectively. Moreover, increasing the criterion of difference in fold value, more genes were enriched in BS cells than in M cells (Table 2). For example, 332 genes in BS but only 199 genes in M showed a 16-fold difference in expression level. This finding is consistent with observations in the other C₄ plants maize (Chang et al., 2012) and S. viridis (John et al., 2014), and suggests that BS cells play a more important role in C₄ photosynthesis and may also differentially perform other metabolic processes (Chang et al., 2012).

Table 1. Statistics of the transcriptome data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read length</td>
<td>100 bp</td>
</tr>
<tr>
<td>Read type</td>
<td>Paired</td>
</tr>
<tr>
<td>Total reads</td>
<td>144 129 974</td>
</tr>
<tr>
<td>Trimmed reads</td>
<td>111 728 008</td>
</tr>
<tr>
<td>Mapped reads</td>
<td>87 920 267 (79%)</td>
</tr>
<tr>
<td>Detected genes (mapped read >1)</td>
<td>46 716</td>
</tr>
<tr>
<td>Differentially expressed genes</td>
<td>9752</td>
</tr>
</tbody>
</table>

Table 2. Numbers of expressed genes, differentially expressed genes, and TF genes in BS and M samples

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BS cells</th>
<th>M cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differentially expressed genes (adjustes P < 0.05)</td>
<td>5,122</td>
<td>4,630</td>
</tr>
<tr>
<td>Differentially expressed genes (ratio >2)</td>
<td>4,343</td>
<td>3,886</td>
</tr>
<tr>
<td>Differentially expressed genes (ratio >4)</td>
<td>2,444</td>
<td>2,126</td>
</tr>
<tr>
<td>Differentially expressed genes (ratio >8)</td>
<td>923</td>
<td>695</td>
</tr>
<tr>
<td>Differentially expressed genes (ratio >16)</td>
<td>332</td>
<td>199</td>
</tr>
<tr>
<td>Differentially expressed TF genes</td>
<td>175</td>
<td>243</td>
</tr>
</tbody>
</table>

We compared C₄ transcript abundance in the M and BS transcriptomes from switchgrass (present work), S. viridis (John et al., 2014), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014) (Fig. 4). Maize, S. viridis, and switchgrass belong to the C₄ grasses, and are classified into distinct subtypes, NAD-ME and NAD-MAE (Wang et al., 2014). The dicot plant C. gynandra performs NAD-ME-type C₄ photosynthesis (Somer et al., 2012). The major biochemical processes for C₄ carbon fixation in the two C₄ photosynthetic subtypes are shown in Fig. 1B. Transcripts involved in the C₄ cycle showed very similar compartmentalization between M and BS cells in the grass species: genes encoding enzymes involved in CO₂ fixation (CA, PEPC, PPDK, and NAD-MDH) and the Calvin cycle [ribulose bisphosphate carboxylase small chain (RBCS), Rubisco activase (RCA), PRK, ribose 5-phosphate isomerase (RPI), ribulose-phosphate 3-epimerase (RPE)],
transketolase (TKL), sedoheptulose-bisphosphatase (SBP), fructose-1,6-bisphosphatase (FBP), and fructose-bisphosphate aldolase (FBA)] were enriched in M and BS cells, respectively. Transcripts from the *C. gynandra* transcriptome showed reduced enrichment in BS cells, possibly due to post-transcriptional regulation (*Aubry et al.*, 2014). The consistency of C_4 core gene expression preference in four distinct C_4 lineages highlights the evolutionary convergence in the C_4 pathway.

The GADPH of land plants includes two plastidic tetramer isoforms named A_4 and A_2B_2 (*Fermani et al.*, 2012). Transcripts encoding GADPH-B were clearly enriched in M cells in the four species, consistent with the role of the A_2B_2 isoform in catalyzing the reducing step of the Calvin cycle in

Table 3. Differential expression of C_4 photosynthesis-specific genes between M and BS cells

<table>
<thead>
<tr>
<th>Gene</th>
<th>Role</th>
<th>Cell type</th>
<th>ID</th>
<th>M (TPM)</th>
<th>BS (TPM)</th>
<th>Log$_2$ (M/BS)</th>
<th>Adjusted P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Core pathway</td>
<td>M</td>
<td>Pavir.J05107</td>
<td>10360.08</td>
<td>2559.41</td>
<td>1.74</td>
<td>0.0043498</td>
</tr>
<tr>
<td>PEPC</td>
<td>Core pathway</td>
<td>M</td>
<td>Pavir.Da00871</td>
<td>404.89</td>
<td>132.94</td>
<td>1.35</td>
<td>0.0158103</td>
</tr>
<tr>
<td>PPDK</td>
<td>Core pathway</td>
<td>M</td>
<td>Pavir.J15849</td>
<td>10630.50</td>
<td>1774.50</td>
<td>2.24</td>
<td>1.567E-09</td>
</tr>
<tr>
<td>ASP-AT(M)</td>
<td>Core pathway</td>
<td>M</td>
<td>Pavir.Eb03232</td>
<td>2699.88</td>
<td>559.12</td>
<td>1.79</td>
<td>5.627E-07</td>
</tr>
<tr>
<td>ASP-AT(BS)</td>
<td>Core pathway</td>
<td>BS</td>
<td>Pavir.J06248</td>
<td>91.64</td>
<td>1045.03</td>
<td>–3.27</td>
<td>1.32E-17</td>
</tr>
<tr>
<td>ALA-AT</td>
<td>Core pathway</td>
<td>BS/M</td>
<td>Pavir.Ba00407</td>
<td>4.82</td>
<td>17.78</td>
<td>–2.09</td>
<td>5.823E-08</td>
</tr>
<tr>
<td>NADP-MDH</td>
<td>Core pathway</td>
<td>M</td>
<td>Pavir.Fa00047</td>
<td>193.63</td>
<td>39.84</td>
<td>1.71</td>
<td>4.326E-07</td>
</tr>
<tr>
<td>NADP-ME</td>
<td>Core pathway</td>
<td>BS</td>
<td>Pavir.Eb00308</td>
<td>188.46</td>
<td>4081.74</td>
<td>–4.58</td>
<td>3.438E-53</td>
</tr>
<tr>
<td>NAD-ME</td>
<td>Core pathway</td>
<td>BS</td>
<td>Pavir.J05153</td>
<td>18.64</td>
<td>695.89</td>
<td>–4.84</td>
<td>8.162E-89</td>
</tr>
<tr>
<td>NAD-MDH</td>
<td>Core pathway</td>
<td>BS</td>
<td>Pavir.J08443</td>
<td>108.92</td>
<td>1566.72</td>
<td>–4.35</td>
<td>0</td>
</tr>
<tr>
<td>PECK</td>
<td>Core pathway</td>
<td>BS</td>
<td>Pavir.Ca03881</td>
<td>9.77</td>
<td>59.16</td>
<td>–2.56</td>
<td>5.193E-06</td>
</tr>
<tr>
<td>RBCS</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.Ca02105</td>
<td>279.46</td>
<td>8643.50</td>
<td>–5.18</td>
<td>0</td>
</tr>
<tr>
<td>RCA</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.Bb00014</td>
<td>23.07</td>
<td>627.48</td>
<td>–4.64</td>
<td>8.738E-75</td>
</tr>
<tr>
<td>PRK</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.Ja01018</td>
<td>68.43</td>
<td>1903.17</td>
<td>–4.86</td>
<td>1.096E-41</td>
</tr>
<tr>
<td>CP12</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.J39855</td>
<td>0.85</td>
<td>19.27</td>
<td>–3.91</td>
<td>1.398E-11</td>
</tr>
<tr>
<td>RNI</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.Bb00418</td>
<td>130.41</td>
<td>2702.07</td>
<td>–4.52</td>
<td>1.1E-17</td>
</tr>
<tr>
<td>RPE</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.J04312</td>
<td>133.34</td>
<td>3492.42</td>
<td>–4.72</td>
<td>1.788E-31</td>
</tr>
<tr>
<td>TKL</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.J03580</td>
<td>44.74</td>
<td>1504.46</td>
<td>–5.28</td>
<td>1.22E-24</td>
</tr>
<tr>
<td>SBP</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.J33373</td>
<td>7.74</td>
<td>81.39</td>
<td>–3.36</td>
<td>5.467E-24</td>
</tr>
<tr>
<td>FBA</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.J02023</td>
<td>56.93</td>
<td>1424.97</td>
<td>–4.53</td>
<td>1.08E-24</td>
</tr>
<tr>
<td>PGK</td>
<td>Calvin cycle</td>
<td>M</td>
<td>Pavir.J00566</td>
<td>5471.47</td>
<td>1559.81</td>
<td>–3.33</td>
<td>0.0078193</td>
</tr>
<tr>
<td>GADPH(A)</td>
<td>Calvin cycle</td>
<td>BS</td>
<td>Pavir.Ca01865</td>
<td>30.68</td>
<td>54.80</td>
<td>–1.07</td>
<td>0.002747</td>
</tr>
<tr>
<td>GADPH(B)</td>
<td>Calvin cycle</td>
<td>M</td>
<td>Pavir.J23272</td>
<td>3301.02</td>
<td>1316.49</td>
<td>1.17</td>
<td>4.605E-14</td>
</tr>
<tr>
<td>TPI</td>
<td>Calvin cycle</td>
<td>M</td>
<td>Pavir.J26504</td>
<td>815.95</td>
<td>108.90</td>
<td>2.62</td>
<td>1.611E-39</td>
</tr>
</tbody>
</table>

CA, carbonic anhydrase; PEPC, phosphoenolpyruvate carboxylase; PPDK, pyruvate/orthophosphate dikinase; ASP-AT, aspartate aminotransferase; AlaAT, alanine aminotransferase; NADP-MDH, NADP-dependent malate dehydrogenase; NADP-ME, NADP-dependent malic enzyme; NAD-MDH, NAD-dependent malate dehydrogenase; NAD-ME, NAD-dependent malic enzyme; PECK, phosphoenolpyruvate carboxykinase; RBCS, ribulose bisphosphate carboxylase small chain; RCA, Rubisco activase; PRK, phosphoribulokinase; CP12, Calvin cycle protein CP12; RPI, ribose 5-phosphate isomerase; RPE, ribulose-phosphate 3-epimerase; TKL, transketolase; SBP, sedoheptulose-bisphosphatase; FBP, fructose-1,6-bisphosphatase; FBA, fructose-bisphosphate aldolase; PGK, phosphoglycerate kinase; GADPH, glyceraldehyde-3-phosphate dehydrogenase; TPI, triosephosphate isomerase.

Fig. 3. In situ hybridization of C_4-related gene transcripts in mature leaves. (This figure is available in colour at JXB online.)
M cells. In contrast, transcripts encoding GADPH-A accumulated in both cell types, with a slightly higher ratio in BS cells. Furthermore, transcripts encoding CP12, a small protein involved in regulation of the Calvin cycle by forming a supercomplex with PRK and GADPH (Grobet et al., 2010; Lopez-Calcagno et al., 2014), were exclusively found in BS cells. This suggests that in BS cells, CP12 and A4 GADPH mainly function together for regulation of the activity of PRK, in agreement with the observation of formation of a stable CP12–A4 GADPH complex in the dark (Fermani et al., 2012).

PEPCK, the decarboxylation enzyme that utilizes OAA to release CO2 in the cytosol (Hatch, 1987), is enriched in BS cells at moderate expression levels in all four C4 species. This is consistent with the detection of PEPCK activity in switchgrass, maize, and C. gynandra (Prendergast et al., 1987; Sommer et al., 2012), and suggests that a mixed and flexible decarboxylation system commonly exists in NAD-ME and NADP-ME subtypes, through an additional service of the PEPCK cycle (Furbank, 2011; John et al., 2014).

Divergence in C4 transcript abundance between NAD-ME and NADP-ME subtypes

C4 plants have evolved different means to decarboxylate organic carbon compounds to release CO2 at the site of Rubisco; NADP-ME decarboxylates malate to pyruvate in chloroplasts, whereas NAD-ME decarboxylates malate to pyruvate in mitochondria (Brautigam et al., 2014) (Fig. 1B). Transcripts encoding NADP-ME, rather than NAD-ME or NAD-MDH, show enrichment in BS cells in two different lineages of the NADP-ME subtype (maize and S. viridis), whereas NAD-ME is enriched in BS cells in the monocot switchgrass and the dicot C. gynandra (Fig. 4). In the phylogenetic tree constructed with known NAD-ME sequences, four switchgrass NAD-ME genes detected in our M/BS transcriptome data set are classified into two distinct clusters, and photosynthetic NAD-ME in switchgrass belongs to the NAD-ME 2 group (Supplementary Fig. S4).

Interestingly, transcripts of two switchgrass genes (PvEa00263 and PvEb00308) that are annotated as chloroplastic NADP-ME showed high accumulation in BS cells. The high expression level of NADP-ME genes in switchgrass leaves has been observed in several previous reports (Zhang et al., 2013; Meyer et al., 2014; Palmer et al., 2015) and here was confirmed by qRT–PCR analysis using multiple pairs of primers (Supplementary Fig. S3; Supplementary Table S4). To address the evolutionary origin of switchgrass NADP-MEs, a phylogenetic tree was constructed from protein sequence alignments of NADP-MEs from C4 and C3 plants (Supplementary Fig. S5). The two highly expressed switchgrass NADP-ME genes clustered with the C4 NADP-ME of S. viridis, and share identity to the non-photosynthetic plastidic NADP-ME in maize (Saigo et al., 2004), which presents high intrinsic NADP-ME activity but is expressed constitutively at low levels (Maier et al., 2011). Considering the low NADP-ME activity detected in switchgrass leaves, it is likely that in switchgrass either strong post-transcriptional or translational control leads to degradation or loss of activity of NADP-ME in BS cells, or the two genes encode low activity NADP-ME isoforms. To assess further the possible derivation of C4 functional decarboxylation enzyme from the same ancestral genomic region (Schnable et al., 2012), we identified the syntenic orthologs of NAD-ME and NADP-ME isoforms among C4 grasses and outgroup C3 rice (Supplementary Fig. S6). Interestingly, NAD-ME 2 genes (functional C4 group)

Fig. 4. Global comparison of transcript abundance within M and BS cells of four C4 species. (A) Fold change of expression level of genes involved in C4 metabolism and the Calvin cycle in M and BS cells from switchgrass, S. viridis, maize, and C. gynandra. (B) Venn diagrams show the number of homologous genes differentially expressed in M and BS cells from switchgrass, S. viridis, and maize. (This figure is available in colour at JXB online.)
were syntenic within C₄ grasses (switchgrass, *S. viridis*, maize, and sorghum), whereas NAD-ME genes were syntenic between C₄ grasses and C₃ rice. Genes in non-C₄ and C₄ NADP-ME groups were syntenic in switchgrass, *S. viridis*, maize, and sorghum. Overall, it is possible that the photosynthetic and non-photosynthetic isoforms found in C₄ plants could present at some level within the most recent common ancestor (Washburn *et al.*, 2015) but may or may not have been recruited into C₄ photosynthesis depending on selective pressure.

In NAD-ME and PEPCK subtypes, carboxylation and decarboxylation are linked by the transfer of aspartic acid and alanine in M/BS cells, whereas NADP-ME subtypes mainly recruit malate/pyruvate shuttles between the two cell types (Weber and von Caemmerer, 2010). The amino acid aspartate in the chloroplast of M cells is generated by chloroplastic AspAT, then enters the BS cells where it is converted into OAA in the mitochondria by mitochondrial AspAT (Weber and von Caemmerer, 2010) (Fig. 1B). In switchgrass, transcripts encoding chloroplastic and mitochondrial AspAT are abundant in M and BS cells, respectively, which supports a function in maintaining the ammonia balance between M/BS cell types (Weber and von Caemmerer, 2010). In contrast, AspAT shows reduced expression in BS cells in the NADP-ME subtypes maize and *S. viridis*. Transcripts encoding AlaAT are significantly accumulated in both M and BS cells of *C. gynandra*, consistent with a dual function in converting from/into alanine in M/BS cells. However, the apparent low expression level of the AlaAT gene in switchgrass is possibly artifactual due to the incompleteness of the switchgrass genome. At least 20 expressed sequence tags (ESTs) were predicted to represent genes encoding AlaAT in switchgrass (Wang *et al.*, 2012; Zhang *et al.*, 2013); one EST (AP13CTG00178) was highly expressed in mature leaves with similar expression pattern to other C₄ genes (Supplementary Fig. S3), but is not represented in the current genome assembly *Panicum virgatum* v1.1.

Differences in C₄ shuttle/transport between NAD-ME and NADP-ME subtypes

C₄ photosynthesis recruits a high rate of metabolic exchange between the two main cell types, which requires multiple transporters in M and BS chloroplast envelopes to facilitate this metabolic collaboration (Majeran and van Wijk, 2009). Based on the present study and previous work (Majeran and van Wijk, 2009; Weber and von Caemmerer, 2010; Brautigam *et al.*, 2014), the detailed processes of C₄ photosynthesis in the NAD-ME subtype are summarized in Fig. 5.

For both NAD-ME-type and NADP-ME-type C₄ plants, pyruvate is used to regenerate the acceptor PEP in M cells and is thereby required to transfer from the cytosol to the chloroplast. However, plants may evolve different strategies to pump pyruvate into these two subtypes (Majeran and van Wijk, 2009). In switchgrass, we observed high enrichment of transcripts corresponding to two genes (Pv.Ea02237 and Pv.Eb01809) encoding the plastidic sodium-dependent pyruvate transporter BASS2 (Furumoto *et al.*, 2014).

Fig. 5. Model for NAD-ME with minimal PEPCK pathway. 1, carbonic anhydrase (CA); 2, phosphoenolpyruvate carboxylase (PEPC); 3, chloroplastic aspartate aminotransferase (AspAT); 4, mitochondrial aspartate aminotransferase (AspAT); 5, NAD-dependent malate dehydrogenase (NAD-MDH); 6, NAD-dependent malic enzyme (NAD-ME); 7, alanine aminotransferase (AlaAT) in bundle sheath cells; 8, alanine aminotransferase (AlaAT) in mesophyll cells; 9, pyruvate/orthophosphate dikinase (PPTD); 10, phosphoenolpyruvate carboxykinase (PEPCK); 11, sodium bile acid symporter (BASS) homolog; 12, sodium: hydrogen antiporter (NHD); 13, phosphate/phosphoenolpyruvate translocator (PPT); 14, triose phosphate/phosphate translocator (TPT); 15, dicarboxylate transporter (DiT1); 16, malate phosphate antiporter (DIC); 17, phosphate/protons symporter (PIC). Ala, alanine; Asp, aspartate; Mal, malate; Pyr, pyruvate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; 3-PGA, 3-phosphoglycerate, Triose-P, triose phosphate. (This figure is available in colour at *JXB* online.)
4) Similarly in maize and C. gynandra (BENNERTZEN et al., 2011). These processes are not required for switches, Chang et al., 2012). To evaluate the convergence in distribution of each category in C4 species, we found that transcript abundance of DiT1 in C4 (C. gynandra) was detected compared with its closely related C3 species (C. spinosa) (BRAUTIGAM et al., 2011). This suggests that DiT1 may not act specifically for C4 metabolite transport in M cells in the NAD-ME subtype because it dually acts as the malate valve and as a 2-oxoglutarate/malate transporter for photorespiratory nitrogen recycling (KINOSHITA et al., 2011). For NAD-ME-type C4 photosynthesis, malate is required to be generated from OAA in mitochondria or transported into mitochondria (Fig. 5). We found that transcripts encoding the mitochondrial malate/phosphate carrier DIC (Pavir.Fb01780) and the mitochondrial phosphate transporter PIC2 (Pavir.Aa00590) were significantly enriched in switchgrass BS cells with a high expression level. Similar BS cell-type enrichment and high expression of genes encoding two mitochondrial transporters (DIC, AT2G22500; and PIC2, AT5G14040) (BRAUTIGAM et al., 2014; JIA et al., 2015) was also observed in C. gynandra, but DIC expression was not enriched in BS cells of maize and S. viridis. This suggests a requirement for the combination of the malate phosphate antiporter DIC with the phosphate/proton transporter PIC2 to pump malate into mitochondria in NAD-ME species, but not in NADP-ME species (Fig. 5).

Global comparisons of the M and BS transcriptomes among monocot and dicot C4 plants

To define the extent to which gene expression patterns are conserved or divergent in monocot and dicot C4 plants, the same adjusted P ≤ 0.05 between M and BS samples was applied as the definition of ‘differentially expressed genes’ for switchgrass, S. viridis (John et al., 2014), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).

Switchgrass, S. viridis, and maize are close relatives among the C4 grasses (Fig. 1A). To determine if homologous genes underlie C4 photosynthetic development in C4 grasses, homology alignment was applied to differentially expressed genes in switchgrass, S. viridis (JIA et al., 2012), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).

Switchgrass, S. viridis, and maize are close relatives among the C4 grasses (Fig. 1A). To determine if homologous genes underlie C4 photosynthetic development in C4 grasses, homology alignment was applied to differentially expressed genes in switchgrass, S. viridis (JIA et al., 2012), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).

Switchgrass, S. viridis, and maize are close relatives among the C4 grasses (Fig. 1A). To determine if homologous genes underlie C4 photosynthetic development in C4 grasses, homology alignment was applied to differentially expressed genes in switchgrass, S. viridis (JIA et al., 2012), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).

Switchgrass, S. viridis, and maize are close relatives among the C4 grasses (Fig. 1A). To determine if homologous genes underlie C4 photosynthetic development in C4 grasses, homology alignment was applied to differentially expressed genes in switchgrass, S. viridis (JIA et al., 2012), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).

Switchgrass, S. viridis, and maize are close relatives among the C4 grasses (Fig. 1A). To determine if homologous genes underlie C4 photosynthetic development in C4 grasses, homology alignment was applied to differentially expressed genes in switchgrass, S. viridis (JIA et al., 2012), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).

Switchgrass, S. viridis, and maize are close relatives among the C4 grasses (Fig. 1A). To determine if homologous genes underlie C4 photosynthetic development in C4 grasses, homology alignment was applied to differentially expressed genes in switchgrass, S. viridis (JIA et al., 2012), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).

Switchgrass, S. viridis, and maize are close relatives among the C4 grasses (Fig. 1A). To determine if homologous genes underlie C4 photosynthetic development in C4 grasses, homology alignment was applied to differentially expressed genes in switchgrass, S. viridis (JIA et al., 2012), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014). Among S. viridis, maize, and C. gynandra, 5049 and 4631 transcripts, 6691 and 7647 transcripts, and 372 and 338 transcripts were enriched in M or BS cells, respectively. In our switchgrass transcriptome data set, 4630 and 5122 genes were considered as differentially expressed in M or BS cells, respectively (Supplementary Table S6). The higher numbers in switchgrass and maize are probably due to the highly duplicated and complex natures of their genomes (John et al., 2014).
cells of *C. gynandra*, *S. viridis*, maize, and switchgrass, respectively (Fig. 6A). Similarity in distribution of genes in certain categories was observed in these four *C₄* species. For example, considering that primary carbon assimilation is restricted to BS cells, transcripts in the categories of the TCA (tricarboxylic acid) cycle and major CHO (carbohydrate) metabolism were significantly enriched in BS cells of *S. viridis*, maize, and switchgrass, and moderately enriched in BS cells of *C. gynandra*. The preferential expression of genes involved in transport in BS cells is consistent with the fact that these cells are surrounded by vascular tissue for release and transport of metabolites to other plant parts (Christin et al., 2009).

However, many differences were detected in functional enrichment between M and BS cells in the four *C₄* plants. For instance, transcripts encoding maize genes in the photosystem (PS) and mitochondrial electron transport/ATP synthesis categories were more abundant in M cells, whereas in the other three *C₄* species, these genes were preferentially expressed in...
BS cells. This is possibly because maize is depleted in PSII in the BS cells to lower oxygen production in these cells (Gowik and Westhoff, 2011).

Further analysis of subcategories within the main categories of protein and RNA revealed more divergence in functional enrichment within the four C₄ plant species (Fig. 6B; Supplementary Fig. S7). Interestingly, genes involved in protein synthesis, targeting, and folding displayed preferential expression in BS cells in switchgrass and equal distribution in both cell types in C. gynandra, but strong enrichment in M cells in the two NADP-ME-type plants, S. viridis and maize. Strong enrichment in BS cells of genes involved in protein post-translational modification, protein glycosylation, and protein degradation mediated by AAA-type and ubiquitin proteases was observed in maize, whereas equal distribution in both cell types or moderate enrichment in M cells were found in switchgrass, S. viridis, and C. gynandra. In addition, genes involved in RNA regulation of transcripts were abundant in M cells of switchgrass, but are more abundant in BS cells of maize and S. viridis. This suggests that at both the post-transcriptional and translational levels, switchgrass, maize, and S. viridis may display different machineries for RNA transcriptional regulation and protein import, sorting, folding, assembly, and degradation that facilitate the preferential accumulation of proteins and accommodate protein homeostasis between M and BS cells. We suggest that the functional differentiation of post-transcriptional and translational regulatory mechanisms in M or BS cells of NAD-ME type switchgrass, and NADP-ME type maize and S. viridis, might be a result of their distinct evolutionary pathways, and/or may be associated with the accommodation of the different distribution of metabolites within M and BS cells of these two subtypes. For instance, NADP-ME-type plants require extra ATP produced by cyclic electron transport in BS cells to balance the production of NADPH for preventing photoinhibition or photodamage, and this is not required by NAD-ME-type plants (Nakamura et al., 2013; Walker et al., 2014).

Convergence and divergence of cell type-enriched transcription factors in C₄ plants

Given that differentially expressed TFs will play a major role in regulatory networks for the functional differentiation of M and BS cell types (Li et al., 2010; Chang et al., 2012), we annotated and identified TFs in the M and BS cell transcriptomes in switchgrass based on their homologs to Arabidopsis and rice in the Plant TF Database v3.0 (Jin et al., 2014). Compared with the annotated TFs of S. viridis (John et al., 2014), maize (Chang et al., 2012), and C. gynandra (Aubry et al., 2014), 243 and 175, 232 and 296, 274 and 412, and 23 and 20 TFs were identified as enriched genes in M and BS cells of switchgrass, S. viridis, maize, and C. gynandra, respectively (Supplementary Table S8). These genes were assigned into 60 TF families according to the Plant TF Database v3.0 (Jin et al., 2014). Consistent with previous studies (Li et al., 2010; Chang et al., 2012), many TF families showed preferential cell type expression, indicating an overall differentiation in the regulatory networks underlying the functional differentiation of the two photosynthetic cell types in C₄ leaves. However, similarities and differences were observed in the distributions of cell type preference of TF families within the four distinct C₄ plants. Overall, maize and S. viridis shared more similarities in the distributions in TF families, resulting in Pearson’s correlation coefficients (r²) of 0.70 and 0.89 in M and BS cells, respectively. In contrast, fewer similarities in distribution of cell type preference of TFs were shared between the monocot switchgrass and the dicot C. gynandra, although they belong to the same NAD-ME subtype.

To assess the potential co-option of TFs derived from a common ancestor, syntenic orthologs of TFs were determined between maize, S. viridis, and switchgrass. Switchgrass shared 34 and 13 TFs in M cells, and 44 and 18 TFs in BS cells as syntenic orthologs with S. viridis and maize, respectively. Among them, two and 10 syntenic ortholog TFs overlapped with M and BS cell-type enrichment, respectively, in the three C₄ grass genomes. Interestingly, one and three syntenic ortholog TFs in maize with M and BS cell specificity, respectively, have been reported as regulatory candidates in differentiation of C₄ Kranz anatomy (Wang et al., 2013; Tausta et al., 2014). For example, SCR is highly expressed in the BS in the three C₄ grasses and has been proven to play an essential role in BS cell fate specification in plants (Wysocka-Diller et al., 2000; Slewinski et al., 2012; Cui et al., 2014). This suggests that TFs might be in convergent evolution from a common ancestor and recruited in parallel in distinct C₄ lineages.

To examine further possible candidates in BS establishment, homologous TFs with BS cell enrichment in four C₄ plants were identified, and MYB59, which is reported to regulate the cell division process in Arabidopsis roots (Cominelli and Tonelli, 2009; Mu et al., 2009), was found to be significantly enriched in BS cells of all four C₄ species. MYB59 in maize was listed as a candidate in regulating C₄ Kranz formation in a previous study (Wang et al., 2013; Tausta et al., 2014). It is possible that MYB59 may play a role in controlling BS cell size in C₄ species. In addition, transcriptional activators of lignification such as MYB42 (Hussey et al., 2013) were more abundantly expressed in the BS cells in the three monocot C₄ grasses than in C. gynandra, and the transcriptional repressor of lignification MYB4 (Shen et al., 2012) was highly expressed in M cells in switchgrass. This is consistent with the thicker cell walls in the BS cells of monocot as compared with dicot plants (Majeran et al., 2005), and suggests that the C₄ grasses might share similar regulatory mechanisms for secondary cell wall formation in BS cells.

Conclusions

The differentiation of M and BS cells with their specific accumulation of transcripts in C₄ leaves is considered a hallmark of the C₄ pathway (Burgess and Hibberd, 2015). Enzymatic and mechanical isolation or laser capture micro-dissection of M and BS cells have been applied in quantitative transcriptomics of specific cell types (Li et al., 2010; Chang et al., 2012; Aubry et al., 2014; John et al., 2014). Here we employed manual dissection of switchgrass M and BS cells, which is a
simple and inexpensive means of obtaining a small specimen for further cell type-specific transcriptome analysis (Outlaw and Zhang, 2001). This has enabled, to the best of our knowledge, the first estimate of mRNA profiles of M and BS cells in a monocot NAD-ME subtype C₄ plant.

A high degree of convergence in the distribution of C₄ marker genes in M/BS cells was observed in the four distinct C₄ species; monocot NAD-ME-type switchgrass, monocot NADP-ME-type S. viridis and maize, and dicot NAD-ME-type C. gynandra (Fig. 4A). Furthermore, these species shared a high degree of convergence in distribution of gene functional categories in M/BS cells based on analysis of the Pearson’s correlation coefficient (r²) (Fig. 6: Supplementary Table S7). Genes grouped into the categories of TCA and major CHO metabolism were significantly or moderately enriched in BS cells in all four C₄ species. A similar preferential expression of SCR and MYB59 TFs was found in C₄ grasses and in all four C₄ species, respectively (Supplementary Table S8). We conclude that the transcript abundance of core components in C₄ photosynthesis, the distribution of gene function, and the mechanism of establishment of BS might be convergent in these four independent lineages of C₄ plants.

The pathways of C₄ photosynthesis are divided into three basic biochemical subtypes based on the major decarboxylating enzymes to release CO₂: NAD-ME, NADP-ME, and PEPCK (Gowik and Westhoff, 2011). However, the differentiation observed in our comparative transcriptomes of NAD-ME and NADP-ME subtypes goes beyond the decarboxylating enzymes. Besides aminotransferase (Fig. 4A), the NAD-ME type differs from the NADP-ME type by the differential compartmentation of specific metabolite transporters, such as sodium:pyruvate and proton:pyruvate co-transporters (Supplementary Table S3), and by more general cell-specific functional enrichment, such as RNA regulation and protein biogenesis/homeostasis (Fig. 6). The abundance of transcripts functioning in protein synthesis, folding, and assembly is more prominent in BS and M cells of switchgrass and C. gynandra than in S. viridis and maize. C₄ plants might have undergone convergent processes such as gene duplication, anatomical pre-conditioning, and compartmentalization of C₄ core enzymes to evolve C₄ photosynthesis (Sage, 2004), but may have undergone divergent processes for the optimization of M and BS cell co-ordination that are not directly associated with the C₄ pathway.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Cross- and longitudinal sections of a switchgrass leaf.

Figure S2. Qualitative and quantitative analysis of total RNA from manually isolated BS and M cells using a Bioanalyzer.

Figure S3. Validation of C₄-related gene expression in switchgrass by qRT–PCR.

Figure S4. Phylogenetic comparison of switchgrass NAD-ME with NAD-ME protein sequences in other species.

Figure S5. Phylogenetic comparison of switchgrass NADP-ME with NADP-ME protein sequences in other species.

Figure S6. Analysis of syntenic genes of NAD-ME and NADP-ME in grasses

Figure S7. Cell type-enriched functional groups in subcategories of protein degradation identified by Fisher exact test.

Table S1. Raw and normalized data.

Table S2. The fold change of C₄ enzyme activity in age- and area-related experiments in switchgrass leaves.

Table S3. List of C₄-related genes in the switchgrass M and BS transcriptomes.

Table S4. Sequences of primers used in the present work.

Table S5. Convergence in abundance of C₄ marker genes in switchgrass, S. viridis, maize, and C. gynandra.

Table S6. List of differentially expressed genes in M and BS cells from switchgrass, S. viridis, maize, and C. gynandra.

Table S7. Functional distribution of differentially expressed genes in M and BS cells from switchgrass, S. viridis, maize, and C. gynandra.

Table S8. List of differentially expressed TFs in M and BS cells from switchgrass, S. viridis, maize, and C. gynandra.

Acknowledgements

This research was supported by grants to RAD from both The Advanced Research Projects Agency-Energy (ARPA-E) and the US Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the DOE Office of Science. Genome Panicum virgatum v1.1 sequence data were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with the user community. Computational resources were provided by UNT’s High Performance Computing Services. We thank Drs Rajeev Azad and Chenggang Liu for critical reading of the manuscript.

References

Li, D, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.

