Population Structure and Comparative Phylogeography of Jack Species (*Caranx ignobilis* and *C. melampygus*) in the High Hawaiian Islands

Scott R. Santos, Yu Xiang, and Annette W. Tagawa

From the Department of Biological Sciences, Auburn University, Auburn, AL 36849 (Santos and Xiang); and Cell and Molecular Biosciences Peak Program, Auburn University, Auburn, AL 36849 (Santos and Xiang); and the Division of Aquatic Resources, State of Hawai‘i, Honolulu, HI 96813 (Tagawa).

Address correspondence to Scott R. Santos at the address above, or e-mail: santos@auburn.edu.

Abstract

Members of the family Carangidae are top-level predators and highly prized food and sport fishes. Although ecologically and economically important, little is known about the biology of numerous species in the family. This is particularly true of the jacks *Caranx ignobilis* and *C. melampygus*, which have experienced recent population reductions around the high Hawaiian Islands due to overfishing. Previous studies have documented territorial tendencies as well as cases of long-distance excursions in both species, suggesting populations may exhibit a range of structure at the genetic level. To explore this possibility, mitochondrial DNA ATPase6 and ATPase8 gene sequence variation was assessed from 91 individuals (33 *C. ignobilis* and 58 *C. melampygus*) spanning the islands of Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i. Although a total of 20 distinct haplotypes (8 for *C. ignobilis*; 12 for *C. melampygus*) were recovered, no evidence of population structure was found for either species across the examined geographic range. However, distinct demographic patterns were identified, implying differing evolutionary histories and/or population dynamics. Additionally, ~6% of the examined *C. ignobilis* were *C. ignobilis × C. melampygus* hybrids because they harbored mitochondrial haplotypes typical of *C. melampygus*. These hybrids contribute to measurable gene flow between the species and may play a significant role in the evolution of the genus.

Key words: Carangidae, Caranx, Hawai‘i, jacks, phylogeography, population genetics

Humans have historically exploited fish species for consumption, economics, and recreation (e.g., Pringle 1997). Unfortunately, intensive commercial fishing as well as varying indirect anthropogenic stresses (i.e., eutrophication, habitat change, the proliferation of invasive species, etc.) have driven freshwater and marine fisheries on a global scale into sharp declines over recent decades (reviewed by Hilborn et al. 2003; Pauly 2008). Impacting the spectrum of species from small pelagic foragers (e.g., anchovies, herring, mackerel, sardines, etc.; Tacon and Metian 2009) to large top-level predators (e.g., tuna, billfishes, swordfish, etc.; Myers and Worm 2003, 2004), this precarious trend has ignited concern around the world due to issues ranging from the loss of intrinsic and/or cultural value (Lewin et al. 2006) to collapses in ecosystem function and health (Mullen et al. 2005). For future management practices to be successful will require the integration of sociopolitical, physical (i.e., oceanographic, habitat, etc.), and organismal (i.e., natural history, behavior, etc.) information into a holistic framework (reviewed by Botsford et al. 1997; Thrush and Dayton 2010). However, knowledge concerning the basic biology of many fisheries-related species, such as their genetic structure, is lacking (Reiss et al. 2009), thus hindering such efforts.

The perciform family Carangidae consists of ~200 species of predominately marine fishes found in temperate and tropical waters around the world. Known as jacks, trevallies, pompanos, jack mackerels, and scads, many larger species are important top-level predators and are highly prized food and sport fishes (Shomura 1987; Honebrink 2000; Tagawa and Tam 2006). Twenty-seven species of carangids in 13 genera are listed as occurring in the Hawaiian Archipelago (Froese and Pauly 2010); of these, the jacks *Caranx ignobilis* Forsskål, 1775 and *C. melampygus* Cuvier, 1833 (called ulua aukea and omilu, respectively, by
the native Hawaiian people) are the most frequently encountered. The 2 species have easily identifiable phenotypes (i.e., coloration and size), with C. ignobilis being a silvery color with occasional dark spots and reaching up to 170 cm in fork length (FL) (90 kg), whereas C. melampygus is an iridescent color of brassy or gray hues speckled with brilliant blue spots and is considerably smaller (maximum of 91 cm FL; 14 kg). Although C. ignobilis and C. melampygus occur sympathetically and have been observed in mixed schools (Honebrink 2000; Murakami et al. 2007), catch data imply that C. melampygus is more common than any other jack species on Hawaiian coral reefs (e.g., Meyer et al. 2001; Tagawa and Tam 2006) and interspecific dietary differences suggest resource partitioning between them (Meyer et al. 2001).

Due to the ecological and economical importance of C. ignobilis and C. melampygus, concerns have been raised over population reductions around the Hawaiian Islands due to overfishing (Shomura 1987; Friedlander and Dalzell 2004). This has spurred efforts toward developing a better biological understanding of these species. A particular area that has received focus is their short- and long-distance movement patterns because such information is fundamental for establishing effective marine protected areas (reviewed by Halpern and Warner 2003; Palumbi 2004). Using acoustic telemetry in the Northwestern Hawaiian Islands Marine National Monument, Meyer et al. (2007) found that C. ignobilis typically occupies core areas of activity with occasional travel of up to 29 km on the same atoll. Likewise, sonic tracking and tag-and-release studies of C. melampygus in Kaneohe Bay, Hawai‘i, suggest that most individuals (~75%) range >0.5 km from their release points (Holland et al. 1996) and other tag-and-release studies of C. ignobilis and C. melampygus around the high (i.e., Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i) Hawaiian Islands have also documented similar patterns (Tagawa and Tam 2006). Thus, given this territorial tendency, it could be proposed that C. ignobilis and C. melampygus exhibit some level of population genetic structuring in the high Hawaiian Islands.

On the other hand, some of these same studies have also identified cases of long-distance excursions for both species, with a few individuals of C. ignobilis and C. melampygus traveling 60–338 km between sites (Tagawa and Tam 2006; Tagawa AW, unpublished data). Such movements, even on limited occasions, could reduce the population structuring of C. ignobilis and C. melampygus in the high Hawaiian Islands. Surprisingly, no population genetic studies for either species, in Hawai‘i or elsewhere across their range (i.e., Indian and Pacific Oceans, Honebrink 2000; Froese and Pauly 2010), have been previously conducted to distinguish between such alternative hypotheses. Studies like these would not only arm resource managers with additional information useful for developing management strategies for the fishery but also will further our limited knowledge on the ecology and evolution of Caranx species in general.

The goal of the present study was to determine the degree of genetic structure among populations of C. ignobilis and C. melampygus in the high Hawaiian Islands. Previously, Murakami et al. (2007) found that these species were 98.5% and 90.9% similar in their mitochondrial DNA (mtDNA) large subunit ribosomal (16S ribosomal DNA) and cytochrome c oxidase subunit I (COI) gene sequences, respectively, during an examination of 2 Caranx hybrid individuals caught off O‘ahu, Hawai‘i. Thus, mitochondrial gene sequences have sufficient discriminating power to distinguish mtDNA haplotypes within, as well as between, the species. For this reason, we targeted a ~900 bp fragment of the mtDNA genome from multiple individuals of C. ignobilis and C. melampygus collected across the high Hawaiian Islands. Using this approach, this report represents the first population genetic study of any Caranx species conducted to date. Along with this, comparing the demographic patterns from these species provides novel insight into the evolutionary histories of these ecologically and economically important predators in the Hawaiian Islands.

Materials and Methods

Biological Materials

All specimens of C. ignobilis and C. melampygus were sampled as part of the State of Hawai‘i Division of Aquatic Resources’ Ulua Tagging Project, a statewide, angler-based program where volunteers were asked to assist in the capture and tagging of various jack species found in Hawaiian waters. Twenty anglers among the 2000 volunteers who fish on a regular basis were tasked with collecting secondary (soft) dorsal fin clip samples for this study. These volunteers were supplied with a fin clip kit consisting of a scissors, forceps, vials with 95% ethanol for sample preservation, data card, and a postage paid self-addressed stamped envelope for shipping of samples. All fish were landed using a rod and reel, and along with tagging and tissue sampling, measurements of FL and phenotypic appearance were collected. From this effort, samples from 33 C. ignobilis and 58 C. melampygus were obtained from 25 localities spanning 5 Hawaiian Islands (Figure 1 and Supplementary Material S1) between September 2006 and June 2007.

DNA Extraction, Polymerase Chain Reaction, and Sequencing

Total genomic DNA was extracted from each fin clip sample using 2× cetyltrimethyl ammonium bromide/chloroform and utilized as template (~10 to 30 ng DNA per reaction) to amplify a ~900-bp fragment of the mtDNA genome encompassing the ATPase6 and ATPase8 genes. This fragment, spanning 2 genes, was selected for analysis to avoid inadvertent recovery of mtDNA pseudogenes translocated to the nuclear genome in a singular fashion (e.g., Lopez et al. 1994). Polymerase chain reactions (PCRs) were done in 25 μl volumes containing 10 mM Tris–HCl (pH 8.3), 50 mM KCl, 0.001% gelatin, 1.5 mM MgCl₂, 200 μM dNTPs, 0.4 μM each of primers L8331 (5′-AAA GCR TYR GCC TTT TAA GC-3′) and H9236 (5′-GTG AGT GGT CAK GGG CTT GGR TC-3′) (Quenouille et al. 2004), and 1 U Taq DNA polymerase. Reactions were conducted in a PTC-100 thermocycler (MJ Research) under the following:

- **Initial denaturation**: 3 min at 94 °C.
- **35 cycles**:
 - 30 s at 94 °C (denaturation).
 - 30 s at 55 °C (annealing).
 - 1 min at 72 °C (extension).
- **Final extension**: 5 min at 72 °C.
“touchdown” profile: initial denaturing step of 94 °C for 4:30 min; 11 cycles of 94 °C for 45 s, 60 °C for 45 s (~1 °C per cycle), 72 °C for 60 s; 26 cycles of 94 °C for 45 s, 50 °C for 45 s, 72 °C for 60 s; and a final extension of 72 °C for 5 min. Amplifications were confirmed by electrophoresis in a 1% agarose gel, followed by staining and viewing with ethidium bromide and shortwave (265 nm) UV, respectively.

Amplicons were purified with Montage PCR Filter Units (Millipore) according to the supplier’s recommendations, cycle-sequenced in both directions using Big-Dye Terminators v3.1, and read on a PRISM 3100 Genetic Analyzer (Applied Biosystems). Corrections of ambiguities in the chromatograms were accomplished by electrophoresis in a 1% agarose gel, followed by staining and viewing with ethidium bromide and shortwave (265 nm) UV, respectively.

Figure 1. Map of the high Hawaiian Islands depicting sampling locations for Caranx ignobilis and C. melampygus examined in this study. Key to sampling location codes is given in Supplementary Material S1.

Haplotype Diversity, Population Structure, and Demographic Analyses

Nucleotide (π) and haplotype (θ) diversity estimates for C. ignobilis and C. melampygus were calculated according to the methods of Nei (1987). To test for genetic differentiation between islands in each species, pairwise ΦST statistics (based on haplotype frequency and molecular divergence) were conducted by pooling all individuals of a species and from a given island into a single “population.” Kimura’s (1980) 2-parameter model of evolution (K2P; as selected by the Akaike information criterion [AIC] in MODELTEST v3.6 [Posada and Crandall 1998]) was utilized for the pairwise ΦST statistics. Tajima’s D (Tajima 1989) and Fu’s F_s (Fu 1997) tests were conducted to determine whether patterns of mitochondrial sequence variation were consistent with predictions of the neutral model. Along with detecting the influence of selection on a gene, these tests can also be potentially informative about the demographic forces that have affected a population or species (Tajima 1989; Fu 1997).

Lastly, Harpending’s raggedness index (Hri, Harpending 1994), based on mismatch distributions (i.e., the frequency distribution of pairwise differences among all haplotypes in a sample), was estimated to test whether the sequence data from each population deviated from what is expected under a sudden expansion model. A significant Hri value ($P < 0.05$) is taken as evidence for rejecting the sudden population
expansion model (Schneider and Excoffier 1999). All population structure and demographic analyses were conducted with the program ARLEQUIN v3.11 (Excoffier et al. 2005) and significance of the above tests assessed by 10 000 permutations.

Haplotype Network and Nested Clade Analysis

Relationships among mitochondrial haplotypes of *C. ignobilis* and *C. melampygus* were visualized as networks constructed with the program TCS v1.21 (Clement et al. 2000). The analysis was conducted using the 95% parsimoniously plausible branch connections between haplotypes. Haplotypes within each network were then nested according to the approach of Crandall (1996) 3 independent times (to ensure a consistent nesting design) prior to conducting nested clade analyses (NCA; Templeton et al. 1995). The NCA, which allows separation of population history from geographic (i.e., island) locations. Inferences regarding the historical processes giving rise to the current genetic patterns were made using the December 2008 NCA inference key (Templeton 2004; available at http://darwin.uvigo.es/).

Results

Genetic Diversity of *C. ignobilis* and *C. melampygus* in the High Hawaiian Islands

A total of 656 bp from an overlapping (i.e., forward and reverse sequence reads) region of the ATPase6 and ATPase8 genes was analyzed from each of the 91 individuals (33 *C. ignobilis* and 58 *C. melampygus*) examined here. From these, 20 distinct haplotypes (8 for *C. ignobilis*, 12 for *C. melampygus*) were identified, with sequences deposited into GenBank under accession numbers EU131643–EU131662. For each species, 3 haplotypes were recovered more than once while the remaining ones occurred as singletons (Supplementary Material S1). Uncorrected (p) pairwise genetic distances between ATPase6/ATPase8 haplotypes of *C. ignobilis* and *C. melampygus* were 10.4–11.8%, consistent with divergence levels of mtDNA COI haplotypes previously reported from these species (Murakami et al. 2007). Although haplotype (h) diversity values were similar for each species, nucleotide diversity (π) values were 3 x higher for *C. ignobilis* than *C. melampygus* (Table 1). Additionally, there was an ~3 x difference in the mean number of pairwise differences between haplotypes in each species (Table 1). Numbers of transitions, transversions, and private substitution sites were similar for both species (Table 1). Notably, 2 of the 33 individuals identified phenotypically as being *C. ignobilis* were found to possess identical mitochondrial haplotypes to the 2 most commonly recovered from *C. melampygus* (haplotypes Cm1 and Cm2, Supplementary Material S1). To confirm this, a second independent DNA extraction was conducted from the fin clip samples of these 2 individuals, followed by PCR and sequencing. In both cases, the mitochondrial haplotypes were identical in sequence to those initially recovered, suggesting the original results were not due to contamination. Instead, this finding is consistent with a previous report that *C. ignobilis* and *C. melampygus* are capable of hybridizing, with *C. melampygus* being the maternal (i.e., mitochondrial-contributing) lineage in such a cross (Murakami et al. 2007). These *C. ignobilis* × *C. melampygus* hybrids represented ~6% of the *C. ignobilis* individuals examined here.

Population Structure and Demographic Analyses of *C. ignobilis* and *C. melampygus* in the High Hawaiian Islands

Pairwise ΦST statistics between the species *C. ignobilis* and *C. melampygus* that excluded or included the 2 hybrid individuals were 0.971 and 0.925, respectively. Although significant genetic structure remains between the 2 species (*P* < 0.001), this difference of ~0.05 does imply low, but measurable, gene flow is occurring between them. Overall, pairwise ΦST statistics provided no evidence of genetic structure between *C. ignobilis* or *C. melampygus* populations sampled from the different islands (*P* > 0.05 for all comparisons, Table 2). For this reason, the Tajima’s D, Fu’s F, and Hri tests were conducted on a per species basis. Both the Tajima’s D and Fu’s F tests of neutrality were positive, but not significant (*P* > 0.1), for *C. ignobilis*, whereas for *C. melampygus*, the tests were both negative, with Fu’s F being significant (*P* = 0.007; Table 1). A significant negative value in neutrality tests such as Fu’s F reflects an excess of rare polymorphisms and is often obtained from populations that have experienced a recent expansion (Fu 1997). Further support for demographic differences between the species comes from the Hri of the mismatch distributions, with the absence of a significant Hri value (0.031, *P* > 0.05) for *C. melampygus* but a significant Hri value (0.098, *P* < 0.05) of the difference between *C. ignobilis* and *C. melampygus*. These results indicate that *C. ignobilis* has expanded more recently than *C. melampygus*.

Table 1 Summary of mitochondrial genetic data for *Caranx ignobilis* and *C. melampygus* from the high Hawaiian Islands

<table>
<thead>
<tr>
<th></th>
<th>C. ignobilis</th>
<th>C. melampygus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>31</td>
<td>58</td>
</tr>
<tr>
<td>No. of unique haplotypes</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Haplotype diversity</td>
<td>0.697 (±0.075)</td>
<td>0.692 (±0.041)</td>
</tr>
<tr>
<td>Nucleotide diversity (K2P)</td>
<td>0.006 (±0.003)</td>
<td>0.002 (±0.002)</td>
</tr>
<tr>
<td>Mean number of pairwise differences between haplotypes (K2P)</td>
<td>3.8 (±2.0)</td>
<td>1.5 (±1.0)</td>
</tr>
<tr>
<td>No. of transitions</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>No. of transversions</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>No. of private substitution sites</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Tajima’s D test</td>
<td>0.557</td>
<td>-1.34</td>
</tr>
<tr>
<td>Fu’s F* test</td>
<td>0.984</td>
<td>-4.93*</td>
</tr>
<tr>
<td>Harpending’s raggedness index (Hri)</td>
<td>0.098*</td>
<td>0.031</td>
</tr>
</tbody>
</table>

P < 0.05.
for *C. ignobilis* (Table 1). This implies that the sudden population expansion model cannot be rejected for *C. melampygus*. Taken together, it appears that *C. melampygus* has experienced recent population expansion in the high Hawaiian Islands, whereas *C. ignobilis* has not.

Haplotype Network and NCA of *C. ignobilis* and *C. melampygus* in the High Hawaiian Islands

The TCS analysis produced discrete networks for *C. ignobilis* and *C. melampygus* (Figure 2). The nesting procedure revealed two 2-step clades in each species (Figure 2), with distinct frequencies of individuals within these clades. For example, ~2× more individuals occurred in clade 2-1 (*n* = 20) compared with clade 2-2 (*n* = 11) of *C. ignobilis* (Figure 2). On the other hand, the frequencies of individuals were nearly identical (*n* = 28 vs. 30) for clades 2-1 and 2-2 of *C. melampygus* (Figure 2). The NCA found no significant associations between clades and geography in *C. ignobilis*. For *C. melampygus*, a significant association was recovered from clade 1-1 in the form of large and small nested clade (*Dn*) values. In this case, however, the inference key utilized in the interpretation of the NCA output came to an “inconclusive outcome” due to an absence of satisfied conditions at the end of the chain (i.e., 1, 2, 11, 17, No). Thus, no evolutionary process could be inferred for this association.

Discussion

Population Structure in *C. ignobilis* and *C. melampygus* of the High Hawaiian Islands

Based on mitochondrial sequence data, we found no evidence of genetic structure in *C. ignobilis* and *C. melampygus* of the high Hawaiian Islands. Thus, in spite of exhibiting territorial behaviors that might favor structuring, populations appear to be homogenized, at least over the examined geographic range. Although only a few studies have examined the genetic population structure of species in the family Carangidae to date, similar results from mitochondrial and nuclear sequence data have been reported from the carangid genus *Decapterus* in Southeast Asia and the Indo-Malay archipelago (Arnaud et al. 1999; Borsa 2003).

Although the development of, and screening of allelic variation at, potentially higher resolution nuclear loci (i.e., microsatellites) may reveal structure among populations of *Caranx* species, nuclear data are not always available for the examination of genetic structure. For example, *C. ignobilis* produces only one male parent and two females from all production runs at our facility, making it extremely challenging to examine nuclear variation. The use of nuclear markers may provide additional insights into population structure among *Caranx* species, but this remains to be determined.

Table 2

<table>
<thead>
<tr>
<th>Hawaiian Island</th>
<th>Kauai</th>
<th>O'ahu</th>
<th>Maui/Molokai</th>
<th>Hawaii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kauai</td>
<td>—</td>
<td><0.0001 (0.866 ± 0.013)</td>
<td>n/d</td>
<td><0.0001 (0.999 ± 0.001)</td>
</tr>
<tr>
<td>O'ahu</td>
<td><0.0001 (0.999 ± 0.001)</td>
<td>—</td>
<td>n/d</td>
<td>0.013 (0.368 ± 0.016)</td>
</tr>
<tr>
<td>Maui/Molokai</td>
<td><0.0001 (0.844 ± 0.011)</td>
<td><0.0001 (0.999 ± 0.001)</td>
<td>—</td>
<td>n/d</td>
</tr>
<tr>
<td>Hawaii</td>
<td><0.0001 (0.844 ± 0.011)</td>
<td><0.0001 (0.999 ± 0.001)</td>
<td><0.0001 (0.999 ± 0.001)</td>
<td>—</td>
</tr>
</tbody>
</table>

P values presented in parentheses, with *P* > 0.05 for all comparisons. n/d, not determined.

Figure 2. mtDNA haplotype networks of (a) *Caranx ignobilis* and (b) *C. melampygus* from the high Hawaiian Islands depicting the nesting levels used to infer historical processes in each species. Sampled haplotypes are indicated by a name (i.e., C1X or CmX), whereas black dots represent unsampled (i.e., missing) haplotypes. The rectangle represents the haplotype with the highest out-group probability according to the TCS (Clement et al. 2000) analysis. The size of ovals and the rectangle are proportional to the frequency at which a haplotype was recovered (for exact haplotype frequencies, see Supplementary Material S1). Color codes for each island population are presented in the legend. Note that in spite of variable lengths, each branch implies a single mutational difference between haplotypes.
Evolutionary History and Demographics of *C. ignobilis* and *C. melampygus* in the High Hawaiian Islands

The data presented here suggest *C. ignobilis* and *C. melampygus* have experienced different evolutionary histories in Hawai‘i. Previous work estimated the mutation rate of fish ATPase genes to be ~1.3% per million years (My) (Bermingham et al. 1997). Based on this approximation, the level of sequence divergence (i.e., 10.4–11.8%) between the clades could potentially produce such a pattern. Additionally, Fu’s *F*_T and *H*_R tests suggest that *C. melampygus* has undergone recent population expansion, whereas *C. ignobilis* has not (Table 1). At least 3 hypotheses can be proposed that might account for this difference. First, *C. melampygus* may have colonized the high Hawaiian Islands more recently than *C. ignobilis*. Second, dietary differences and resource partitioning between these sympatric species (Meyer et al. 2001) imply each occupies a unique feeding niche. Under this scenario, *C. melampygus* may be continuing to undergo expansion within its niche, whereas *C. ignobilis* has already reached demographic stability within its own. Third, high variance in the reproductive success of *C. melampygus* relative to *C. ignobilis* could also produce a signal of expansion in the former species; such demographic peaks and contractions due to varying reproductive success have been observed in other marine fish species (e.g., Grant and Bowen 1998). Studies designed to distinguish between these (or additional) alternative hypotheses will provide valuable insight into the biology of *Caranx* species, both in Hawai‘i and in general.

Hybridization between *C. ignobilis* and *C. melampygus* of the High Hawaiian Islands

Murakami et al. (2007) previously reported on the occurrence of 2 *Caranx* hybrids from waters surrounding O‘ahu, Hawai‘i. The hybrid nature of these specimens was initially raised due to their intermediate phenotype between *C. ignobilis* or *C. sexfasciatus* and *C. melampygus*. Subsequent morphological and molecular analyses confirmed this suspicion, and in both cases, mitochondrial data identified *C. melampygus* as the maternal lineage (Murakami et al. 2007). However, missing from this analysis was an assessment of whether *C. melampygus* could also serve as the paternal parent in hybridizations. The frequency of hybrids in the population and their distribution across the high Hawaiian Island were also not addressed.

Here, 2 of 33 *C. ignobilis* were apparent hybrids because they harbored mitochondrial haplotypes from *C. melampygus* while possessing phenotypic traits identifiable with *C. ignobilis*. These individuals were caught, tagged, and sampled on the islands of Maui and Hawai‘i (Supplementary Material S1), suggesting hybrids are not confined to O‘ahu. In addition, assuming the *C. ignobilis* individuals included in this study are a random sampling of the species, *C. ignobilis × C. melampygus* hybrids represent ~6% of the standing population. Although this value is relatively low, it does result in measurable gene
flow between the species, as indicated by the pairwise ΦST statistics (see Results). It also appears that mtDNA introgression is asymmetric as none of the 58 C. melampygus examined here possessed mitochondrial haplotypes from C. ignobilis or other Caranx species.

Members of the genus Caranx are just some of the many fish species capable of natural hybridization (reviewed by Campton 1987), but how hybrids are conceived remains to be determined because little information exists on the natural spawning behaviors of C. ignobilis and C. melampygus (reviewed by Murakami et al. 2007). In the Philippines, single male and female C. ignobilis pairs have been observed to simultaneously release gametes into the water column following a period of courtship (von Westernhagen 1974). If C. melampygus spawns in a similar fashion, time and place as that of C. ignobilis, hybridizations may happen accidentally as heterospecific gametes inadvertently encounter each other. However, although accidental cross-fertilization is a valid possibility, the finding that C. melampygus is consistently the maternal lineage in these hybridizations suggests alternative explanations. For example, C. melampygus may be incapable of being the paternal lineage due to gamete incompatibility and/or nonviability of hybrid offspring from such a cross. Another possibility is that Caranx species such as C. ignobilis and C. sexfasciatus possess behaviors similar to some salmonids, where males opportunistically “sneak” and raid spawning events of other closely related and numerically dominant species when they cannot find a conspecific mate (e.g., Garcia-Vazquez et al. 2002). As mentioned previously, catch data imply that C. melampygus is much more common than other jack species in Hawai‘i (e.g., Meyer et al. 2001; Tagawa and Tam 2006), which is consistent with such a hypothesis. In either case, the potential importance of these hybrids to the evolution of the genus Caranx deserves further attention.

Acknowledgments
We would like to thank Richard Beebe, Keith Caldwell, Clay Ching, Chris Gerken, Race Hozaki, Robert Kikuta, Paul, Nelson Nagamine, Glenn Oyamor, Robert Takeuchi, Clayward Tam, Ross Tanoue, Keoni Walters, Justin Yamagata, and the participants of the S. Tokunaga Store 2007 Ulua Challenge Tournament for assistance in collecting the samples utilized in this study. Special thanks to Mike N. Yamamoto and Thomas Y. Iwai Jr. (State of Hawai‘i Division of Aquatic Resources), as well as 3 anonymous reviewers, for making valuable comments that improved this manuscript. This is contribution #69 to the Auburn University (AU) Marine Biology Program. The experiments conducted in this study comply with current laws of the United States and the State of Hawai‘i.

References

Received April 21, 2010; Revised July 1, 2010;
Accepted August 17, 2010

Corresponding Editor: Jose Lopez