Slow pathway ablation using electro-anatomical mapping in a patient with corrected transposition of the great arteries, dextrocardia, and atrioventricular nodal reentrant tachycardia

Kaijun Cui¹, Xiaoping Chen¹, and Jiong Li²*

¹Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China and ²State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China

* Corresponding author. Tel: +86 15908181620; fax: +86 02885422175, Email: jionglhh@sina.com

We reported a 26-year-old female with congenitally corrected transposition of the great arteries, dextrocardia, cardiac situs inversus, and episodes of supraventricular tachycardia (A). A three-dimensional (3D) reconstruction image was made by computed tomography (CT) scan showing the detailed structure of the defects (B, C). His bundle was located at the apex of the triangle of Koch (D, E). The electrophysiological study showed slow–fast type of atrio-ventricular nodal re-entrant tachycardia (AVNRT). Successful ablation of the slow pathway was performed using an electro-anatomical mapping system (F). After 22 months of follow-up, no recurrence was noted. Congenitally corrected transposition of the great arteries and dextrocardia accompanied by AVNRT is rare. It may be helpful to invert the fluoroscopic image left to right to simulate normal anatomy. Detailed structuring using a 3D reconstruction CT scan and electro-anatomical mapping system would be of help in ablation.

Conflict of interest: none declared.

Figure 1 ECG, CT scan reconstruction image, and ablation lesion in X-ray film and CARTO system image.