Management of untreatable ventricular arrhythmias during pharmacologic challenges with sodium channel blockers for suspected Brugada syndrome

Stefano Poli1,2*,†, Mauro Tonio1†, Massimo Maiani1, Davide Zanuttini1, Luca Rebellato1, Igor Vendramin1, Ermanno Dametto3, Guglielmo Bernardi3, Flavio Bassi4, Carlo Napolitano5, Ugolino Livi1, and Alessandro Proclemer1

1Cardiothoracic Department, University Hospital of Udine, P.le Santa Maria della Misericordia, 15, 33100, Udine, Italy; 2Department of Medical, Surgical and Health Care Sciences, Postgraduate School in Cardiovascular Medicine, University of Trieste, Strada di Fiume, 447 34149 Trieste, Italy; 3Cardiology Department, “Azienda per i Servizi Sanitari n° 5”, Via Montereale, 24 33170 Pordenone, Italy; 4Emergency and Intensive Care Department, “Azienda per i Servizi Sanitari n° 5”, Pordenone, Via Montereale, 24 33170 Pordenone, Italy; and 5Molecular Cardiology, IRCCS Fondazione Maugeri, Via S. Maugeri, 10 27100 Pavia, Italy

Received 3 December 2016; editorial decision 15 March 2017; accepted 15 March 2017; online publish-ahead-of-print 17 May 2017

Pharmacologic challenge with sodium channel blockers is part of the diagnostic workout in patients with suspected Brugada syndrome. The test is overall considered safe but both ajmaline and flecainide detain well known pro-arrhythmic properties. Moreover, the treatment of patients with life-threatening arrhythmias during these diagnostic procedures is not well defined. Current consensus guidelines suggest to adopt cautious protocols interrupting the sodium channel blockers as soon as any ECG alteration appears. Nevertheless, the risk of life-threatening arrhythmias persists, even adopting a safe and cautious protocol and in absence of major arrhythmic risk factors. The authors revise the main published case studies of sodium channel blockers challenge in adults and in children, and summarize three cases of untreatable ventricular arrhythmias discussing their management. In particular, the role of advanced cardiopulmonary resuscitation with extracorporeal membrane oxygenation is stressed as it can reveal to be the only reliable lifesaving facility in prolonged cardiac arrest.

Keywords
Sodium channel blockers challenge • Brugada syndrome • Life-threatening ventricular arrhythmias • Refractory cardiac arrest • Extra-corporeal membrane oxygenation

Introduction
Brugada syndrome (BS) is characterized by specific ST segment and T wave alterations in right precordial leads positioned in the second, third or fourth intercostal space. However, it is well known that these diagnostic features can be concealed or can fluctuate even to the point of complete normalization. This is why pharmacologic challenge with sodium channel blockers is part of the diagnostic workout in patients with non-diagnostic ECG alterations, with history of unexplained syncope, who survived sudden death, or with family history of BS.

From a theoretical point of view, different sodium channel blockers are suitable for the pharmacological challenge, but flecainide and ajmaline are the most widely employed. In fact, other class I drugs, such as procainamide, are traditionally considered to be less potent than flecainide and ajmaline at unmasking a Brugada pattern in the ECG; this differences are attributable to a more rapid dissociation of the drug from the sodium channels resulting in a comparatively minor inhibition of Ina currents. In comparison to flecainide, ajmaline presents safety advantages related to its faster binding kinetics and more reliable results; it has also been shown to have a higher sensitivity, probably because it inhibits Ito currents less than flecainide.
The test is overall considered safe but both ajmaline and flecainide detain well known pro-arrhythmic properties, even in the general population.6,9 Moreover, the treatment of patients with life-threatening arrhythmias during these challenges is also not well defined.

Case reports and case studies

A few months ago, the authors [presentation of Toniolo M. at Cardiostim EHRA Europace Congress 2016] met the case of a 32-year-old woman who underwent an ajmaline challenge for a suspected BS and non-diagnostic ECG (Figure 1); a previous ECG recorded to her 5-year-old daughter had shown a typical coved type ST-segment elevation in the right precordial leads.

The test was conducted according to current best practice6,10 at the dose of 1 mg/kg at an infusion rate of 10 mg/min with continuous 12-lead ECG and blood pressure monitoring. During the test, just a slight prolongation of the QRS (from 104 to 115 ms) was observed and a Brugada type I pattern progressively emerged (Figure 2). At the end of the infusion (50 mg), the patient developed a haemodynamically stable monomorphic ventricular tachycardia (VT) at 130 bpm that was treated with a rapid infusion of 0.2 mg isoproterenol and 150 mEq/L sodium bicarbonate 8.4% (3 ampules) according to previous experiences.11–16 After this treatment, the QRS became narrower (from 200 to 150 ms), but the VT became more rapid (200 bpm), polymorphic (Figure 3), and caused haemodynamic instability and loss of consciousness. An external defibrillation with three direct current (DC) shock at 200 J was then tried but it was ineffective and converted the VT to ventricular fibrillation (VF). Advanced cardiopulmonary resuscitation (CPR) was therefore started according to current guidelines17 but, after a prolonged resuscitation with 14 DC shocks, VF persisted and evolved in an agonal rhythm with very fine waves. Therefore, the patient was placed on mechanical ventilation; moreover, mechanical chest compression with LUCAS-2TM device (Physio-Control/Jolife AB, Lund, Sweden) was started. The patient was then transferred to our hospital (50 km away) in about 40 min in order to provide advanced haemodynamic support with veno-arterial (VA) extracorporeal membrane oxygenation (ECMO). At the admission to Interventional Catheterization Laboratory, the cardiac rhythm was still a fine wave, agonal, VF. The estimated low flow time was 180 min and haemogasanalysis showed a metabolic acidosis (pH 7.12) with very elevated serum lactates (17 mmol/L). Surgical placement of an ECMO was performed in about 15 min. After 30 min from ECMO placement, a transcutaneous ventricular pacing was effective and in further 35 min the recovery of spontaneous sinus rhythm with narrow QRS was witnessed (all the rhythm’s sequence is represented in Figure 4). The clinical conditions improved dramatically in a few days: on hospital day 4, ECMO was removed. The patient was extubated on hospital day 5 and presented completely normal cerebral function (CPC 1)18 after discontinuation of sedatives. To the best of our knowledge, there is only another published report of survival from cardiac arrest without neurological sequelae after a comparable time to the return of spontaneous circulation; in that case, the cardiac arrest was secondary to ischaemia during a myocardial infarction.19

A cardiac magnetic resonance (CMR) could not demonstrate any structural cardiac diseases and excluded out-of-range ventricular dimensions,20 whereas the ECG progressively evolved showing a spontaneous Brugada type I pattern. Genetic testing was carried out in search of a genetic disorder but results were negative. The patient was discharged on hospital day 8 with normal electrocardiogram (ECG) and normal cardiac tests.

Figure 1 Non-diagnostic ECG at first presentation.
with a custom NGS panel (Ion Torrent – Thermofisher) followed by Sanger double strand sequencing for confirmation. A single nucleotide transition leading to a mis-sense mutation in the SCN5A gene (n.3080G > A—p.R1027Q) was identified. This variant was previously reported and showed to impair the sodium current inactivation process. An additional intronic single nucleotide (n.483-18 C > G) with possible but not certain effect on the splicing of SCN5A based on bioinformatics analysis (http://www.fruitfly.org/seq_tools/splice.html) was identified; this latter variant mutation was present also in the daughter, who has a BS phenotype, thus supporting its pathophysiologic role. For these reasons, our index case could harbor a compound heterozygote SCN5A mutation.

Scarce and contrasting data are available in current literature on the incidence of major arrhythmias during pharmacologic challenge with sodium channel blockers: a review of existing reports on ajmaline and flecainide challenges are presented in Table 1; on the largest registries available is that of Conte et al. which counts 1043 patients from 1992 to 2013: just 9 out of 503 patients with positive ajmaline challenge (1.8%) presented sustained ventricular arrhythmias (6 VF, 3 haemodynamically instable VT) but they tended to be partially refractory to defibrillation/ cardioversion (mean 2.3 DC shocks per patient). Only 1 patient experienced an ECMO placement for refractory cardiac arrest. Data from another large registry reported an even lower prevalence (0.3%) of major arrhythmias; however, in this registry, very strict safety measures were adopted, with 24% of tests stopped for QRS widening or premature ventricular complexes (PVCs) and the protocol was slightly less aggressive (1 mg/kg in 5–10 min instead of in 5 min). Similarly, in the registry of Postema et al. there were no reported cases of tachyarrhythmias while there was only one case of sinus arrest out of 269 patients tested; the protocol adopted was cautious (10 mg/min up to 1 mg/kg stopping if Brugada type I developed, if there was a QRS widening to ≥140% of basal duration or if arrhythmias occurred); lastly, also the report of Zorzi et al. did not document arrhythmic events. Conversely, other groups had previously reported a higher incidence (from 6.2 to 18%) of major arrhythmias during sodium channel blockers challenge, but this was probably due to the presence of baseline spontaneous Brugada pattern type I ECG in most of the patients enrolled. In 3 of these studies, the drug used was pilsicainide.

In literature, there is also another published case of flecainide challenge in a 16-year-old woman complicated by refractory cardiac arrest (RCA) which needed ECMO placement, but in that case, cardiac CMR and genetic tests revealed the presence of an underlying arrhythmogenic right ventricular cardiomyopathy. The three reported cases of ECMO placement for RCA after sodium channel blockers administration are reported in Table 2. Moreover, in literature there are now at least four published case reports demonstrating the successful use of ECMO as salvage therapy following severe flecainide intoxication.

Figure 2 (A) ECG at 1 min, after the first bolus of ajmaline. (B) ECG at 2 min, after the second bolus of ajmaline. (C) ECG at 3 min, after the third bolus of ajmaline. (D) ECG at 4 min, after the fourth bolus of ajmaline, showing a slight, though not significative, prolongation of the QRS. (E) ECG at 5 min, after the last infusion of ajmaline, showing significative QRS prolongation and emergence of Brugada type 1 pattern.

Figure 3 (A) ECG showing ventricular tachycardia induction by a premature ventricular contraction (*). (B) ECG showing monomorphic ventricular tachycardia (130 bpm) before the infusion of isoproterenol. (C) ECG after the infusion of isoproterenol showing a more rapid (200 bpm) ventricular tachycardia with a narrower QRS.
Risk factors for ventricular arrhythmias

The 2005 consensus conference suggested to adopt cautious protocols interrupting the sodium channel blocker test as soon as Brugada pattern type I emerges, QRS broadens to ≥130% of baseline or frequent PVCs appear. However, this strategy could determine a certain percentage of false negative results, so it was proposed to interrupt the test when the QRS broadens to ≥150% in patients without baseline intraventricular conduction anomalies and when the QRS broadens to ≥125% in patients with baseline intraventricular conduction prolongation. Furthermore, wider than normal basal QRS was associated to major arrhythmias during ajmaline challenge, especially if associated with a positive test (emergence of Brugada type I pattern).

The 2013 expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes and the 2015 guidelines for the management of patients with ventricular arrhythmias explicitly suggest to monitor the patient with right precordial leads positioned also in the upper intercostal spaces (third and second), as it is normal practice for baseline-ECG identification of Brugada Type I. In fact, it was confirmed that high-positioned right precordial leads are more sensitive in identifying Brugada Type-I during the pharmacologic challenge, with a trend towards a minor dose of ajmaline administrated in case of presence of Brugada Type-I in the high-positioned right precordial leads. However, this practice could result in an overdiagnosis of BS, particularly in patients displaying a Brugada Type-I only after a drug challenge. Data suggest the latter population is at very low risk and that the presumed false-positive rate of pharmacologic challenge is not trivial. In addition, Miyamoto et al. could not demonstrate the occurrence of cardiac events in the follow-up of patients with a positive class I drugs challenge with both normal and high-positioned right precordial leads. However, it is the authors’ opinion that the systematic use of high-positioned right precordial leads should be registered for safety reasons during every sodium channel blockers challenge; in fact, in the case index, it is not possible to rule out that the test would have been interrupted earlier, avoiding the subsequent cardiac complications, if high-positioned right precordial leads had been registered.

Other possible risk factors for ventricular arrhythmias are an history of sinus node dysfunction or atrioventricular conduction disturbances. The latter have been reported in association with specific mutations of sodium channels, with increased sensitivity to sodium channels blockers and higher risk of ventricular arrhythmias during ajmaline test. As known, patients harboring SCN5A mutations can be particularly prone to the slowing of intraventricular and atrioventricular conduction; therefore it is advisable to take into account the genetic findings whenever available and to adapt the
<table>
<thead>
<tr>
<th>Investigator</th>
<th>Number of patients</th>
<th>Age (years)</th>
<th>Males</th>
<th>Brugada ECG Type 1</th>
<th>Brugada ECG Type 2</th>
<th>Ajmaline</th>
<th>Flecainide</th>
<th>Number of symptomatic patients</th>
<th>Syncope/ pre-syncope</th>
<th>Aborted sudden death</th>
<th>Familial SCD</th>
<th>Positive test</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolf et al. 2003</td>
<td>158</td>
<td>42 (11–89)</td>
<td>NA</td>
<td>0</td>
<td>158 (100%)</td>
<td>0 (0%)</td>
<td>119</td>
<td>95</td>
<td>21</td>
<td>56</td>
<td></td>
<td>37 (23%)</td>
<td>2 sustained ventricular Tachycardia (1 53 year old female; 1 40 year old male)</td>
</tr>
<tr>
<td>Gasparini et al. 2003</td>
<td>22</td>
<td>34 (15–63)</td>
<td>19</td>
<td>NA</td>
<td>0 (0%)</td>
<td>21 (95%)</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td></td>
<td>21 (95%)</td>
<td>2 sustained ventricular Tachycardia (gender and age not specified)</td>
</tr>
<tr>
<td>Hong et al. 2004</td>
<td>71</td>
<td>NA</td>
<td>NA</td>
<td>24</td>
<td>71 (100%)</td>
<td>0 (0%)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>30 (42%)</td>
<td>None reported</td>
</tr>
<tr>
<td>Wolpert et al. 2005</td>
<td>22</td>
<td>NA</td>
<td>NA</td>
<td>15</td>
<td>22 (100%)</td>
<td>22 (100%)</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>22 (100%)</td>
<td>3 isolated premature ventricular beats (gender and age not specified)</td>
</tr>
<tr>
<td>Batchvarov et al. 2009</td>
<td>148</td>
<td>36 ± 15</td>
<td>92 (62%)</td>
<td>0</td>
<td>148 (100%)</td>
<td>0 (0%)</td>
<td>NA</td>
<td>24</td>
<td>19</td>
<td>46</td>
<td></td>
<td>30 (20%)</td>
<td>3 short runs of ventricular Tachycardia (1 50 year old male, 1 57 year old male, 1 40 year old female)</td>
</tr>
<tr>
<td>Veltmann et al. 2009</td>
<td>677</td>
<td>42.5 ± 16</td>
<td>393 (58%)</td>
<td>0</td>
<td>110</td>
<td>677 (100%)</td>
<td>0 (0%)</td>
<td>246</td>
<td>12</td>
<td>25</td>
<td></td>
<td>262 (39%)</td>
<td>8 isolated premature ventricular beats (gender and age not specified)</td>
</tr>
<tr>
<td>Postema et al. 2010</td>
<td>269</td>
<td>42 ± 14</td>
<td>149 (55%)</td>
<td>0</td>
<td>NA</td>
<td>269 (100%)</td>
<td>0 (0%)</td>
<td>60</td>
<td>47</td>
<td>13</td>
<td>91 (34%)</td>
<td>91 (34%)</td>
<td>1 atrial fibrillation (female)</td>
</tr>
<tr>
<td>Govindan et al 2010</td>
<td>183</td>
<td>36 ± 14</td>
<td>112 (61%)</td>
<td>0</td>
<td>NA</td>
<td>183 (100%)</td>
<td>0 (0%)</td>
<td>NA</td>
<td>26</td>
<td>18</td>
<td>31 (16%)</td>
<td>None reported</td>
<td></td>
</tr>
<tr>
<td>Zorzi et al. 2012</td>
<td>153</td>
<td>42 ± 14</td>
<td>128 (83%)</td>
<td>0</td>
<td>91</td>
<td>79 (52%)</td>
<td>74 (48%)</td>
<td>41</td>
<td>36</td>
<td>5</td>
<td>76 (50%)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Conte et al. 2013</td>
<td>1043</td>
<td>40.7</td>
<td>292 (28%)</td>
<td>0</td>
<td>66</td>
<td>1043 (100%)</td>
<td>0 (0%)</td>
<td>232</td>
<td>130</td>
<td>18</td>
<td>503 (48%)</td>
<td>503 (48%)</td>
<td>6 ventricular fibrillation (one with recovery after more than 10 shocks and ECMO implantation)</td>
</tr>
<tr>
<td></td>
<td>5 females; mean age 26 and 1 29 year old male</td>
</tr>
<tr>
<td></td>
<td>3 sustained ventricular Tachycardia (with necessity of DC shock) — 3 males; mean age 27</td>
</tr>
<tr>
<td>Investigator</td>
<td>Number of patients</td>
<td>Age (years)</td>
<td>Males</td>
<td>Brugada ECG Type 1</td>
<td>Brugada ECG Type 2</td>
<td>Ajmaline</td>
<td>flecainide</td>
<td>Number of symptomatic patients</td>
<td>Syncope/ pre-syncope</td>
<td>Aborted sudden death</td>
<td>Familial SCD</td>
<td>Positive test</td>
<td>Complications</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------</td>
<td>-------------</td>
<td>-------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>McMillan et al. 2014</td>
<td>95</td>
<td>12.5 ± 3.3</td>
<td>54 (56%)</td>
<td>0</td>
<td>0</td>
<td>95 (100%)</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>39</td>
<td>19 (20%)</td>
<td>None</td>
</tr>
<tr>
<td>Gandjbakhch et al. 2014</td>
<td>3</td>
<td>50.3 ± 14.6</td>
<td>2 (66%)</td>
<td>0</td>
<td>1</td>
<td>3 (100%)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>3 syncopal polymorphic ventricular Tachycardia after widening of QRS (2 males; 1 female)</td>
</tr>
<tr>
<td>Conte et al. 2014</td>
<td>169</td>
<td><12</td>
<td>24 (60%)</td>
<td>0</td>
<td>3</td>
<td>169 (100%)</td>
<td>0</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>24</td>
<td>40 (24%)</td>
<td>1 polymorphic ventricular fibrillation with recovery after DC shock (gender and age not specified) (1 male)</td>
</tr>
<tr>
<td>Wong et al. 2014</td>
<td>2</td>
<td>10.5</td>
<td>1 (50%)</td>
<td>0</td>
<td>NA</td>
<td>2 (100%)</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>2 (100%)</td>
<td>None reported</td>
</tr>
<tr>
<td>Andorin et al. 2016</td>
<td>70</td>
<td>13.7</td>
<td>NA</td>
<td>0</td>
<td>NA</td>
<td>42 (60%)</td>
<td>27 (39%)</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>70 (100%)</td>
<td>2 non-sustained ventricular Tachycardia (16 and 17 year old, gender not available)</td>
</tr>
</tbody>
</table>

SCD, sudden cardiac death.

aData are available only for the population with positive provocative test.

Table 2: Characteristics of patients who experienced ECMO implantation for untreatable ventricular arrhythmias after sodium channel blockers challenge: all patients were young females

<table>
<thead>
<tr>
<th>Author</th>
<th>Age</th>
<th>Sex</th>
<th>Drug (mg)</th>
<th>Previous symptoms</th>
<th>Life-threatening arrhythmia</th>
<th>Numbers of DC shock before ECMO implantation</th>
<th>Death or neurological damages</th>
<th>SCN5A mutation</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conte et al. 2013</td>
<td>24</td>
<td>Female</td>
<td>Ajmaline (no reported dose)</td>
<td>Syncope</td>
<td>Ventricular fibrillation</td>
<td>>10</td>
<td>No</td>
<td>No</td>
<td>Brugada syndrome</td>
</tr>
<tr>
<td>Corrado et al. 2016</td>
<td>16</td>
<td>Female</td>
<td>Flecainide (50 mg)</td>
<td>NA</td>
<td>Atrioventricular block and ventricular fibrillation</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>ARVC with Brugada ECG pattern</td>
</tr>
<tr>
<td>Poli et al.</td>
<td>32</td>
<td>Female</td>
<td>Ajmaline (50 mg)</td>
<td>None</td>
<td>Ventricular tachycardia and ventricular fibrillation</td>
<td>20</td>
<td>No</td>
<td>Yes</td>
<td>Brugada syndrome</td>
</tr>
</tbody>
</table>

ARVC, arrhythmogenic right ventricular cardiomyopathy.
addition, it prolongs ventricular refractoriness.52,53 Conversely iso-
the Ito outward current, thereby restoring electrical homogeneity; in
class IA antiarrhythmic exerts its beneficial effects in BS by inhibiting
safe and cautious protocol in patients without known risk factors.
junction. These aspects confirm the intrinsic presence of a not negli-
she had no history of abnormalities of sinus node or atrioventricular
variants.
In BS, male sex has been found to confer a higher arrhythmic risk.48
In spite of it, we find it interesting to note that ECMO, in all the
reported cases, was exclusively used in females.
Benito et al.99 found that women showed more conduction distur-
bances and longer QTc interval in response to sodium channel block-
ners than men. For these electrocardiographic characteristics, even if
men display a greater risk profile at baseline, women could have a
higher arrhythmic risk in response to sodium-blockers, even adopting a
safe and cautious protocol in patients without known risk factors.
In BS, male sex has been found to confer a higher arrhythmic risk.48
In spite of it, we find it interesting to note that ECMO, in all the
reported cases, was exclusively used in females.

The patient described in the index case, presented a normal QRS
at baseline and just slight QRS widening at the end of the test, with
the simultaneous appearance of Brugada type I pattern. In addition,
she had no history of abnormalities of sinus node or atrioventricular
junction. These aspects confirm the intrinsic presence of a not negli-
gible risk connected with sodium channel blockers, even adopting a
safe and cautious protocol in patients without known risk factors.

Safety of sodium channel-blockers challenge in children
Concerning the role of ajmaline challenge in children, data on safety
are quite conflicting; Mc Millan et al.28 could not demonstrate the
occurrence of ventricular arrhythmias in 98 children with a positive
test in 20% of the individuals. On the other hand, Conte et al.29
reported their experience of 40 positive ajmaline challenges in chil-
dren younger than 12 years, where 10% of tests were complicated by
arrhythmias. In their survey, ajmaline-induced sustained ventricular
arrhythmias were observed more frequently in children compared
with older patients (10% vs. 1.3%). However, BS seems to have a
benign behaviour in children and it is likely characterized by an age-
dependent penetrance too. The use of pharmacologic challenges at a
young age appears to be questionable, because of the low risk of life-
threatening arrhythmias in patients without a spontaneous type I

Treatment of life-threatenig
ventricular arrhythmias
The optimal treatment of life-threatening ventricular arrhythmias
refractory to multiples DC shock is not clearly established. It seems
logical that the first approach should be pharmacologic. The use of
oral quinidine or intravenous isoproterenol in patients with BS to
treat electrical storms is supported by literature.11–13,51 Quinidine, a
class IA antiarrhythmic exerts its beneficial effects in BS by inhibiting
the Ito outward current, thereby restoring electrical homogeneity; in
addition, it prolongs ventricular refractoriness.52,53 Conversely iso-
proterenol, stimulating beta-adrenoeceptors, and augmenting Ica,
reduces ST segment elevation in patients with BS.54 Isoproterenol
was effective in suppressing VF in a 36-year-old male with BS12 and
subsequently determined the disappearance of the short-coupled
PVCs, which are the triggers of VF. The efficacy of isoproterenol was
also confirmed in a case series of Watanabe et al.13 in which ventricu-
lar arrhythmias were successfully abolished after the infusion of iso-
proterenol in 6 patients with BS. However, the role of both quinidine
and isoproterenol to treat iatrogenic VT in suspected BS is not clear
and has not been previously described. Moreover, quinidine is often
not available in Emergency Departments and Intensive Care Units
due to supply shortages in the market.55 Sodium bicarbonate is an
appropriate treatment of sodium channel blockers-induced cardi-
oxicity26 and its indications are cardiac arrest, widening of QRS
complex and hypotension refractory to intravenous fluid therapy.57
After administration of sodium bicarbonate as an antidote, the QRS
duration narrows with possible normalization of the ECG. The effi-
cacy of sodium bicarbonate is supported by animal studies and human
cases both in adults and in children.14,16,58 The effect is likely medi-
ated by systemic alkalaemia and provision of sodium ions to myocar-
dial fast-acting sodium channels. Magnesium is usually the drug of
choice to treat torsade de pointes30 but not to treat VT induced by
sodium channel blockers. A case report describing its use in flecainide-toxicity has been published59, but available data do not sup-
port this indication. Anyway, survival and complete recovery of
patients with cardiac arrest and very prolonged time to return of
spontaneous circulation seem to be rare. On the other hand, recent
advances in resuscitative medicine have provided interesting tools to
promote survival in the appropriate setting. ECMO is an option of
 treatment for refractory cardiogenic shock or cardiac arrest in
patients with reversible underlying pathology.60 Acute poisoning rep-
resents an indication for ECMO because restoring circulation allows
for intrinsic drug metabolism and elimination.61 This strategy is lim-
ited to a restricted number of centres with capabilities to implant
ECMO and manage patients on this support. As an additional therapy
to traditional advanced CPR management, ECMO has improved out-
comes in terms of survival to hospital discharge and outcomes at 1
year.62 The authors’ opinion is that sodium channel blockers chal-
lenge should be performed under close supervision in an appropriate
environment with all advanced CPR facilities available, ideally includ-
ing the possibility of performing a VA ECMO in case of untreated
ventricular arrhythmias.
ECG pattern. It must also be considered that the management of young patients is further made difficult by a different benefit-risk ratio of implantable device: in this subgroup, positioning an Implantable Cardioverter Defibrillator (ICD) has a higher risk of inappropriate shocks and infections, not considering the higher probability of catheter dislocation related to body growth.

On this topic, Andorin et al. have recently published a proposal of evidence based management of children with a suspected BS, in which genetic tests play a crucial role in the decision for or against the implantation of an ICD, regardless of pharmacologic challenges.

Conclusions

This review supports the evidence that sodium channel blockers challenge in suspected BS can have major, though rare, complications and should always be carried out in a safe and monitored environment, strictly adhering to protocols. Moreover, the possible occurrence of a cardiac arrest refractory to ordinary CPR maneuvers should be kept in mind, especially when dealing with young patients; however, in these circumstances the clinical outcome after a prolonged cardiac arrest seems to be excellent. Therefore, the availability of advanced CPR techniques should always be checked. The creation of an international registry of untreatable ventricular arrhythmias during sodium channel blockers challenge would be desirable in order to describe their actual epidemiology and to improve their management.

Conflict of interest: none declared.

References

Management of life-threatening ventricular arrhythmias during pharmacologic challenge for Brugada syndrome

