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Abstract
Evolutionary multiobjective optimization for the classical vertex cover problem has
been analysed in Kratsch and Neumann (2013) in the context of parameterized com-
plexity analysis. This article extends the analysis to the weighted vertex cover prob-
lem in which integer weights are assigned to the vertices and the goal is to find a
vertex cover of minimum weight. Using an alternative mutation operator introduced
in Kratsch and Neumann (2013), we provide a fixed parameter evolutionary algorithm
with respect to OPT, the cost of an optimal solution for the problem. Moreover, we
present a multiobjective evolutionary algorithm with standard mutation operator that
keeps the population size in a polynomial order by means of a proper diversity mech-
anism, and therefore, manages to find a 2-approximation in expected polynomial time.
We also introduce a population-based evolutionary algorithm which finds a (1 + ε)-
approximation in expected time O(n · 2min{n,2(1−ε)OPT } + n3).

Keywords
Parameterized analysis, global SEMO, weighted vertex cover problem.

1 Introduction

The area of runtime analysis has provided many rigorous new insights into the working
behaviour of bio-inspired computing methods such as evolutionary algorithms and ant
colony optimization (Auger and Doerr, 2011; Jansen, 2013; Neumann and Witt, 2010).
In recent years, the parameterized analysis of bio-inspired computing has gained addi-
tional interest (Kratsch et al., 2010; Kratsch and Neumann, 2013; Sutton and Neumann,
2012; Sutton et al., 2014). Here, the runtime of bio-inspired computing is studied in de-
pendence of the input size and additional parameters such as the solution size and/or
other structural parameters of the given input.

One of the classical problems that has been studied extensively in the area of run-
time analysis is the classical NP-hard vertex cover problem. Here, an undirected graph
is given and the goal is to find a minimum set of vertices V ′ such that each edge has
at least one endpoint in V ′. Friedrich et al. (2010) have shown that the single-objective
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evolutionary algorithm (1 + 1) EA cannot achieve a constant approximation ratio in ex-
pected polynomial time. Furthermore, they have shown that a multiobjective approach
using Global Simple Evolutionary Multiobjective Optimizer (Global SEMO) gives a
factor O(log n) approximation for the wider classes of set cover problems in expected
polynomial time. Further investigations regarding the approximation behaviour of evo-
lutionary algorithms for the vertex cover problem have been carried out in Friedrich
et al. (2009) and Oliveto et al. (2009). Edge-based representations in connection with
different fitness functions have been investigated in Jansen et al. (2013) and Pourhas-
san et al. (2015) according to their approximation behaviour in the static and dy-
namic setting. Kratsch and Neumann (2013) have studied evolutionary algorithms and
the vertex cover problem in the context of parameterized complexity (Downey and
Fellows, 1999). They have shown that Global SEMO, with a problem specific muta-
tion operator is a fixed parameter evolutionary algorithm for this problem (for details
about fixed parameter evolutionary algorithms, please refer to [Kratsch and Neumann,
2013]), and finds 2-approximations in expected polynomial time. Kratsch and Neu-
mann (2013) have also introduced an alternative mutation operator and have proved
that Global SEMO using this mutation operator finds a (1 + ε)-approximation in ex-
pected time O(n2 log n + OPT · n2 + n · 4(1−ε)OPT ). Jansen et al. (2013) have shown that
a 2-approximation can also be obtained by using an edge-based representation in the
(1 + 1) EA combined with a fitness function formulation based on matchings.

In this article, we consider the weighted vertex cover problem where integer
weights on the vertices are given and the goal is to find a vertex cover of minimum
weight. We extend the investigations carried out in Kratsch and Neumann (2013) to the
weighted minimum vertex cover problem. In Kratsch and Neumann (2013), multiobjec-
tive models in combination with a simple multiobjective evolutionary algorithm called
Global SEMO are investigated. The secondary objective that is studied there is the solu-
tion for the LP relaxation of the problem, which helps the evolutionary algorithm con-
struct LP-based approximation solutions. One key argument for the results presented
for the (unweighted) vertex cover problem is that the population size is always upper
bounded by n + 1. This argument does not hold in the weighted case. Therefore, we
study how a variant of Global SEMO using appropriate diversity mechanisms is able
to deal with the weighted vertex cover problem.

The focus of this article is on the expected time (number of fitness evaluations) of
the algorithms to find good approximations of an optimal solution. The time complex-
ity analysis is performed with respect to n, Wmax , and OPT, which denote the number of
vertices, the maximum weight in the input graph, and the cost of the optimal solution
respectively. We first study the expected time until Global SEMO with standard muta-
tion operator has found a 2-approximation in dependence of n and OPT. Afterwards, we
analyse the expected time that Global SEMO requires to find a solution with expected
approximation ratio (1 + ε) for this problem when the algorithm uses an alternative mu-
tation operator. Furthermore, this article considers DEMO, a variant of Global SEMO,
which incorporates ε-dominance (Laumanns et al., 2002) as a diversity mechanism. It
is shown that DEMO finds a 2-approximation in expected polynomial time. Finally, a
population-based approach is presented that obtains a solution that has approximation
ratio (1 + ε) in expected time O(n · 2min{n,2(1−ε)OPT } + n3).

This article extends the conference version (Pourhassan et al., 2016) by giving com-
plete proofs for a number of lemmata (Lemmata 4, 5, 11, and 12), that are not con-
tained in the conference version. Furthermore, it analyses the expected time until Global
SEMO with standard mutation operator has found a 2-approximation (Section 3.1), and
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provides a population-based approach that obtains a solution that has approximation
ratio (1 + ε) in expected time O(n · 2min{n,2(1−ε)OPT } + n3) (Section 5).

The outline of the article is as follows. In Section 2, the problem definition is pre-
sented as well as the classical Global SEMO algorithm and DEMO algorithm. Runtime
analysis for Global SEMO is presented in Section 3 with the standard mutation operator
investigated in Section 3.1 for finding a 2-approximation, and the alternative mutation
operator analysed in Section 3.2 for finding a (1 + ε)-approximation. Section 4 includes
the analysis that shows DEMO can find 2-approximations of the optimum in expected
polynomial time. The population-based algorithm is defined and investigated for find-
ing a (1 + ε)-approximation in Section 5. At the end, in Section 6 we summarize and
conclude.

2 Preliminaries

We consider the weighted vertex cover problem defined as follows. Given a graph
G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}, and a posi-
tive weight function w : V → N

+ on the vertices, the goal is to find a subset of vertices,
VC ⊆ V , that covers all edges and has minimum weight; that is, ∀e ∈ E, e ∩ VC �= ∅ and∑

v∈VC
w(v) is minimized. We consider the standard node-based approach; that is, the

search space is {0, 1}n and for a solution x = (x1, . . . , xn) the vertex vi is chosen iff xi = 1.
The weighted vertex cover problem has the following Integer Linear Programming

(ILP) formulation.

min

n∑
i=1

w(vi ) · xi

st. xi + xj ≥ 1 ∀ [vi, vj ] ∈ E

xi ∈ {0, 1} ∀ 1 ≤ i ≤ n.

By relaxing the constraint xi ∈ {0, 1} to xi ∈ [0, 1], the linear program formulation of
Fractional Weighted Vertex Cover is obtained. Hochbaum (1983) has shown that we can
find a 2-approximation using the LP result of the relaxed weighted vertex cover. This
can be done by including any vertex vi for which xi ≥ 1

2 .
We consider primarily multiobjective approaches for the weighted vertex cover

problem. Given a multiobjective fitness function f = (f1, . . . , fd ) : S → R
n, defined on

the solution set S, where all d objectives should be minimized, we have f (x) ≤ f (y) iff
fi (x) ≤ fi (y), 1 ≤ i ≤ d. We say that x (weakly) dominates y iff f (x) ≤ f (y). Further-
more, we say that x (strongly) dominates y iff f (x) ≤ f (y) and f (x) �= f (y). A solution
x∗ is Pareto optimal if there is no solution that can strongly dominate it. The set of Pareto
optimal solutions is called Pareto front.

We now introduce the objectives used in our multiobjective evolutionary algorithm.
Let G(x) be the graph obtained from G by removing all edges covered by the vertices
chosen by x. Formally, we have G(x) = (V,E(x)) where V (x) = V \ {vi | xi = 1} and
E(x) = E \ {e | e ∩ (V \ V (x)) �= ∅} (note that to unify the search space, we keep G and
G(x) the same vertex set). Kratsch and Neumann (2013) investigated a multiobjective
baseline algorithm called Global SEMO using the LP-value for G(x) as one of the fitness
values for the (unweighted) minimum vertex cover problem.

Our goal is to expand the analysis on behaviour of multiobjective evolutionary al-
gorithms to the weighted vertex cover problem. In order to do this, we modify the fit-
ness function that was used in Global SEMO in Kratsch and Neumann (2013), to match
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the weighted version of the problem. We investigate the multiobjective fitness function
f (x) = (Cost (x), LP(x)), where

• Cost(x) = ∑n
i=1 w(vi )xi is the sum of weights of selected vertices

• LP(x) is the value of an optimal solution of the LP for G(x).

We analyse Global SEMO with this fitness function using the standard mutation
operator flipping each bit with probability 1/n. We also investigate Global SEMO us-
ing the alternative mutation operator introduced in Kratsch and Neumann (2013) (see
Algorithm 2). By this mutation operator, the vertices that are adjacent to uncovered
edges are included with probability 1/2 in some steps.

In the fitness function used in Global SEMO, both Cost(x) and LP(x) can be exponen-
tial with respect to the input size; therefore, we need to deal with exponentially many
solutions, even if we only keep the Pareto front. One approach for dealing with this
problem is using the concept of ε-dominance (Laumanns et al., 2002). The concept of
ε-dominance has previously been proved to be useful for coping with exponentially
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large Pareto fronts in some problems (Horoba and Neumann, 2008; Neumann
et al., 2011). Having two objective vectors p = (p1, . . . , pm) and q = (q1, . . . , qm), p

ε-dominates q, denoted by p ε q, if for all i ∈ {1, . . . , m} we have pi ≤ (1 + ε)qi . Moti-
vated by this approach, DEMO (Diversity Evolutionary Multiobjective Optimizer) has
been investigated in Neumann and Reichel (2008) and Neumann et al. (2011), which
we present in Algorithm 3. In this approach, the objective space is partitioned into a
polynomial number of boxes in which all solutions ε-dominate each other, and at most
one solution from each box is kept in the population. Here, we describe the concept of
boxes and how we keep one solution for each box in detail, and in Section 4, we analyze
DEMO.

To implement the concept of ε-dominance in DEMO, we use the parameter δ = 1
2n

and define the boxing function b : {0, 1}n → N
2 as:

b1(x) = �log1+δ
(1 + Cost(x))�,

b2(x) = �log1+δ
(1 + LP(x))�.

The functions b1 and b2 partition the objective space into horizontal and vertical
stripes, which we name rows and columns, and the whole boxing function partitions the
objective space into boxes. A box can be denoted by B = (a, b), where a and b are values
of b1 and b2 for the solutions in that box, respectively.

Note that two boxes B = (a, b) and B ′ = (a′, b′) with a = a′ and b < b′ (or a < a′

and b = b′) can include search points that do not dominate each other; therefore, we may
keep solutions from different boxes with same values of b1 or b2. But if a < a′ and b < b′,
then all search points in B dominate all search points in B ′. Hence, we define dominance
among boxes as: box B = (a, b) dominates box B ′ = (a′, b′), denoted by B < B ′, if a < a′

and b < b′.
In DEMO only one nondominated solution can be kept in the population for each

box based on a predefined criteria. In our setting, among two solutions x and y from
one box, y is kept in P and x is discarded if Cost(y) + 2 · LP(y) ≤ Cost(x) + 2 · LP(x). The
reason behind this particular setting is that we aim to work on solutions x under the
constraint that Cost(x) + 2 · LP(x) ≤ 2 · OPT, because by only adding vertices to these
solutions, it is possible to obtain 2-approximate complete vertex covers.
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Analysing the runtime of our evolutionary algorithms, we are interested in the ex-
pected number of rounds of the repeat loop until a solution of desired quality has been
obtained. We call this the expected time until the considered algorithm has achieved its
desired goal.

3 Analysis of Global SEMO

In this section, we analyse the expected time of Global SEMO to find good approxima-
tions for the weighted vertex cover problem in dependence of the input size and OPT.
Before we present our analysis for Global SEMO, we state some basic properties of the
solutions in our multi-objective model. The following theorem shown by Balinski (1970)
states that all basic feasible solutions of the LP relaxation of the weighted vertex cover,
which are the extremal points or the corner solutions of the polyhedron that forms the
feasible space, are half-integral.

Theorem 1: Each basic feasible solution x of the LP relaxation of the weighted vertex cover is
half-integral; that is, x ∈ {0, 1/2, 1}n. Balinski (1970)

As a result, there always exists a half-integral optimal LP solution for a vertex cover
problem. In several parts of this article, we make use of this result. We establish the
following two lemmata which we will use later on in the analysis of our algorithms.

Lemma 2: For any x ∈ {0, 1}n, LP(x) ≤ LP(0n) ≤ OPT.

Proof: Let y be the LP solution of LP(0n). The solution 0n contains no vertices; there-
fore, y is the optimal fractional vertex cover for all edges of the input graph. Thus, for
any solution x, y is a (possibly nonoptimal) fractional cover for G(x); therefore, LP(x) ≤
LP(0n). Moreover, we have LP(0n) ≤ OPT as LP(0n) is the optimal value of the LP
relaxation. �
Lemma 3: Let x = {x1, . . . , xn}, xi ∈ {0, 1} be a solution and y = {y1, . . . , yn}, yi ∈ [0, 1] be a
fractional solution for G(x). If there is a vertex vi where yi ≥ 1

2 , mutating xi from 0 to 1 results
in a solution x ′ for which LP(x ′) ≤ LP(x) − yi · w(vi ) ≤ LP(x) − 1

2w(vi ).

Proof: The graph G(x ′) is the same as G(x) excluding the edges connected to vi . There-
fore, the solution y ′ = {y1, . . . , yi−1, 0, yi+1, yn} is a fractional vertex cover for G(x ′) and
has a cost of LP(x) − yiw(vi ). The cost of the optimal fractional vertex cover of G(x ′) is
at most as great as the cost of y ′; thus LP(x ′) ≤ LP(x) − yiw(vi ) ≤ LP(x) − 1

2w(vi ). �

3.1 2-Approximation

We now analyse the runtime behaviour of Global SEMO (Algorithm 1) with the stan-
dard mutation operator, in dependence of OPT. We start by giving an upper bound on
the population size of Global SEMO.

Lemma 4: The population size of Algorithm 1 is upper bounded by 2 · OPT + 1.

Proof: For any solution x there exists an optimal fractional vertex cover which is half-
integral (Theorem 1). Moreover, we are assuming that all the weights are integer val-
ues. Therefore, LP(x) can only take 2LP(0n) + 1 different values, because LP(0n) is an
upper bound on LP(x) (Lemma 2). For each value of LP, only one solution is in P , be-
cause Algorithm 1 keeps nondominated solutions only. Therefore, the population size
of this algorithm is upper bounded by 2 · LP(0n) + 1 which is at most 2 · OPT + 1 due
to Lemma 2. �
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For our analysis, we first consider the expected time of Global SEMO to reach a
population which contains the empty set of vertices. Once included, such a solution
will never be removed from the population as it is minimal with respect to the cost
function.
Lemma 5: The search point 0n is included in the population in expected time of
O

(
OPT · n(log Wmax + log n)

)
.

Proof: From Lemma 4 we know that the population contains at most 2 · OPT + 1 so-
lutions. Therefore, at each step, there is a probability of 1

2·OPT +1 that the solution xmin is
selected where Cost(xmin) = minx∈P Cost(x).

If Cost(xmin) > 0, there must be k ≥ 1 vertices such as vi in xmin where xi = 1. Let
�t be the improvement that happens on the minimum cost in P at step t . If all the
1-bits in solution xmin flip to zero, at the same step or different steps, a solution 0n will be
obtained with Cost(0n) = 0, which implies that the expected improvement that flipping
a randomly chosen 1-bit makes is �t = Cost (xmin )

k
at each step t . Note that flipping 1-bits

always improves the minimum cost and the new solution is added to the population.
Moreover, flipping any 0-bits does not improve the minimum cost in the population
and xmin is not replaced with the new solution in that case.

At each step, with probability at least 1
e

only one bit flips. With probability k
n

, the
flipping bit is a 1-bit, and makes an expected improvement of �t = Cost (xmin )

k
, and with

probability 1 − k
n

, a 0-bit is flipped with �t = 0. We can conclude that the expected im-
provement of minimum cost, when only one bit of xmin flips, is at least

k

n
· Cost(xmin)

k
= Cost(xmin)

n
.

Moreover, the algorithm selects xmin and flips only one bit with probability at least
1

(2·OPT +1)·e ; therefore, the expected improvement of minimum cost is bounded by

E[�t | xmin] ≥ Cost(xmin)
(2 · OPT + 1) · e · n

.

The maximum value that Cost(xmin) can take is bounded by Wmax · n, and for
any solution x �= 0n, the minimum value of Cost(x) is at least 1. Using Multiplica-
tive Drift Analysis (Doerr et al., 2012) with s0 ≤ Wmax · n and smin ≥ 1, we can con-
clude that in expected time O

(
OPT · n(log Wmax + log n)

)
solution 0n is included in the

population. �
We now show that Global SEMO is able to achieve a 2-approximation efficiently as

long as OPT is small.

Theorem 6: The expected number of iterations of Global SEMO until the population P con-
tains a 2-approximation is O(OPT · n(log Wmax + log n)).

Proof: Let x be a solution that minimizes LP(x) under the constraint that Cost(x) +
2 · LP(x) ≤ 2 · OPT. Note that this constraint holds for solution 0n since LP(0n) ≤ OPT,
and according to Lemma 5, solution 0n exists in the population in expected time of
O

(
OPT · n(log Wmax + log n)

)
.

If LP(x) = 0, then all edges are covered and x is a 2-approximate vertex cover be-
cause we have Cost(x) + 2 · LP(x) ≤ 2 · OPT as the constraint. Otherwise, some edges
are uncovered and any LP solution of G(x) assigns at least 1

2 to at least one vertex of
any uncovered edge. Let y = {y1, . . . , yn} be a basic LP solution for G(x). According to
Theorem 1, y is a half-integral solution.
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Let �t be the improvement that happens on the minimum LP value among solu-
tions that fulfil the constraint at time step t . Also, let k be the number of vertices that
are assigned at least 1

2 by y. Flipping only one of these vertices by the algorithm hap-
pens with probability at least k

e·n . According to Lemma 3, flipping one of these vertices,
vi , results in a solution x ′ with LP(x ′) ≤ LP(x) − 1

2w(vi ). Observe that the constraint of
Cost(x ′) + 2 · LP(x ′) ≤ 2 · OPT holds for solution x ′. Therefore, �t ≥ yi · w(vi ), which is
on expectation at least LP (x)

k
due to the definition of LP(x). Moreover, at each step, the

probability that x is selected and only one of the k bits defined above flips is at least
k

(2·OPT +1)·e·n . As a result we have:

E[�t | x] ≥ k

(2 · OPT + 1) · e · n
· LP(x)

k
= LP(x)

en(2 · OPT + 1)
.

According to Lemma 2, for any solution x, we have LP(x) ≤ OPT. We also know
that for any solution x which is not a complete cover, LP(x) ≥ 1 because the weights are
positive integers. Using the method of Multiplicative Drift Analysis (Doerr et al., 2012)
with s0 ≤ OPT and smin ≥ 1, in expected time of O(OPT · n log OPT) a solution y with
LP(y) = 0 and Cost(y) + 2LP(y) ≤ 2OPT is obtained which is a 2-approximate vertex
cover. Overall, since we have OPT ≤ Wmax · n, the expected time of finding this solution
is O(OPT · n(log Wmax + log n)). �

3.2 Improved Approximations by Alternative Mutation

In this section, we analyse the expected time of Global SEMO with an alternative mu-
tation operator to find a (1 + ε)-approximation.

Lemma 7: A solution x fulfilling the two properties

1. LP(x) = LP(0n) − Cost(x) and

2. there is an optimal solution of the LP for G(x) which assigns 1/2 to each non-isolated
vertex of G(x)

is included in the population of Global SEMO in expected time O(OPT · n(log Wmax + log n +
OPT)).

Proof: As the standard mutation occurs with probability 1/2 in the alternative muta-
tion operator, the search point 0n which satisfies property 1 is included in the population
in expected time of O(OPT · n(log Wmax + log n)) using the argument presented in the
proof of Lemma 5. Let P ′ ⊆ P be a set of solutions such that for each solution x ∈ P ′,
LP(x) + Cost(x) = LP(0n). Let xmin ∈ P ′ be a solution such that LP(xmin) = minx∈P ′LP(x).

If the optimal fractional vertex cover for G(xmin) assigns 1/2 to each nonisolated
vertex of G(xmin), then the conditions of the lemma hold. Otherwise, it assigns 1 to
some nonisolated vertex, say v. The probability that the algorithm selects xmin and
flips the bit corresponding to v, is �( 1

OPT ·n ) because the population size is O(OPT)
(Lemma 4). Let xnew be the new solution. We have Cost(xnew ) = Cost(xmin) + w(v), and by
Lemma 3, LP(xnew ) ≤ LP(xmin) − w(v). This implies that LP(xnew ) + Cost(xnew ) = LP(0n);
hence, xnew is a Pareto Optimal solution and is added to the population P .

Since LP(xmin) ≤ OPT (Lemma 2) and the weights are at least 1, assuming that we
already have the solution 0n in the population, by means of the method of fitness-based
partitions, we find the expected time of finding a solution that fulfils the properties
given above as O(OPT2 · n). Since the search point 0n is included in expected time
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O(OPT · n(log Wmax + log n)), the expected time that a solution fulfilling the properties
given above is included in P is O(OPT · n(log Wmax + log n + OPT)). �

We now present the main approximation result for Global SEMO using the alterna-
tive mutation operator. The general idea of the analysis given in the following theorem
is to partition the nonisolated vertices in G(x) into four subsets: S1, S2, T1, and T2, where
x denotes a solution satisfying the two properties given in Lemma 7. The precise defini-
tion of these four subsets are given in the proof of the theorem. For a new vertex cover
x ′ obtained by the alternative mutation operator on x, the analysis only considers the
probability that all vertices of S1 are chosen and no vertex of T1 is chosen in the new so-
lution x ′. The quality of x ′ highly depends on this property (including all vertices of S1
and no vertices of T1), but it also depends on the vertices chosen from S2 and T2, where
the vertices in S2 and T2 are chosen randomly with probability 1/2 by the alternative
mutation operator. Thus the analysis finds the expected time until the event that a so-
lution x ′ with the defined property is found, and the expected ratio of that solution is
considered, based on the expectation that half of the vertices in S2 and half of the ver-
tices in T2 are chosen by x ′. In the following, we first present the formal definition of
sets S1 and T1 and the mentioned property, and then we state the main theorem of this
section.

Definition 8: Let x be a solution that satisfies the two properties given in Lemma 7. Also,
let X be the set containing all nonisolated vertices in graph G(x). Moreover, let S ⊆ X be a
vertex cover of G(x) with the minimum weight over all vertex covers of G(x), and T be the
set containing all nonisolated vertices in X \ S. For a set of vertices, X′, we define Cost(X′) =∑

v∈X′ w(v). Let OPT′ = OPT − Cost(x). Let s1, . . . , s|S| be a numbering of the vertices in S

such that w(si ) ≤ w(si+1), for all 1 ≤ i ≤ |S| − 1. And let t1, . . . , t|T | be a numbering of the
vertices in T such that w(ti ) ≥ w(ti+1), for all 1 ≤ i ≤ |T | − 1. We define

• S1 = {s1, s2, . . . , sρ}, where ρ = min{|S|, �(1 − ε) · OPT′�}
• T1 = {t1, t2, . . . , tη}, where η = min{|T |, �(1 − ε) · OPT′�}

Property 9 (High-Quality solutions): We say that a solution x has the property of a
High-Quality solution if all vertices of S1 are chosen and no vertex of T1 is chosen in x.

Theorem 10: The expected time until Global SEMO has obtained a solution with Property 9
(High-Quality solution) is O(OPT · 2min{n,2(1−ε)OPT } + OPT · n(log Wmax + log n + OPT)).
Moreover, the obtained solution has expected approximation ratio of (1 + ε).

Proof: By Lemma 7, a solution x that satisfies the two properties given in Lemma 7 is
included in the population in expected time of O(OPT · n(log Wmax + log n + OPT)). Let
X, S, T , ρ, η, and Cost(X′) for a vertex set X′ be as defined in Definition 8. Due to prop-
erty 2 of Lemma 7, 1

2 Cost(S) + 1
2 Cost(T ) = LP(x) ≤ Cost(S); therefore, Cost(T ) ≤ Cost(S).

Also, let OPT′ be as defined in Definition 8. Observe that OPT′ = Cost(S), because S is
the minimum vertex cover of G(x).

With probability �( 1
OPT

), the algorithm Global SEMO selects the solution x, and
sets b = 1 in the Alternative Mutation Operator. With b = 1, the probability that the
bits corresponding to all vertices of S1 are flipped, is �(( 1

2 )ρ ), and the probability that
none of the bits corresponding to the vertices of T1 are flipped is �(( 1

2 )η ). Also, the bits
corresponding to the isolated vertices of G(x) are flipped with probability 1

n
by the Al-

ternative Mutation Operator; hence, the probability that none of them flips is �(1). As a
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result, with probability �( 1
OPT

· ( 1
2 )ρ+η ), solution x is selected, the vertices of S1 are in-

cluded, and the vertices of T1 and isolated vertices are not included in the new solution
x ′. Due to the definition of Property 9, x ′ has the property of a High-Quality solution. Since
ρ + η ≤ 2�(1 − ε) · OPT′� ≤ 2�(1 − ε) · OPT�, and also ρ + η ≤ n, the expected time un-
til solution x ′ is found after reaching solution x is O(OPT · 2min{n,2(1−ε)OPT }).

Now we show that the second statement of the theorem holds. Note that the bits
corresponding to vertices of S2 = S \ S1 and T2 = T \ T1, are arbitrarily flipped in so-
lution x ′ with probability 1/2 by the Alternative Mutation Operator. Here, we show
that for the expected cost and the LP value of x ′, the following constraint holds:
E[Cost(x ′)] + 2 · LP(x ′) ≤ (1 + ε) · OPT.

Let S ′ ⊆ S and T ′ ⊆ T denote the subset of vertices of S and T that are actually
included in the new solution x ′, respectively. In the following, we show that for the
expected values of Cost(S ′) and Cost(T ′), we have:

E
[
Cost(S ′)

] ≥ (1 − ε) · OPT′ + E
[
Cost(T ′)

]
. (1)

Since the bits corresponding to the vertices of S2 and T2 are flipped with probability
1/2, for the expected values of Cost(S ′) and Cost(T ′) we have:

E
[
Cost(S ′)

] = Cost(S1) + Cost(S2)
2

= Cost(S1) + Cost(S) − Cost(S1)
2

= 1/2Cost(S) + 1/2Cost(S1)

and

E
[
Cost(T ′)

] = 1/2Cost(T2).

If ρ = |S|, then S1 = S and Cost(S1) = Cost(S) = OPT′. If ρ = �(1 − ε) · OPT′�, we
have Cost(S1) ≥ (1 − ε) · OPT′ since each vertex has a weight of at least 1. Using
Cost(S) = OPT′ and the inequality above, we have

E
[
Cost(S ′)

] ≥ (1 − ε) · OPT′ + ε · OPT′

2
.

We divide the analysis into two cases based on the relation between η and |T |.
Case (I). η = |T |. Then T2 = T ′ = ∅. Thus, E [Cost(T ′)] = 0 and Inequality (1) holds

true.
Case (II). η = �(1 − ε) · OPT′� < |T |. Since w(ti ) ≥ w(ti+1) for 1 ≤ i ≤ |T | − 1 and

Cost(T ) ≤ Cost(S) = OPT′, we have

Cost(T2) ≤ |T | − η

|T | Cost(T )

≤ OPT′ − �(1 − ε) · OPT′�
OPT′ Cost(T )

≤ OPT′ − (1 − ε) · OPT′

OPT′ Cost(T )

≤ ε · Cost(S) = ε · OPT′
.
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Thus, for the expected value of Cost(T ′), we have

E
[
Cost(T ′)

] = 1
2

Cost(T2) ≤ ε · OPT′

2
.

Summarizing the above analysis, we can get that the Inequality 1 holds. In the fol-
lowing, using Inequality (1), we prove that, on expectation, the new solution x ′ satisfies
the inequality Cost(x ′) + 2 · LP(x ′) ≤ (1 + ε) · OPT.

E
[
Cost(x ′)

] + 2 · LP(x ′)

= Cost(x) + E
[
Cost(S ′)

] + E
[
Cost(T ′)

] + 2 · LP(x ′)

≤ Cost(x) + E
[
Cost(S ′)

] + E
[
Cost(S ′)

] − (1 − ε) · OPT′ + 2 · LP(x ′)

≤ Cost(x) + 2E
[
Cost(S ′)

] − (1 − ε) · OPT′ + 2 · (OPT′ − E
[
Cost(S ′)

]
)

= Cost(x) + (1 + ε) · OPT′ = Cost(x) + (1 + ε) · (OPT − Cost(x))

≤ (1 + ε) · OPT.

The third inequality holds because the set S1 chosen by x is a subset of the optimal
solution for G(x).

Now we analyze whether the new solution x ′ could be included in the population
P . If x ′ could not be included in P , then there is a solution x ′′ dominating x; that is,
LP(x ′′) ≤ LP(x ′) and Cost(x ′′) ≤ Cost(x ′). This implies Cost(x ′′) + 2 · LP(x ′′) < Cost(x ′) +
2 · LP(x ′) ≤ (1 + ε) · OPT. Therefore, after having a solution that fulfils the properties of
Lemma 7 in P , in expected time O(OPT · 2min{n,2(1−ε)OPT }), the population would contain
a solution y such that Cost(y) + 2 · LP(y) ≤ (1 + ε) · OPT.

Let P ′ contain all solutions x ∈ P such that Cost(x) + 2 · LP(x) ≤ (1 + ε) · OPT, and
let xmin be the one that minimizes LP. With similar proof as we saw in Theorem 6 it
is possible to show that at each step, on expectation LP(xmin) improves by LP (x)

en(2·OPT +1) .
Using Multiplicative Drift Analysis, we get the expected time O(OPT · n log OPT) to
find a solution y for which LP(y) = 0 and Cost(y) + 2 · LP(y) ≤ (1 + ε) · OPT.

Overall, the expected number of iterations of Global SEMO with alternative muta-
tion operator, for getting a weighted vertex cover with expected approximation ratio
(1 + ε), is bounded by O(OPT · 2min{n,2(1−ε)OPT } + OPT · n(log Wmax + log n + OPT)). �

4 Analysis of DEMO

Due to Lemma 4, with Global SEMO, the population size is upper bounded by O(OPT),
which can be exponential in terms of the input size. In this section, we analyse the other
evolutionary algorithm, DEMO (Algorithm 3), that uses some diversity handling mech-
anisms for dealing with exponentially large population sizes. The following lemmata
are used in the proof of Theorem 14.

Lemma 11: Let Wmax be the maximum weight assigned to a vertex. The population size of
DEMO is upper bounded by O

(
n · (log n + log Wmax )

)
.

Proof: The values that can be taken by b1 are integer values between 0 and �log1+δ
(1 +

Cost(1n))� and the values that can be taken by b2 are integer values between 0 and
�log1+δ

(1 + LP(0n))� (Lemma 2). Since n · Wmax is an upper bound for both Cost(1n) and

Evolutionary Computation Volume 27, Number 4 569

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/27/4/559/1858779/evco_a_00255.pdf by guest on 16 O
ctober 2021



M. Pourhassan, F. Shi, and F. Neumann

LP(0n), the number of rows and also the number of columns are bounded by

k = (
1 + �log1+δ

(1 + n · Wmax )�)

≤
(

1 + � log(1 + n · Wmax )
log(1 + δ)

�
)

= O
(
n · (log n + log Wmax )

)
.

The last equality holds because δ = 1
2n

.

We here show that the size of the population is Psize ≤ 2k − 1. Since the dominated
solutions according to f are discarded by the algorithm, none of the solutions in P

can be located in a box that is dominated by another box that contains a solution in P .
Moreover, at most one solution from each box is kept in the population; therefore, Psize

is at most the maximum number of boxes where none of them dominates another.
Let k1 be the number of boxes that contain a solution of P in the first column. Let

r1 be the smallest row number among these boxes. Observe that r1 ≤ k − k1 + 1 and
the equality holds when the boxes are from rows k down to k − k1 + 1. Any box in
the second column with a row number of r1 + 1 or above is dominated by the box
of the previous column and row r1. Therefore, the maximum row number for a box
in the second column, that is not dominated, is r1 ≤ k − k1 + 1. With generalizing the
idea, the maximum row number for a box in the column i, that is not dominated, is
ri−1 ≤ k − k1 − · · · − ki−1 + i − 1, where for 1 ≤ j ≤ k, kj is the number of boxes that
contain a solution of P in column j .

The last column has kk ≤ rk−1 boxes which gives us:

kk ≤ rk−1 ≤ k − k1 − · · · − kk−1 + k − 1.

This implies that
k1 + · · · + kk ≤ rk−1 ≤ 2k − 1,

which completes the proof. �
Lemma 12: The search point xz = 0n is included in the population in expected time of
O(n3(log n + log Wmax )2).

Proof: From Lemma 11 we know that the population contains Psize = O(n · (log n +
log Wmax )) solutions. Therefore, at each step, there is a probability of at least 1

psize
that

the solution xmin is selected where b1(xmin) = minx∈P b1(x).
If b1(xmin) = 0, we have Cost(xmin) = 0, which means xmin = 0n since the weights are

greater than 0.
If b1(xmin) �= 0, there must be at least one vertex vi in xmin where xi = 1. Consider

vj the vertex that maximizes w(vi ) among vertices vi where xi = 1. If Cost(x) = C, then
w(vj ) ≥ C

n
, because n is an upper bound on the number of vertices selected by xmin.

As a result, removing vertex xj from solution xmin results in a solution x ′ for which
Cost(x ′) ≤ C · (1 − 1

n
). Using this value of Cost(x ′), we have

(1 + δ)(1 + Cost(x ′)) ≤ 1 + δ + C

(
1 − 1

n

)
(1 + δ)

≤ 1 + δ + C + C

(
δ − 1

n
− δ

n

)

≤ 1 + Cδ + C + C

(
δ − 1

n
− δ

n

)
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≤ 1 + C + C

(
2δ − 1

n
− δ

n

)

≤ 1 + C.

The third inequality above holds because C ≥ 1 and the last one holds because δ =
1

2n
. From (1 + δ)(1 + Cost(x ′)) ≤ 1 + C we can observe that

1 + log1+δ
(1 + Cost(x ′)) ≤ log1+δ

(1 + C),

which implies b1(x ′) ≤ b1(x) − 1. Note that x ′ is obtained by performing a 1-bit flip on
x and is done at each step with a probability of at least

1
Psize

· 1
n

· (1 − 1
n

)n−1

= �

(
1

n(log n + log Wmax )
· 1
n

)
.

Therefore, in expected time of at most O
(
n2(log n + log Wmax )

)
the new solution

x ′ is obtained which is accepted by the algorithm because it is placed in a box with
a smaller value of b1 than all solutions in P and hence not dominated. There are
O

(
n(log n + log Wmax )

)
different values for b1; therefore, the solution xz = 0n with

b1(xz) = 0 is found in expected time of at most O
(
n3(log n + log Wmax )2

)
. �

Lemma 13: Let x ∈ P be a search point such that Cost(x) + 2 · LP(x) ≤ 2 · OPT and b2(x) >

0. There exists a 1-bit flip leading to a search point x ′ with Cost(x ′) + 2 · LP(x ′) ≤ 2 · OPT and
b2(x ′) < b2(x).

Proof: Let y = {y1 · · · yn} be a basic half-integral LP solution for G(x). Since b2(x) =
LP(x) �= 0, there must be at least one uncovered edge; hence, at least one vertex vi has
a yi ≥ 1

2 in LP solution y. Consider vj the vertex that maximizes yiw(vi ) among vertices
vi, 1 ≤ i ≤ n. Also, let x ′ be a solution obtained by adding vj to x. Since solutions x and
x ′ are only different in one vertex, vj , we have Cost(x ′) = Cost(x) + w(vj ). Moreover,
according to Lemma 3, LP(x ′) ≤ LP(x) − 1

2 · w(vj ). Therefore,

Cost(x ′) + 2 · LP(x ′) ≤ Cost(x) + w(vj ) + 2
(

LP(x) − w(vj )
2

)

≤ Cost(x) + 2 · LP(x) ≤ 2 · OPT,

which means solution x ′ fulfils the mentioned constraint. If LP(x) = W , then yjw(vj ) ≥
W
n

, because n is an upper bound on the number of vertices selected by the LP solution.
As a result, using Lemma 3, we get LP(x ′) ≤ W · (1 − 1

n
). Therefore, with similar analysis

as Lemma 12 we get:

(1 + δ)
(
1 + LP(x ′)

) ≤ 1 + δ + W

(
1 − 1

n

)
(1 + δ)

≤ 1 + W.

This inequality implies

1 + log1+δ
(1 + LP(x ′)) ≤ log1+δ

(1 + W ).

As a result, b2(x ′) < b2(x) holds for x ′, which is obtained by performing a 1-bit flip on
x, and the lemma is proved. �
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Theorem 14: The expected time until DEMO constructs a 2-approximate vertex cover is
O

(
n3 · (log n + log Wmax )2

)
.

Proof: Consider solution x ∈ P that minimizes b2(x) under the constraint that
Cost(x) + 2 · LP(x) ≤ 2 · OPT. Note that 0n fulfils this constraint and according to
Lemma 12, the solution 0n will be included in P in time O

(
n3(log n + log Wmax )2

)
.

If b2(x) = 0 then x covers all edges and by selection of x we have Cost(x) ≤ 2 · OPT,
which means that x is a 2-approximation.

In case b2(x) �= 0, according to Lemma 13 there is a one-bit flip on x that results in a
new solution x ′ for which b2(x ′) < b2(x), while the mentioned constraint also holds for
it. Since the population size is O

(
n · (log n + log Wmax )

)
(Lemma 11), this 1-bit flip hap-

pens with a probability of �
(
n−2 · (log n + log Wmax )−1

)
and x ′ is obtained in expected

time of O(n3 · (log n + log Wmax )2). This new solution will be added to P because a solu-
tion y with Cost(y) + 2 · LP(y) > 2 · OPT cannot dominate x ′ with Cost(x ′) + 2 · LP(x ′) ≤
2 · OPT, and x ′ has the minimum value of b2 among solutions that fulfil the constraint.
Moreover, if there already is a solution, xprev , in the same box as x ′, it will be replaced by
x ′ because Cost(xprev ) + 2 · LP(xprev ) > 2 · OPT; otherwise, it would have been selected
as x.

There are at most A = 1 + � log n+log Wmax

log(1+δ) � different values for b2 in the objective space,

and since δ = 1
2n

, A = O(n · (log n + log Wmax )). Therefore, the expected time until a
solution x ′′ is found so that b2(x ′′) = 0 and Cost(x ′′) + 2 · LP(x ′′) ≤ 2 · OPT, is at most
O(n3 · (log n + log Wmax )2). �

5 Diverse Population-Based EA

In this section, we introduce a population-based algorithm (see Algorithm 4) that keeps
for each k, 0 ≤ k ≤ n, at most two solutions. This implies that the population size is
upper bounded by 2n. The two solutions kept in the population are chosen according
to different weighing of the cost and the LP-value. For each solution x, let |x|1 be the
number of selected vertices in x. Algorithm 4 keeps a new solution x ′ in the population,
if it minimizes Cost(z) + LP(z) or Cost(z) + 2 · LP(z) among other solutions x ∈ P where
|x|1 = |x ′|1. Algorithm 4 gives a detailed description.

Taking into account that the population size is upper bounded by 2n and consider-
ing in each step an individual with the smallest number of ones in the population for
mutation, one can obtain the following lemma by standard fitness level arguments.
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Lemma 15: The search point 0n is included in the population in expected time of O(n2 log n).

To show the main result for Diverse Population-Based EA, we will use the following
lemma.
Lemma 16: A solution x fulfilling the two properties

1. LP(x) = LP(0n) − Cost(x) and

2. there is an optimal solution of the LP for G(x) which assigns 1/2 to each non-isolated
vertex of G(x)

is included in the population of the Diverse Population-Based EA in expected time O(n3).

Proof: By Lemma 15, solution 0n is contained in the population in expected time
O(n2 log n), which satisfies the property 1 given above. Let P ′ ⊆ P be a set containing
all solutions in P that satisfy the property 1 given above.

Let xmax be the solution of P ′ with the maximal number of 1-bits. If the optimal
fractional vertex cover for G(xmax ) assigns 1/2 to each non-isolated vertex of G(xmax ),
then the second property also holds. If the optimal fractional vertex cover for G(xmax )
assigns 1 to some nonisolated vertex, say v, then the algorithm selects xmax and flips
exactly the bit corresponding to v with probability �( 1

n2 ). Let x ′ be the new solution. By
selection of xmax we know that x ′ is the only solution with |xmax |1 + 1 one-bits; hence,
added to P .

Since the maximum value of |x|1 is n, after expected time of O(n3), there is a solution
in the population that fulfils the properties given in the lemma. �

We now show the main result for the Diverse Population-Based EA.

Theorem 17: The expected time until Diverse Population-Based EA has obtained a solution
that has approximation ratio (1 + ε) is O(n · 2min{n,2(1−ε)OPT } + n3).

Proof: By Lemma 16 we know that after expected time of O(n3), there is a solution, x,
in the population that fulfils the properties given in that lemma. With analysis similar
to what we had in Theorem 10, we can show that a solution x with Cost(x) + 2 · LP(x) ≤
(1 + ε) · OPT is produced in expected time O(n · 2min{n,2(1−ε)OPT } + n3).

Now we see whether solution x is added to population P . If x could not be
added to P , then there exists a solution y ∈ P such that |y|1 = |x|1 and Cost(y) + 2 ·
LP(y) ≤ Cost(x) + 2 · LP(x). Thus, the population already includes a solution y such that
Cost(y) + 2 · LP(y) ≤ (1 + ε) · OPT.

Let P ′ be a set containing all solutions x ∈ P such that Cost(x) + 2 · LP(x) ≤ (1 + ε) ·
OPT. Let xmax ∈ P ′ such that |xmax |1 = maxx∈P ′ |x|1.

If LP(xmax ) = 0, then solution xmax leads to a vertex cover for graph G. If LP(xmax ) >

0, we present a way to construct a (1 + ε)-approximate vertex cover as follows, using
xmax . If LP(xmax ) > 0, then there exists at least one vertex v to which the optimal frac-
tional vertex cover LP(xmax ) assigns value at least 1/2. Then the algorithm selects the
solution xmax and flips exactly the bit corresponding to the vertex v with probability
�( 1

n2 ). Let y be the new solution. We have

Cost(y) + 2 · LP(y) ≤ Cost(xmax ) + 2 · LP(xmax ) ≤ (1 + ε) · OPT.

Suppose that y could not be included in P , then there exists a solution y ′ in
P such that |y ′|1 = |y|1 and 2 · LP(y ′) + Cost(y ′) ≤ 2 · LP(y) + Cost(y) ≤ (1 + ε) · OPT,
which contradicts the assumption that |xmax |1 = maxx∈P ′ |x|1. Therefore, solution y

could be included in P .
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Observe that for any solution x, if |x|1 = n, then LP(x) = 0. Thus, after expected
time of at most O(n3), the population P could include a solution y such that Cost(y) +
2 · LP(y) ≤ (1 + ε) · OPT and LP(y) = 0, which is a (1 + ε)-approximate weighted vertex
cover.

Overall, the expected time in which Diverse Population-Based EA finds a (1 + ε)-
approximate weighted vertex cover, is bounded by O(n · 2min{n,2(1−ε)OPT } + n3). �

6 Conclusion

The minimum vertex cover problem is one of the classical NP-hard combinatorial opti-
mization problems. In this article, we have generalized previous results of Kratsch and
Neumann (2013) for the unweighted minimum vertex cover problem to the weighted
case where in addition weights on the vertices are given. Based on the conference ver-
sion of this article (Pourhassan et al., 2016), in sections 3.2 and 4, we have investigated
Global SEMO with alternative mutation operator for finding a (1 + ε)-approximation,
and studied the algorithm DEMO using the ε-dominance approach showing that it
reaches a 2-approximation in expected polynomial time. Furthermore, in this article we
have shown that Global SEMO with standard mutation operator efficiently computes a
2-approximation as long as the value of an optimal solution is small. We have also pre-
sented a population-based approach with a specific diversity mechanism that reaches
an (1 + ε)-approximation in expected time O(n · 2min{n,2(1−ε)OPT } + n3).
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