Reply to Turtiainen and Hakala

Anders Jeppsson a,b,*, Linda Thimour-Bergström a, Örjan Friberg c and Tomas Gudbjartsson d

a Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
b Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
c Department of Cardiothoracic Surgery, Örebro University Hospital, Örebro, Sweden
d Department of Cardiothoracic Surgery, Landspitali University Hospital and Faculty of Medicine, University of Iceland Reykjavik, Reykjavik, Iceland

* Corresponding author. Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden. Tel: +46-31-3427515; fax: +46-31-417991; e-mail anders.jeppsson@vgregion.se (A. Jeppsson).

Received 7 July 2013; accepted 10 July 2013

Keywords: Coronary artery bypass grafting • Surgical site infection • Sutures • Triclosan

We thank Turtiainen and Hakala [1] for their interest in our study. The study included 374 coronary artery bypass grafting patients randomized to leg-wound closure with either triclosan-coated sutures or identical sutures without triclosan [2]. Triclosan-coated sutures reduced the prevalence of surgical site infections (SSI) within 60 days of surgery by 37% (risk ratio 0.63, 95% confidence interval 0.39–1.00 (P = 0.0497).

Turtiainen and Hakala raise several issues that in their opinion could influence the validity of our study. First, Turtiainen and Hakala state that the diagnosis of SSI should have been made within 30 days rather than 60 days. It is correct that in the Centre of Disease Control’s original definition of SSI [3], the diagnosis should be made within 30 days. However, the decision to follow the patients for 60 days was made before the study started, and was based on findings from studies by Swenne et al. [4] and Jonkers et al. [5], where 27 and 37%, respectively, of leg-wound infections were diagnosed between 30 and 60 days after surgery. These findings were confirmed in the present study, where 19/61 of the leg-wound infections (31%) were diagnosed between postoperative Days 30 and 60. It is thus clear that we would have missed almost one-third of the infections if we had restricted follow-up to 30 days.

Secondly, Turtiainen and Hakala claim that the diagnosis of SSI was made by the patient and not by a doctor. This is not correct. All patients that reported any kind of wound-healing problems on Day 60 were seen at an outpatient clinic and their medical records were collected and scrutinized. Thus, the diagnosis of SSI was always made by the investigators.

Thirdly, Turtiainen and Hakala argue that the difference in the number of grafts between the triclosan and the no-triclosan group (3.0 vs 3.2 grafts per patient) may explain the difference in the SSI rate between the groups and warrant a multivariate analysis. The study endpoints were predefined and as this was a randomized study, a multivariate analysis was not included in data evaluation. However, in a post hoc multivariate analysis, the number of grafts did not emerge as an independent predictor of SSI.

Finally, Turtiainen and Hakala insinuate that the financial support for the study from the manufacturer may have influenced the results. We find this comment inappropriate. As stated in the manuscript, the study was investigator-initiated and investigator-driven. The sponsor had no influence on the design of the study, the analysis or interpretation of data or on the writing of the report.

Again, we thank Turtiainen and Hakala for their interest in our study. Further large well-designed prospectively randomized studies will determine the true value of triclosan-coated sutures in the setting of leg-wound closure.

REFERENCES