Background

We recently completed and published a review of significance to many developing, and low- and middle-income countries, with funding from the International Initiative for Impact Evaluation (3ie). The review is concerned with slum upgrading strategies involving physical environment and infrastructure interventions and their effects on health and socio-economic outcomes. Previous reviews looking at urban improvements have focused specifically on health impacts of water and sanitation interventions. This review however provides a comprehensive picture of slum upgrading involving multiple interventions and their impacts on multiple outcomes. Five studies fitted strict criteria of eligibility and nine studies fitted the criteria for being considered as supporting studies. Within this limited evidence base, results suggest that the incidence of communicable diseases was reduced following slum upgrading interventions. Consistent improvements in the incidence of diarrhoeal diseases were observed in both main and supporting studies, whilst results were mixed for incidence and severity of parasitic infections. Evidence from one study suggested that severity and duration of diarrhoea was not affected. Regarding socioeconomic outcomes, even as the quality of the available body of evidence remains low, included studies demonstrated mixed effects on measures of financial poverty. There was also insufficient evidence available to assess the impact of slum upgrading on employment, education, social capital, crime and violence.

Addressing challenges

We discuss here contributions of this review to developing methods for systematic reviews of complex social interventions. We also highlight issues and challenges faced in the analysis and presentation of results.
Collecting evidence across multiple disciplines

Given the international policy relevance, and investment by multiple and diverse organizations, the process of review production necessitated a multi-disciplinary and multi-stakeholder lens. A Review Advisory Group was composed representing academics, policy and practitioners including expertise from public health, urban policy and planning, architecture and housing. This group provided inputs in the design and parameters of the protocol.

To identify relevant primary studies, a comprehensive search for published and grey literature was performed across 28 databases. These included multidisciplinary bibliographic databases as well as relevant specialist databases, covering health, social science, urban planning, environment and LMIC databases. The development of an inclusive, search strategy across disciplines was undertaken using SCOPUS, a multidisciplinary database, using two search concepts (related to the setting of slums and the interventions) and broad search terms. Identified studies were sifted for study designs and outcomes once the search was completed. The SCOPUS strategy was then adapted to the other databases.

Supporting study designs in social interventions

Eligibility criteria for inclusion in the review comprised study designs that reduced selection bias (through random or quasi-random allocation of intervention), had comparison groups and established the temporal order of intervention and effect/impact. This included, randomized/quasi-randomized controlled trials, controlled before–after (CBA) studies and interrupted time series with three data points before and after the intervention. Only five studies were found eligible for synthesis of main results using these study design criteria: one RCT and four CBAs. Given the paucity of information found, review authors included two additional study designs—controlled post-intervention (CPI)

Fig. 1: Logic Model clarifying different aspects for the review (taken from fig 1, Turley et al.1).
and uncontrolled before—after (UBA). While these designs were considered inadequate for assessing causation, they yielded nine supporting studies that indicated associations between interventions and outcomes. These studies also filled gaps related to processes and participant perspectives on the interventions. Similar approaches to including supporting studies have been used in a review of specialist outreach clinics in primary care and rural hospital settings published in the *Cochrane Library.*

Findings from supporting studies were synthesized in a separate supplemental narrative to the main study findings. Supporting studies were also useful in highlighting consistency issues in the main study findings and summarized the limited ‘best available evidence’ when main studies did not evaluate a relevant outcome. For instance, none of the main studies assessed intervention effects on nutritional deficiencies, non-communicable diseases or general health measures. Information on these outcomes is available through supporting studies that highlight the potential benefits of upgrading interventions on diverse health outcomes, even as these benefits may not be causal.

In spite of their low internal validity, supporting studies also provided rich and valuable qualitative data (discussed below) on settings and contexts, intervention characteristics and processes of upgrading.

Synthesis and presentation of findings

Two challenges emerged regarding synthesis and presentation of review results. The first pertained to the manner of presentation of information from the main and supporting studies (combined or separately given important study design differences). The second pertained to pooling, synthesizing and presenting information on a range of interventions (single or multi-component) and a diverse number of outcomes. Systematic reviews often use meta-analyses and forest plots for this, but the diversity of slum interventions and outcome measures prevented the pooling of studies and subsequent meta-analysis.

Review findings were presented in two parts—main findings and supporting studies, clearly distinguishing between causal and supporting evidence. For synthesis and presentation, review authors developed ‘harvest plots’ using information from narrative syntheses of main and supporting findings. Harvest plots are a tool developed to synthesize evidence from complex and heterogeneous population-level interventions. An example of harvest plots mapping health outcomes is presented in Fig. 2.

As seen in Fig. 2, health outcomes are plotted on the vertical axis with outcomes combined into broad categories. For example, diarrhoea, parasitic infections and dengue fever have been combined into the communicable diseases group. Direction of effects is seen on the horizontal axis with three categories—‘favours control’, ‘no difference’ and ‘favours intervention’. Studies were represented by bars on the grid, marked with the first three letters of the primary author’s surname and placed according to the direction of effect. Bar height indicated whether study design was causal—high bar representing RCTs, medium bar representing CBA/CPI with propensity score matching and low bar representing CPI/UBA. Colour gradient was used to indicate statistical significance at 5 and 10% or if not reported at all. Risk of bias was shown by positive/negative signs on the bars using ‘+’ (low risk of bias), ‘+’ (mixed or unclear risk of bias) and ‘−’ (high risk of bias).

Using qualitative information to give insights into the process

In addition to the quantitative information evaluating the effectiveness of slum interventions, qualitative information was assessed on (i) living conditions of slum dwellers in unimproved areas and their perceived needs (ii) slum dwellers’ views regarding beneficial or adverse effects of interventions and (iii) factors enhancing or mediating impact, acceptability of the intervention and perceived barriers and facilitators to implementation.

Qualitative information was used if reported with the eligible quantitative studies. Stand-alone qualitative research studies were excluded. Given the paucity of qualitative information and disparate themes, rigorous thematic analyses were not possible. Analysis and synthesis of the qualitative information did provide valuable insights into implementation processes and prompted recommendations on the need for future impact evaluation studies to incorporate better qualitative data to assess what interventions work, for whom, why and how best to deliver services. It also raised questions regarding (i) strengthening existing qualitative components of systematic reviews and (ii) difficulties in assessing the quality of qualitative information from studies focused on qualitative methodology.

Conclusion

The systematic review on slum upgrading interventions highlights several methodological challenges. This paper has identified some helpful approaches which may be useful to other reviewers facing similar problems. In summary:

- Logic models can be used to simplify complex information and define the scope of the review.
Fig. 2: A Harvest plot synthesising results from studies of slum interventions (taken from fig 5, Turley et al.1).
• Using multi-disciplinary databases to design preliminary search strategy can help in developing robust adaptable strategies for literature searches.

• Inclusion of non-causal supporting study designs like CPI and UBAs can provide useful information to corroborate inferences from more robust study designs, and give insights into issues not addressed by ‘main’ studies. Separation of results from main and supporting studies, however, is necessary so that the limitations of study designs can be kept in mind when interpreting findings.

• Qualitative review of information from included studies can be useful in providing insights into implementation processes.

Methodological issues pertaining to inclusion of purposively conducted qualitative-only studies and their quality assessment, as well as that of qualitative data nested within quantitative designs, need further debate and discussion in the context of systematic review methods for complex interventions.

Acknowledgments

The author team would like to thank the International Initiative for Impact Evaluation (3ie) for funding the systematic review that this paper draws on, as well as the entire editorial team of the Cochrane Public Health Group, who provided support and time to background research, concepts, methods and early leadership of the review. CPHG acknowledges the support of the Victorian Health Promotion Foundation (VicHealth), NHMRC and the Jack Brockhoff Foundation. We would also like to thank Eva Rehfeuss and Ben Carter co-authors on the review, Professor Laurie Anderson and Dr Alison Weightman for their support through the course of the review, and Dr Tahna Pettman for administrative support with this paper. Thanks are also due to Wiley, the publishers of the systematic review on slum upgrading interventions (Turley et al 2013) in the Cochrane Library for permission to reproduce two figures in this paper.

References

