Optimal Forest Taxation under Private and Social Amenity Valuation

Erkki Koskela and Markku Ollikainen

ABSTRACT. This article analyzes the socially optimal forest taxation in the rotation framework when the government has a binding tax revenue requirement. In the Faustmann model, the optimal design of taxation consists of nondistortionary taxes, such as site productivity tax, site value tax, or profit tax. A combination of distortionary unit (or yield) tax and timber tax can also be used to collect the tax revenue in a nondistortionary way. In the Hartman model, with forest amenity services as a public good, the optimal design consists of a nondistortionary tax and a Pigouvian tax, which adjusts the private rotation age to the socially optimal one. Now only the site productivity tax is nondistortionary, while unit, yield, timber, site value, and profit taxes generally serve as corrective Pigouvian taxes. Finally, in the absence of a nondistortionary tax, if the marginal valuation of amenity services is nondecreasing with the age of forest stand, a combination of unit (or yield) and timber taxes can be used for both tax revenue collection and Pigouvian correction. FOR. SCI.49(4):596–607.

Key Words: Rotation age, forest amenities, optimal forest taxation.

Forest taxation has always been a central issue in forest economics—even to the extent that it gave rise to Martin Faustmann’s celebrated contribution in 1849. Since the renaissance of rotation analysis in forest economics started by Samuelson’s seminal review (1976), the effects of alternative forest taxes on the Faustmann rotation age have been extensively studied (see, e.g., Chang 1982, Johansson and Löfgren 1985). Respective comparative static analysis of forest taxation within the Hartman model, which includes amenity services of forests, has been developed in Koskela and Ollikainen (2001).

In contrast to the frequent discussion of the behavioral effects of forest taxation issues, the analysis of the socially optimal design of forest taxation is largely an unexplored area in the rotation framework. There are two notable attempts to tackle this issue, namely, Gamponia and Mendelsohn (1988) and Englin and Klan (1990). [1] Gamponia and Mendelsohn (1988) focus on the excess burden of yield and timber taxes—referring to the magnitude of the rotation age distortions caused by forest taxes—in the absence of externalities (amenity services) in forestry. They recognize the difficulties in finding analytical solution for the excess burden of forest taxation. By concentrating on numerical simulations they end up stressing the use of neutral forest taxes, or combinations of distortionary forest taxes, which minimize the dead-weight loss of forest taxation.

Englin and Klan (1990) study optimal forest taxation policy in the absence of a binding tax revenue requirement, and in the special case where amenity services of forest stands are a public good, but forest owners value only harvest revenue, not amenity services. Now private harvesting reduces amenities available and causes a negative externality to recreators, so that neutral forest taxes are no longer desirable. What is needed are corrective taxes, which shift the market behavior towards the social optimum. To this end Englin and Klan (1990) solve optimal Pigouvian tax rates, which equate the privately optimal rotation age with the socially optimal rotation.
Both these analyses abstract from two considerations, which seem to be highly relevant for the optimal design of forest taxation. First, they neglect the fact that usually the forest tax policy is not chosen freely, because the government has to collect tax revenue also from forestry for financing the national budget. Second, empirical evidence suggests that private landowners do value amenity services (see, e.g., Binkley 1981, Kuuluvainen et al. 1996). Therefore, one should ask a couple of questions. How does this behavioral feature affect the optimal forest taxation, i.e., will the need for Pigouvian taxes vanish in favor of neutral forest taxation in the true Hartman framework? Does the tax revenue requirement modify the optimal taxation in the Faustmann and Hartman models, respectively?

These two issues, which have not been studied in the rotation literature so far, are the focus of our article. We assume that the government has to collect a given tax revenue from forestry by maximizing social welfare in a partial equilibrium setting with an exogenous timber price. The social welfare function depends on the welfare of private landowners, as well as on those by the citizens, who might have free access to the amenity services of private forest stand. We consider optimal taxation first in the Faustmann framework by assuming that the only thing the society values is the net present value of harvest revenue from timber production. Then we allow for the joint production of timber and amenity services, and study optimal forest taxation in the Hartman framework augmented with recreators who enjoy amenity services from private forests.

Analyses of the optimal design of forest taxation in the presence of amenity services and government budget constraints in the deterministic two-period framework are provided in Amacher (1999), Amacher and Brazee (1997), and Koskela and Ollikainen (1999). These models demonstrate that in the presence of amenity services, which are pure public goods, the governments usually have a neutral tax to collect the tax revenue and a corrective Pigouvian tax, such as a harvest tax, to correct the externality caused by excessive private harvesting. Stochastic future timber price is incorporated in Koskela and Ollikainen (1997b) and (1998). Now forest taxes may not only be corrective but also can provide an insurance depending on the nature of uncertainty. However, because these models mostly represent short-term harvesting behavior abstracting from the determination of forestland values, these results may not be generalized to the rotation framework.

Given that the forest tax forms applied vary from country to country, we consider a broad set of forest taxes. Our taxes include the most popular forms of property and harvest taxes, as well as the profit tax. More specifically, the class of (1) property taxes levied on land value contains three alternative taxes. The site productivity tax is paid annually and is based on the yield potentiality of a given site irrespective of the actual harvests or standing timber. The site value tax is a proportional tax on the land value and paid annually. A property tax may be also levied on the value of trees, and is often called timber tax. The second class of forest taxes consists in (2) harvest taxes. The most common version of harvest taxes is the yield tax, which is levied on the harvest revenue. Alternatively, a unit tax levied on the timber volume harvested can be used. Third, we also study (3) a profit tax levied on the net timber revenue the landowner gets from the forests.

We show that in the Faustmann framework optimal forest taxation consists of neutral forest taxes. Among the class of forest taxes under our study, site value tax, site productivity tax, and profit tax have this property. Interestingly, a combination of harvest and timber tax can also be used to collect the tax revenue in a nondistortionary way. Allowing for amenity services (Hartman model) changes the optimal design of tax policy. In most cases, optimal design consists of a combination of a neutral tax and a corrective tax. While the neutral tax helps to collect the tax revenue, the corrective tax adjusts the private rotation age and thereby amenity production to the socially optimal level. Now only the site productivity tax is always nondistortionary, while the site value and profit taxes are neutral only in a special case. Again, in the absence of a nondistortionary tax a combination of a unit (yield) and timber tax can under certain conditions be used to both tax revenue collection and Pigouvian correction of externality.

The rest of the article is organized as follows. In section 2 we develop the basic framework, while sections 3 and 4 provide the analysis of optimal taxation in the Faustmann and in the Hartman framework, respectively. Finally, there is a brief concluding section.

**Basic Framework**

In designing the socially optimal forest taxation, we follow the conventional public economics approach by modeling the interaction between the government and the representative landowner as a two-stage game. In the first stage, the government, acting as a Stackelberg leader, decides about its forest taxation policy and commits to it. In the second stage, private landowners choose their harvesting conditional on the chosen tax policy. The structure of this section follows this idea by applying the backward induction. Hence, we analyze first how the chosen forms of forest taxes affect the privately optimal rotation age to obtain the landowners' reaction function. Then we introduce the social welfare function, and the government budget constraint, which are then used to derive the design of socially optimal forest taxation in the subsequent sections.

**Behavior of the Representative Nonindustrial Private Landowner**

We focus on nonindustrial private landowners, which reflects the basic case in Nordic countries and in some parts of the United States. Given that the private landowners’ objectives may differ, we will utilize the two basic rotation frameworks, the Faustmann and the Hartman models. The comparative statics of forest taxes in the Faustmann model (Chang 1982, and Johansson and Löfgren 1985) and in the Hartman model (Koskela and Ollikainen 2001) are well known. In what follows, we present briefly results needed for the analysis of optimal taxation and ask the interested reader.
to consult the above references. We analyze the Hartman model, and then give the results for the Faustmann model as the special case.

Assume that the private landowner values both the net harvest revenue and the amenity services from a forest stand. Based on Hartman (1976) we postulate the following objective function in the absence of taxes

\[ W = V + E. \]

In Equation (1), the first term is the Faustmann part, describing the present value of harvest revenues over all rotations, defined as

\[ V = \frac{pf(T) - ce^{rT}}{e^{rT} - 1}, \]

where \( p \) is stumpage price, \( f(T) \) is the growth of the stand as a function of its age \( T \) with the conventional convex-concave properties, and \( c \) denotes the regeneration cost and \( r \) is the interest rate. The second term,

\[ E = \frac{\int_0^T e^{rT} F(s)e^{-rs} ds}{e^{rT} - 1}, \]

describes the present value of amenity services over all rotations, where \( F(s) \) is the flow of amenities for the stand of age \( s \).

The first-order condition for the maximization of (1), \( W_T = V_T + E_T = 0 \), can be written as

\[ W_T = pf'(T) - rpf(T) - rV + F(T) - rE = 0. \]  \[ (2) \]

According to Equation (2), the private landowner equates the marginal benefit of delaying the harvest to age \( T \), defined by \( pf'(T) + F(T) \), to the marginal opportunity cost of delaying the harvest, defined by \( rpf(T) + rV + E) \). Equation (2) reveals that the relation of the Hartman rotation age to the Faustmann rotation age depends on the sign of \( F(T) - rE \). It has been shown that

\[ F(T) - rE \begin{cases} > & \text{as } F'(T) > 0, \\ < & \text{as } F'(T) < 0. \end{cases} \]  \[ (3) \]

According to (3), the Faustmann and Hartman rotations coincide when the amenity valuation is independent of the age of the forest stand (i.e., when \( F'(T) = 0 \)). But when the amenity valuation increases with the age of the forest stand, the Hartman rotation period is longer than the Faustmann rotation period and vice versa for the decreasing marginal amenity valuation. In what follows we assume that the second order condition \( W_{TT} < 0 \) holds.

Next we turn to study the effects of forest taxes in the Hartman framework, and derive the corresponding results for the Faustmann model as a special case. We will assume throughout in the social welfare analysis that the amenity services provided by the stands are pure public goods. Therefore, all forest taxes affect only the site value, i.e., the Faustmann part \( V \), but depending on the nature of the amenity valuation function they may change the relative profitability of timber vis-à-vis amenity production.

**Harvest Taxes**

If the government levies the yield \( \tau \) or the unit tax \( t \) on harvesting, the after-tax net revenue from harvesting is defined by Equation (4), while the amenity part, \( E \), remains unchanged so that

\[ \hat{V} = \frac{pf(T) - ce^{rT}}{e^{rT} - 1}, \]  \[ (4) \]

where \( \hat{p} \equiv p(1 - \tau) - t \) is the after-tax stumpage price and \( \hat{V} \) the after-tax present value of the soil.

The first-order condition for \( T \) in the presence of harvest taxes (4) is

\[ \hat{W}_T(\tau, t) = \hat{p}(f'(T) - rf(T)) - r\hat{V} + F(T) - rE = 0. \]  \[ (5) \]

The impact of harvest taxes on the private rotation age can be shown to be

\[ T^H_T, T^H_H \begin{cases} > & \text{as } rc(1 - e^{-rT})^{-1} + F(T) - rE \begin{cases} > & 0, \end{cases} \end{cases} \]  \[ (6) \]

In what follows, \( T^F \) and \( T^H \) refer to the rotation ages in the Faustmann and in the Hartman models, respectively.

In the Faustmann model, where \( F(T) - rE = 0 \), both harvest taxes lengthen the private rotation age since they affect like a decrease in the net stumpage price. In the Hartman model the same holds when the marginal valuation of amenities is increasing or constant in the age of the stand, i.e. when \( F'(T) \leq 0 \). Under the assumption \( F'(T) < 0 \), however, it is possible that the rotation age is shortened by the harvest taxes.

**Property Taxes**

As for the property taxes, we first explore the site value tax levied directly on the value of forestland. For the site value tax, we denote the annual tax payment by \( b \) and define its present value as

\[ \int_0^\infty be^{-rs} ds = \frac{b}{r}. \]  \[ (7) \]

If the fraction of the value of the forestland delivered in taxes is \( \beta \), we have from Equation (7) \( \beta = \frac{b}{r}V \), so that the after-tax value of the forestland can be rewritten
\[ \hat{V}(\beta) = (1 - \beta)V. \] We can now express the landowner’s objective function for the site value tax as
\[ \hat{W}(\beta) = (1 - \beta)V + E. \] (8)

The first-order condition for the maximization of (8) is given by
\[ \hat{W}_T(\beta) = (1 - \beta)(pf'(T) - rpf(T) - rV) + F(T) - rE = 0. \] (9)
Differentiating (9) with respect to \( \beta \) gives
\[ T^H_p = \begin{cases} > 0 & \text{as } F'(T) > 0, \\ < 0 & \text{as } F'(T) < 0. \end{cases} \] (10)

According to Equation (10), the site value tax has no effect on the Faustmann rotation age by definition. In the Hartman model, the same holds only when \( F'(T) = 0 \), while a rise in the site value tax makes amenity production relatively more (less) beneficial, so that the landowner lengthens (shortens) the rotation age when \( F'(T) > (\leq) 0 \).

In the presence of the site productivity tax, denoted by \( a(i) \) where \( i \) refers to site index \( i \) of the land, the after-tax land value is given by
\[ \hat{V}(a(i)) = V - \frac{a(i)}{r}, \]
so that the objective function can be written as
\[ \hat{W}(a(i)) = V - \frac{a(i)}{r} + E. \] (11)

One can see from the first-order condition,
\[ \hat{W}_T(a(i)) = V + F(T) - rE = 0, \]
that the site productivity tax is neutral, because it does not distort the relative benefits of timber and amenity production. This neutrality holds also for the Faustmann model.

The last property tax we examine is the timber tax, \( \alpha \), which is levied annually on the stumpage value of growing timber volume so that the net present value of harvest revenue is given by
\[ pf(T) - ce^{rT} - \alpha e^{rT} \int_0^T pf(s)e^{-rs}ds \]
\[ \hat{V}(\alpha) = \frac{pf(T) - ce^{rT} - \alpha e^{rT} \int_0^T pf(s)e^{-rs}ds}{e^{rT} - 1}. \] (12)

If the present value of annual timber earnings is denoted by
\[ U = \frac{\int_0^T pf(s)e^{-rs}ds}{e^{rT} - 1}, \]
then the objective function of the landowner can be written as
\[ \hat{W}(\alpha) = V - \alpha U + E. \] (13)

The first-order condition for the privately optimal rotation age is
\[ \hat{W}_T(\alpha) = pf'(T) - rpf(T) - rV - \alpha(pf(T)) - rU + F(T) - rE = 0 \] (14)

where \( pf(T) - rU > 0 \) when \( f'(T) > 0 \). \[6\] It is straightforward to see that timber tax shortens private rotation age irrespective of the sign of \( F(T) - rE \); i.e. both \( T^H_a < 0 \) and \( T^H_a > 0 \). Timber tax decreases both the value of standing timber at the harvest time and the opportunity cost of harvesting with the former effect dominating.

**Profit Tax**

In the presence of the profit tax \( \theta \) the net harvest revenue is \( \hat{V}(\theta) = (1 - \theta)V \), and the private landowner maximizes \( \hat{W}(\theta) = (1 - \theta)V + E \). Choosing \( T \) optimally gives
\[ \hat{W}_T(\theta) = (1 - \theta)V_T + F(T) - rE = 0. \] (15)

The comparative statics of the profit tax is
\[ T^H_\theta = \begin{cases} > 0 & \text{as } F'(T) > 0, \\ < 0 & \text{as } F'(T) < 0. \end{cases} \] (16)

The outcome is qualitatively similar to that of the site value tax for both Faustmann and Hartman models.

Rotation effects of the analyzed forest taxes are collected in Table 1. Only the site productivity tax and the timber tax have qualitatively similar effects in both models. The site value tax and the profit tax, which are neutral in the Faustmann model, are generally distortionary in the Hartman model with the exception of site-specific amenities. \[7\] These, as well as the harvest taxes, may have positive or negative effects depending on the nature of marginal amenity valuation.

<table>
<thead>
<tr>
<th>Table 1. Comparative statics of forest taxation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest tax</td>
</tr>
<tr>
<td>Harvest tax ( (x = t; t) )</td>
</tr>
<tr>
<td>Site prod. tax, ( a )</td>
</tr>
<tr>
<td>Site value tax, ( \beta )</td>
</tr>
<tr>
<td>Timber tax, ( \alpha )</td>
</tr>
<tr>
<td>Profit tax, ( \theta )</td>
</tr>
</tbody>
</table>
Social Welfare Function

In designing forest taxation policy, the government is assumed to maximize the social welfare function. We consider two cases. First, we assume that only harvest revenue from forestry counts, so that the social welfare function is defined by the indirect net revenue function of the landowner $V^*$ [Equation (17a)]. Then we study a case where both the representative landowner and recreators value amenity services from forests. We assume that the amenity valuation function is the same for the representative landowner and recreators, so that it is the number of recreationalists that produces the difference in the private and public valuation.[8] When citizens have full access to enjoy the amenity services from private forests and there are no congestion effects associated with enjoying amenity services, we have the social welfare function (17b).

$$SW^F = V^*(a(i), \tau, t, \beta, \theta, \alpha)$$  \hspace{1cm} (17a)

$$SW^H = V^*(a(i), \tau, t, \beta, \theta, \alpha) + E^*(a(i), \tau, t, \beta, \theta, \alpha) + (n-1)E$$  \hspace{1cm} (17b)

where $n$ is the number of citizens and $(n-1)$ is the number of recreators.

In the subsequent analysis we assume that there is an exogenous tax revenue target, denoted by $\bar{R}$. There are alternative ways to formulate the tax revenue requirement in the case of forestry. Here we assume that the short run government debt or surplus is not regarded as an important factor, so that all that counts is the discounted sum of the tax revenue collected from forestry given by

$$R = \left[ \frac{(pt + t)f(T) + \alpha e^{\tau T} \int_0^T pf(s)e^{-\theta s} ds}{e^{\tau T} - 1} + \frac{a(i)}{r} \right] \Psi$$  \hspace{1cm} (18)

where $\Psi = \theta, \beta$.

When studying optimal tax policy in the next sections, we will not assume that all taxes are present at the same time. We indicate in each case which taxes are assumed to be operative.

Socially Optimal Forest Taxation in the Faustmann Framework

A neutral tax is optimal, when the society sees no need to “correct” private decisions. As the comparative statics of rotation age in the Faustmann model revealed, site productivity tax, site value tax, and profit tax are neutral taxes and have this desirable property. But in the Hartman model, only the site productivity tax is neutral, if the amenity valuation is not site specific, i.e., $F'(T) \neq 0$. Therefore, we will use the site productivity tax as our benchmark tax when studying whether we need other forest taxes for the socially optimal design of forest taxation.

Optimal Forest Taxation in the Presence of a Neutral Tax

In the Faustmann framework, the government’s problem is to maximize the social welfare function (17a) subject to the tax revenue requirement (18). Differentiating the Lagrangian, $\Omega = V^* - \lambda (\bar{R} - R)$, with respect to the site productivity tax $a(i)$ yields

$$\Omega_{a(i)} = -\frac{1}{r} + \frac{1}{r} = 0,$$

so that the shadow price $\lambda$ representing the marginal cost of public funds is equal to 1. The neutral site productivity tax ($T_a^F = 0$) provides an ideal tax instrument to collect the required revenue without distorting landowner’s privately optimal behavior.[9]

When the site productivity tax has been set at the optimal level, $a(i) = a^*(i)$ the optimal yield tax $\tau$, in the absence of other taxes, can be obtained by differentiating the Lagrangian $\Omega$ with respect to $\tau$ under $a(i) = a^*(i)$ so as to get

$$\Omega_{\tau} = \tau \left\{ \frac{(e^{\tau T} - 1)pf'(T) - re^{\tau T}pf(T)}{(e^{\tau T} - 1)^2} \right\} T_\tau^F = 0,$$  \hspace{1cm} (19a)

where $T_\tau^F > 0$ and

$$\frac{(e^{\tau T} - 1)pf'(T) - re^{\tau T}pf(T)}{(e^{\tau T} - 1)^2} < 0,$$

due to the first-order condition (2). Hence, $\Omega_{\tau} = 0$ necessitates that the optimal yield tax, $\tau = \tau^*$, is zero. This result holds also for the unit tax because of the similarity of these taxes.[10]

Analogously, when the site productivity tax is set at the optimal level, the first-order condition for the timber tax in the absence of other taxes is given by

$$\Omega_{T_\phi = a} = \alpha \left\{ \frac{1}{(e^{\tau T} - 1)} \left( pf'(T) - rU \right) \right\} T_\phi^F = 0$$  \hspace{1cm} (19b)

where $T_\phi^F < 0$, and that $(pf'(T) - rU) > 0$, when $f'(T) > 0$. Hence, the optimal timber tax rate, $\phi = \phi^*$ is zero.

To summarize, we have obtained

**Result 1.** If the society values only harvest revenue from forests and wishes to collect a given forest tax revenue, then it should use only a neutral (site productivity or site value or profit) tax and set all corrective taxes equal to zero.

This result makes sense. In the absence of externalities, a neutral tax is optimal, because it minimizes the dead-weight loss of taxation. This result confirms what, e.g., Gamponia and Mendelsohn (1988), by using numerical simulations, pointed out in a forestry context.
Optimal Forest Taxation in the Absence of a Neutral Tax

Next we ask what happens if the government does not have site productivity tax or other neutral, lump-sum tax available. Could we then find a tax mix to collect the required forest tax revenue without distorting the landowner’s behavior? Our answer is positive.

Differentiating the Lagrangian $\Omega$ with respect to the unit and timber taxes in the absence of other taxes we get after some manipulations (see Appendix 1)

$$\Omega_t = (\lambda - 1) \frac{f(T)}{(e^{\alpha T} - 1)} + \lambda \frac{1}{(e^{\alpha T} - 1)^2} \{tA + \alpha B\} T^F_t = 0 \quad (20a)$$

$$\Omega_a = (\lambda - 1)\mu + \lambda \frac{1}{(e^{\alpha T} - 1)^2} \{tA + \alpha B\} T^F_a = 0 \quad (20b)$$

where

$$A = (e^{\alpha T} - 1)f'(T) - \alpha f'(T) e^{\alpha T} < 0$$

due to first-order condition (3),

$$B = (e^{\alpha T} - 1)(pf(T) - rU) > 0 \quad T^F_t > 0 \quad \text{and} \quad T^F_a < 0.$$ 

On the basis of the first-order conditions (20a) and (20b), one can see that, under the condition $tA + \alpha B = 0$, the privately optimal rotation age of the forest stand is determined by the following first-order condition

$$V_T = 0 \Leftrightarrow p \left[ (e^{\alpha T} - 1)f'(T)re^{\alpha T} f(T) \right] + cre^{\alpha T} = 0$$

which is exactly the same condition that holds without forest taxes, so that the marginal cost of public funds $\lambda$ is equal to 1. Solving for the optimal combination of unit and timber taxes, i.e., $tA + \alpha B = 0$, and using the definitions of A and B yields the ratio of unit and timber tax

$$\frac{r^*}{\alpha^*} = - \frac{(e^{\alpha T} - 1)(pf(T) - rU)}{(e^{\alpha T} - 1)f'(T) - \alpha f'(T) e^{\alpha T}} > 0 \quad (21)$$

This tax mix gives a nondistortionary private rotation age. Due to the definition of unit and yield taxes, this result holds also for a combination of the yield tax and timber tax. Thus we have

Result 2. If the society values only harvest revenue from forests and wishes to collect a given forest tax revenue, then in the absence of neutral tax a combination of unit tax and timber tax (or a combination of yield tax and timber tax) the society should collect the required tax revenue in a nondistortionary way.

The economic intuition behind this result lies in the use of two corrective taxes which affect rotation in an opposing way so that an appropriate combination cancels out each other’s distortional effect.

Socially Optimal Forest Taxation in the Hartman Framework

We next turn to consider the case, where the amenity services from forests are valued by the private landowner and by recreators. The relevant social welfare function is now (17b). We follow the same strategy as in the previous section and start by assuming that the government has available a nondistortionary tax.

Optimal Forest Taxation in the Presence of a Neutral Tax

We consider first the use of the site productivity tax, the site value tax, and the profit tax. These are all neutral in the Faustmann model, but depending on the nature of amenity valuation the last two may be distortionary in the Hartman framework. We now ask: Does the neutral site productivity tax suffice for an optimal tax policy, or do we have to complement it with another tax?

Recalling the social welfare function (17b) and the tax revenue requirement (in the absence of other taxes than site productivity and site value tax), we can write down the Lagrangian as $\Omega^H = V^* + E^* + (n - 1)E - \mu(R - R)$, where subscript $H$ refers to Hartman case and $\mu$ is the marginal cost of public funds. Choosing $a(i)$ so as to maximize the Lagrangian yields $\mu = 1$ because of $T^H_a = 0$. The optimal site productivity tax is nondistortionary.

Next we ask: Would it be socially optimal to use also the site value tax? Differentiating the Lagrangian with respect to $\beta$ and assuming that the site productivity tax is set at the optimal level results in the following first-order condition for the socially optimal site value tax $\beta$ (see Appendix 2 for the details):

$$\frac{d}{d\beta} \Omega^H_{|\beta=\beta^*} = T^H_{\beta^*} \left( (n-1)E_T + \frac{\beta V_T}{1-\beta} \right) = 0 \quad (22)$$

To evaluate the optimal site value tax we utilize two facts. First, from the private first-order condition we have that

$$E_T \begin{cases} > 0 \Rightarrow V_T = 0 \\ < 0 \Rightarrow V_T = 0 \end{cases}.$$ 

Second, we recall that the rotation effect of the site value tax depends on how the marginal amenity valuation evolves with the age of the forest stand, i.e., that

$$T^H_{\beta^*} \begin{cases} > 0 \\ < 0 \end{cases}.$$

There are two cases depending on the nature of the amenity valuation function. With the site-specific amenity valuation ($F'(T) = 0$) the site value tax will have no effect on rotation so that the optimal site value tax is zero. In the more general case

$$V^H_T(\beta) = E_T + V_T = 0$$

implies $E_T = -V_T$. Using this in (22) allows us to express the brace term in (22) as
\[
(n-1)E_T + \frac{\beta V_T}{(1-\beta)} = (n-1)E_T - \frac{\beta(n-1)E_T}{(1-\beta)}.
\]

Solving for \( \beta \) yields
\[
\beta^* = \frac{(n-1)}{n} \quad (23)
\]

Equation (23) describes a classical Pigouvian tax: the size of the tax reflects the size of the externality, which in the case of identical preferences for amenity services is given by the share of recreators among citizens. [12]

According to Equation (23), the optimal site value tax is the same independently of whether the privately optimal rotation age is shorter or longer than the socially optimal one. What accounts for this interesting result? The answer lies in the dependence of comparative statics of the site value tax on the nature of the marginal amenity valuation. When the marginal valuation of amenity services increases with the age of the stand \( F'(T) > 0 \) the site value tax will have a positive effect on private rotation, but when it decreases with the age \( F'(T) < 0 \) the site value tax will have a negative effect on it. For \( F'(T) > 0 \) the privately optimal rotation age is too short from the viewpoint of social optimum, and too long for \( F'(T) < 0 \). In both cases society should use the site value tax: in the former case to lengthen and in the latter case to shorten the privately optimal rotation age.

Since the effect of the profit tax \( \theta \) is identical to that of the site value tax [see Equations (10) and (16)], we have

**Result 3.** If the society values both harvest revenue and forest amenities as a pure public good and wishes to collect a given forest tax revenue, then in addition to the optimal site productivity tax, the design of forest tax policy consists of

(a) no other taxes when amenity valuation is site specific, i.e., the site productivity tax alone is optimal.

(b) a corrective site value (or profit) tax reflecting the size of the externality, when the amenity valuation changes with the age of the stand.

These findings have a natural economic interpretation. In the presence of externality and the optimal site productivity tax, no other taxes are needed when amenity valuation is independent of the age of the forest stand, because all that counts are the amenities associated with the bare land. But if the amenity valuation depends on the age of the forest stand, the site productivity tax should be complemented with the site value tax or the profit tax by the amount, which depends only on the size of externality associated with amenity services and not on precise nature of marginal valuation of amenity services for the reason explained earlier.

If the site value and profit taxes are not available, then one can ask whether the harvest and timber taxes have any role in the optimal design of forest taxation in the presence of the site productivity tax. Since the comparative statics of the yield tax and the unit tax are qualitatively similar the Hartman model, we concentrate on the yield tax and timber tax. Maximizing the Lagrangian

\[
\Omega^H = V^* + E^* + (n-1)E - \lambda (\bar{R} - R)
\]
yields the familiar condition \( \mu = 1 \) for the site productivity tax. Choosing now the yield tax, when the site-productivity tax is at the optimal level, gives the following first-order condition

\[
\Omega_{T^H} = \frac{d}{dT} \Omega^H \bigg|_{T^H = 0} = 0
\]

we first note that in the special case of \( T^H > 0 \) Equation (24) can be solved for the optimal yield tax to get

\[
T^H_{\mu=0} = - \frac{(n-1)(e^{FT} - 1)(F(T) - rE)}{(e^{FT} - 1)p f'(T) - re^{FT} p f(T)} \quad (25)
\]

Depending on the nature of the amenity valuation, we can now derive several properties for the optimal yield tax. First, neglecting the public goods property of forest amenities (i.e. setting \( n = 1 \)) implies that optimal yield tax would be zero. Second, if amenities are site-specific (for which \( F'(T) = 0 \) and \( F(T) - rE = 0 \)) optimal yield tax would again be zero. Third, when \( n > 1 \) and \( F'(T) > 0 \), we have \( F(T) - rE < 0 \) but

\[
(e^{FT} - 1)p f'(T) - re^{FT} p f(T) < 0,
\]

so that optimal yield tax is positive. Fourth, we have the case where \( F(T) - rE < 0 \) and

\[
(e^{FT} - 1)p f'(T) - re^{FT} p f(T) = 0,
\]

so that the sign of the optimal yield tax/subsidy remains unclear.

We can summarize our findings in Result 4.

**Result 4.** If the society values both harvest revenue and forest amenities as a pure public good and wishes to collect a given forest tax revenue, then in addition to the optimal site productivity tax, the design of forest tax policy consists of

(a) no other taxes when amenity valuation is site specific, i.e., the site productivity tax alone is optimal.

(b) a distortionary yield tax (or a unit tax) when marginal valuation of amenities is nondecreasing with the age of the stand.

An economic interpretation of case (a) is familiar. If the amenity valuation is site-specific, the rotation age is not distorted
by the amenity valuation. Therefore, the neutral site productivity tax is enough. Case (b) reflects the classical Pigouvian policy. If the amenity valuation increases with the age of forest stand, then the private rotation age is too low from the viewpoint of the society. By complementing the neutral site productivity tax with the positive yield (or unit) tax has the effect of increasing the rotation age. In the case where the marginal valuation decreases with the age of the stand, we cannot generally define whether a distortionary tax or subsidy is optimal. The sign on the tax depends on the relative magnitudes of regeneration cost vis-à-vis marginal valuation of amenities. If the regeneration costs are high relative to the marginal valuation, then

\[(e^T - 1)pf'(T) - re^T pf(T) > 0\]

and from (25) we can conclude that a tax is optimal, while if the regeneration costs are low relative to the marginal valuation, then the opposite holds and a harvesting subsidy should be used. In the case of high (low) regeneration costs relative to the marginal valuation, the privately optimal rotation age is too long (too short) from the society’s viewpoint, so that harvesting taxation (harvesting subsidy) should be used as a corrective device.

Assume next that the site-productivity tax is set at the optimal level and ask whether we need to introduce a timber tax to maximize the social welfare. The first-order condition for the constrained social welfare maximization is given by

\[\Omega^H \big|_{\text{opt}} \alpha = \left\{ \begin{array}{ll}
(n-1)(e^T - 1)(F(T) - rE) + \alpha(e^T - 1) & \\
pt(T) - rU & \end{array} \right\} T^H
\]

\[= 0\]

(26)

Solving for the optimal timber tax yields

\[\alpha^* \big|_{\text{opt}} = -\frac{(n-1)(F(T) - rE)}{pf(T) - rU},\]

(27)

where the denominator is positive irrespective amenity valuation, while the numerator is positive (negative) for \(F'(T) < 0 \) \((F'(T) > 0)\). The optimal timber tax is zero if there is no externality involved in forestry \((n = 1)\) or amenities are site-specific \((F'(T) = 0)\). For other cases, we can conclude that

**Result 5.** If the society values both harvest revenue and forest amenities as a pure public good and wishes to collect a given forest tax revenue, then in addition to the optimal site productivity tax, the design of forest tax policy consists of

(a) a timber tax, if the amenity valuation decreases with the age of the stand

(b) a timber subsidy if the amenity valuation increases with the age of the stand.

The interpretation of Result 5 is obvious. When the marginal valuation of amenity services decreases with the age of the stand, privately optimal rotation age is too long from the society’s perspective. Therefore, a positive timber tax, which shortens the rotation age, can be used to reduce the externality caused by private harvesting to recreators. But when the marginal valuation of amenity services increases with the age of the stand, privately optimal rotation age is too short from the society’s perspective, and timber subsidy can be used to lengthen the privately optimal rotation age and reduce the externality to recreators.

**Optimal Forest Taxation in the Absence of a Neutral Tax**

Let us finally ask what the optimal combination of a unit tax and a timber tax (or of a yield tax and timber tax) would be in the absence of the neutral site productivity tax. Note that in the Hartman model the neutrality property is desirable only in the case of site-specific amenities. Otherwise one would need the scheme, which would internalize the externality caused by private harvesting on recreators.

Differentiating first the Lagrangian

\[\Omega^H = V^* + E^* + (n-1)E - \mu(R - R)\]

in the absence of other taxes than unit and timber taxes with respect to \(t\) and \(\alpha\) yields (see Appendix 3 for details)

\[\Omega^H_t = (\mu - 1)\frac{f(T)}{e^T - 1} + \mu T^H \{ (n-1)[F(T) - rE] + tA + \alpha B \} \]

(28a)

\[= 0\]

\[\Omega^H_\alpha = (\mu - 1)U(e^T - 1) + \mu T^H \{ (n-1)[F(T) - rE] + tA + \alpha B \} \]

(28b)

\[= 0\]

where

\[A = (e^T - 1)f'(T) - r f(T)e^T\]

and

\[B = (e^T - 1)(pf(T) - rU)\]

Now if

\[(n-1)(F(T) - rE) + tA + \alpha B = 0\]

then \(\mu = 1\), and this tax combination is nondistortionary and the same as in the Faustmann model. That happens if either \(n = 1\), or \(F'(T) = 0\) and the optimal ratio of taxes can be expressed as

\[\frac{t^*}{\alpha^*} = \frac{-f(T) - re^T pf(T)}{e^T - 1 f'(T) - r f(T)e^T} > 0\]

(28c)

For the cases where the marginal valuation of amenities is not constant the following optimality condition characterizes the combination of unit tax and timber tax, which both collects tax revenues and eliminates the externalities in the production of amenity services

\[tA + \alpha B = -(n-1)(F(T) - rE)\]

(28d)
where, $B > 0$ while $A$ is negative for $F'(T) \geq 0$ but ambiguous for $F'(T) < 0$.

Interpretation goes as follows. Under $F'(T) > 0$ the privately optimal rotation age is too short from the society’s viewpoint. Relative to Equation (28c) (reflecting both site-specific amenities and the Faustmann model), the RHS of (28d) has changed from zero to negative so that the LHS of (28d) is smaller. This means that either the unit tax rate (which lengthens the rotation age) has to be raised above the level of the Faustmann case or that timber tax (which shortens the rotation age) rate has to be decreased. [13]

Now we can summarize our findings in

**Result 6.** If the society values both harvest revenue and forest amenities as a pure public good and wishes to collect a given forest tax revenue, then in the absence of neutral taxes, the government should use

(a) a neutral combination of unit tax and timber tax (or a combination of yield tax and timber tax) for both site-specific amenities,

(b) a corrective combination for the case of nondecreasing marginal amenity valuation.

The economic interpretation of this result is obvious. Site-specific amenities reduce the Hartman model qualitatively to the same as the Faustmann model. Decreasing the excessive harvesting requires that either the unit tax is higher or the timber tax is lower than in the Faustmann case.

**Concluding Remarks**

We have studied in the rotation framework an unexplored problem of the socially optimal design of forest taxation, when the government wishes to collect a given tax revenue under two alternative assumptions. First, the society values only net harvest revenue and second, it values also amenity services from forests as a pure public good. Our analytical frameworks were the Faustmann and Hartman models. In both cases we assumed that the government first announces credibly its tax policy and then private landowners choose their rotation age in the presence of taxes.

We demonstrated that in the Faustmann model only neutral forest taxes are needed to maximize social welfare and collect the tax revenue. The site productive tax and the site value tax as lump-sum property taxes, as well as the profit tax, have this neutrality property. If neutral taxes are not available, a combination of unit (yield) tax and timber tax, which affect the rotation age in opposing directions and hence can eliminate each other’s distortionary effect, can be used to collect tax revenue without distorting privately optimal rotation age.

When forest amenities are a pure public good then, with the exception of site-specific amenity valuation, the private valuation of amenities does not reflect their social valuation. The optimal design of forest taxation now consists of a neutral tax to collect the required tax revenue and a corrective tax/subsidy to adjust the private provision of amenity services to the socially optimal level. While the site productivity tax is the only neutral tax among the taxes we study, there are many possibilities for the choice of the distortionary Pigouvian tax or subsidy. When the private optimal rotation age is too short from the society’s viewpoint (amenity valuation increases with the age of the stand), a yield, unit, or timber tax could be levied on the landowner so as to lengthen rotation age. Respectively, by a yield, unit or timber subsidy the society can shorten the privately optimal rotation age if it is too long from the society’s viewpoint (amenity valuation decreases with the age of the stand). The site value tax has the same properties as a corrective tax. Interestingly, however, a site value or a profit tax related to the size of externality always corrects the externality irrespectively of the nature of the amenity valuation. Finally, we have shown that a combination of unit (yield) and timber taxes can be used to collect the tax revenue and internalize the externality, when the marginal valuation of amenity services is non-decreasing with the age of the stand.

Finally, we would like to adhere to some limitations of our analysis and potential further research issues. First, we have studied the socially optimal forest taxation by assuming that the rotation period of a forest stand is independent of that of other adjacent stands. Stands usually are, however, interdependent in producing amenity or ecosystem services. It would be an interesting area for research to analyze the impacts of this potential interdependence. Second, our analysis was executed by assuming a steady state and thereby we abstracted from issues of transitional dynamics. Third, our model is deterministic. The effects of uncertain future amenity valuation and future timber values have been analyzed in the Hartman framework by Reed (1993) in Reed and Ye (1994), respectively. Examining the effects of these uncertainties on the optimal forest tax policy remains a challenging topic for further research.

**Endnotes**

[1] A closely related literature has analyzed forest taxation in an economy with an ordinary and an Austrian sector with the focus on how to design corrective taxation so as to achieve within-sectoral and intersectoral efficiency in the absence of government budget constraint. For the analysis in the rotation framework, see Kovenock and Rothschild (1983) and Kovenock (1986), and in N-period framework a bequest motive, see Usui (2000). Koskela and Ollikainen (1997a) have used a two-period framework to examine the second best problem of how to design the structure of forest and capital taxation under the binding government budget constraint. This literature is not, however, relevant for our case, because we focus solely on forestry.

[2] Like the previous literature, we focus on the case of nonindustrial private landowners. In footnotes 8 and 9 we shortly discuss other land tenure arrangements, like firm ownership with no interest in amenity services and the case where landowners are able to restrict the access to their forest by charging a fee for recreation services.

[3] We denote the partial derivatives by primes for functions with one argument and by subscripts for functions with many arguments.


[7] Note, however, that if nonindustrial private landowners can charge a fee for the access to enjoy amenities, then the site value and profit taxes should be levied on the overall rent including both timber and amenity parts. On the basis of the analysis presented above it is easy to see that the site and profit taxes would now remain neutral, while the effects of timber tax would be unchanged.

[8] This is the simplest way of studying the qualitative implications of differing valuations between landowner and the public. Alternatively one could postulate a public valuation function $G$ differing from $F$, but the analysis would produce same qualitative results with a more complicated mathematics. Note also that when the recreators value...
forest amenities, but the private landowner (or the firm as landowner) does not, the social welfare function reads as
\[ SW^F = V^*(a(t), r, t, \theta, \beta, \alpha) + \gamma(n - 1)T^\beta. \]

This special case has been partly analyzed in Englin and Klan (1990), but in the absence of the government tax revenue requirement. Moreover, their analysis did not include the site productivity tax, which is always neutral in the Hartman framework, and they used the site value tax and the profit tax as neutral taxes. Hence, their results are very special in the sense that i) they do not allow for tax revenue requirement and ii) they implicitly assume that \( F^*(T^\beta) = 0 \) holds for the representative landowner.

[9] It is straightforward to show that the marginal cost of public funds is equal to one also for the site value tax \( \beta \) and for the profit tax \( \theta \).

[10] To obtain the optimality condition for the unit tax, just multiply equation (19a) by the factor \( \beta T^\theta \).

[11] Gampionia and Mendelsohn (1988) provide a similar result by numerical simulations. They offer the following illuminating interpretation: “Since the yield tax lengthens rotations and property tax shortens rotations, specific combinations of both taxes could have a neutral effect” (p. 375).

[12] The analogous result has been derived in Koskela and Ollikainen (1997b) in the two-period model.

[13] If instead \( F^*(T^\beta) = 0 \), the privately optimal rotation age is longer than the socially optimal one. The RHS of (28d) has changed from zero to \( (1997b) \) in the two-period model. Since the yield tax lengthens rotations and property tax shortens rotations, specific combinations of both taxes could have a neutral effect (p. 375).

The decision to conserve or harvest old-growth forest. Ecol. Econ. 8: 45–69.

The role of stochastic monotonicity in the decision to conserve or harvest old-growth forest. Ecol. Econ. 8: 45–69.

0. The harvesting decision when a standing forest has value. Econ. Inquiry 14: 52–58.

The economics of forestry and natural resources. Basil Blackwell, Oxford, United Kingdom. 292 p.


Optimal design of forest taxation under stochastic demand. For. Sci. 45:259–271.

Optimal public harvesting under the independence of public and private forests. For. Sci. 45:259–271.


The economics of property and income taxation with multiple-use characteristics of forest stands. Environ. Resour. Econ. 3:107–132.

This special case has been partly analyzed in Englin and Klan (1990), but in the absence of the government tax revenue requirement. Moreover, their analysis did not include the site productivity tax, which is always neutral in the Hartman framework, and they used the site value tax and the profit tax as neutral taxes. Hence, their results are very special in the sense that i) they do not allow for tax revenue requirement and ii) they implicitly assume that \( F^*(T^\beta) = 0 \) holds for the representative landowner.

Literature Cited


HARTMAN, R. 1976. The harvesting decision when a standing forest has value. Econ. Inquiry 14: 52–58.


APPENDIX 1

List of Symbols

\( f(T) \) growth function of a stand

\( T \) rotation age

\( p \) real stumpage price

\( c \) real regeneration cost

\( r \) real interest rate

\( \tau \) yield tax (levied on the stumpage value of timber harvested)

\( t \) unit tax (levied on the volume of timber harvested)

\( b \) annual lump-sum tax payment (levied on the landowner)

\( \beta \) site value tax (annual lump-sum tax \( b \) related to the value of the land)

\( a(i) \) site productivity tax for site \( i \) (a lump-sum tax levied on the productivity of site \( i \))

\( \alpha \) timber tax (levied on the stumpage value)

\( \theta \) profit tax (levied on the net harvest revenue)

\( F(T) \) amenity valuation function

\( T^F \) Faustmann rotation age

\( T^H \) Hartman rotation age

\( V \) the net present value of harvest revenue over infinite rotations

\( E \) the present value of amenity services over infinite rotations

\( W \) the net present value of harvest revenue plus the present value of amenity services over infinite rotations

APPENDIX 2

Derivation of Equations (22a) and (22b)

The Lagrangian for the choice of optimal unit and timber taxes is

\[
\Omega = V^* - \lambda (R - R),
\]

where

\[
R = \left[ f(T) + \alpha e^{rT} \int_0^T p f(s) e^{-rs} ds \right] (e^{rT} - 1)^{-1}.
\]

Choosing \( t \) and \( \alpha \) so as to maximize the Lagrangian yields

\[
\Omega_t = (\lambda - 1) \frac{f(T)}{e^{rT} - 1} + \frac{\lambda T^F_t}{(e^{rT} - 1)^2} \left\{ t \left[ (e^{rT} - 1) f^{\prime}(T) - r f(T) e^{rT} \right] + (e^{rT} - 1) \alpha \left[ p f(T) - r U \right] \right\} = 0
\]

A1.1

\[
\Omega_{\alpha} = (\lambda - 1) U + \frac{\lambda T^F_{\alpha}}{(e^{rT} - 1)^2} \left\{ t \left[ (e^{rT} - 1) f^{\prime}(T) - r f(T) e^{rT} \right] + (e^{rT} - 1) \alpha \left[ p f(T) - r U \right] \right\} = 0
\]

A1.2

Defining next \( A = (e^{rT} - 1) f^{\prime}(T) - r f(T) e^{rT} \) and \( B = (e^{rT} - 1) \left[ p f(T) - r U \right] \) and applying them in A1.1 and A1.2 yields the equations given in the text.
APPENDIX 3

Derivation of Equation (23)

Differentiating the Lagrangian
\[ \Omega = V^* + E^* + (n-1)E - \mu(\overline{R} - R), \]
where
\[ R = g((pf(T) - ce^T)(e^T - 1) + a/f) \]
with respect to \( a \) implies that \( \mu = 1 \). Choosing now \( \beta \) optimally yields
\[ \Omega^H_{\beta} \bigg|_{\beta = a} = T^H_{\beta} \{ (n-1)E_T + V_T + E_T + \mu R_T \} = 0 \quad \text{A2.1} \]
Accounting for the fact that \( E_T + V_T = 0 \) at the landowner’s optimum, we can express A2.1 as
\[ \Omega^H_{\beta} \bigg|_{\beta = a} = T^H_{\beta} \{ (n-1)E_T + R_T \} = 0, \quad \text{A2.2} \]
where the derivative of the tax revenue function with respect to \( T \) is
\[ R_T = \frac{\beta}{(e^T - 1)^2} \left[ (e^T - 1)(pf'(T) - rce^T) - r(pf(T) - ce^T)e^T \right] \]
Since \( V_T(\beta) = \frac{1-\beta}{(e^T - 1)^2} \left[ (e^T - 1)(pf'(T) - rce^T) - r(pf(T) - ce^T)e^T \right] \)
we have
\[ R_T = \frac{\beta}{1-\beta} V_T, \]
so that A2.2 can be re-expressed as
\[ \Omega^H_{\beta} \bigg|_{\beta = a} = T^H_{\beta} \{ (n-1)E_T + \frac{\beta}{1-\beta} V_T \} = T^H_{\beta} \{ (n-1)E_T - \frac{\beta}{1-\beta} E_T \} = 0 \quad \text{A2.3} \]
due to the the first-order condition. This yields
\[ \beta^* = \frac{n-1}{n}, \]
which was given in Equation (23) of the text.

APPENDIX 4

Derivation of Equations (28a) and (28b)

The Lagrangian function can be written as
\[ \Omega = V^* + E^* + (n-1)E - \mu(\overline{R} - R), \]
where
\[ R = \int_0^T f(T) + a(e^T - 1)ds \left[ e^T - 1 \right]^{-1}. \]
Choosing \( t \) and \( \alpha \) so as to maximize the Lagrangian yields
\[ \Omega_t = (\mu - 1) \frac{f(T)}{e^T - 1} + \mu T^H_{\alpha} \left\{ (n-1)E_T + \frac{t}{(e^T - 1)^2} \left[ e^T - 1 \right] f'(T) - rf(T)e^T \right\} \\
+ \frac{a}{e^T - 1} \left[ pf(T) - rU \right] = 0 \quad \text{A3.1} \]
\[ \Omega_\alpha = (\mu - 1)U + \mu T^H_{\alpha} \left\{ (n-1)E_T + \frac{t}{(e^T - 1)^2} \left[ e^T - 1 \right] f'(T) - rf(T)e^T \right\} \\
+ \frac{a}{e^T - 1} \left[ pf(T) - rU \right] = 0 \quad \text{A3.2} \]
Defining \( A = (e^T - 1)^{-1} f'(T) - rf(T)e^T \) and \( B = \left[ pf(T) - rU \right] > 0 \)
and noting that \( E_T = F(T) - rE \) allows equations A3.1 and A3.2, to re-express as
\[ \Omega_t = (\mu - 1) \frac{f(T)}{e^T - 1} + \mu T^H_{\alpha} \left\{ (n-1)(F - rE) + tA + \alpha B \right\} = 0 \quad \text{A3.3} \]
\[ \Omega_\alpha = (\mu - 1)U(e^T - 1) + \mu T^H_{\alpha} \left\{ (n-1)(F - rE) + tA + \alpha B \right\} = 0 \quad \text{A3.4} \]
which were given in the text.