<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3/2 law, 452</td>
</tr>
<tr>
<td>3CM, 62</td>
</tr>
<tr>
<td>3P sampling, 179</td>
</tr>
<tr>
<td>Above-ground net primary production (ANPP), 333</td>
</tr>
<tr>
<td>Acer rubrum, 512</td>
</tr>
<tr>
<td>Adjacency constraints, 45, 201</td>
</tr>
<tr>
<td>Afforestation, 171</td>
</tr>
<tr>
<td>Airborne laser scanner data, 407</td>
</tr>
<tr>
<td>Alberta, Canada, 342</td>
</tr>
<tr>
<td>Amenity valuation, 259</td>
</tr>
<tr>
<td>Ammonium nitrate, 136</td>
</tr>
<tr>
<td>Andropogon virginicus, 423</td>
</tr>
<tr>
<td>Arbitrage-free, 473</td>
</tr>
<tr>
<td>Arceuthobium douglasii, 359</td>
</tr>
<tr>
<td>Auxiliary information, 179</td>
</tr>
<tr>
<td>Barr & Stroud FP15 dendrometer, 53</td>
</tr>
<tr>
<td>Basal area growth, 35</td>
</tr>
<tr>
<td>Bayesian synthesis method (BSYN), 528</td>
</tr>
<tr>
<td>Benefit-cost analysis, 381</td>
</tr>
<tr>
<td>Best linear unbiased prediction (BLUP), 572</td>
</tr>
<tr>
<td>Big-eared bats. See Corynorhinus spp.</td>
</tr>
<tr>
<td>Biological legacies, 520</td>
</tr>
<tr>
<td>Biomass estimation, 583</td>
</tr>
<tr>
<td>Biotechnology, 163</td>
</tr>
<tr>
<td>Black spruce. See Picea Mariana</td>
</tr>
<tr>
<td>Bootstrap, 163, 452</td>
</tr>
<tr>
<td>Boreal hardwood, 349</td>
</tr>
<tr>
<td>Breeding values, 572</td>
</tr>
<tr>
<td>British Columbia, 272</td>
</tr>
<tr>
<td>Bucking optimization problems, 108</td>
</tr>
<tr>
<td>Burning index, 492</td>
</tr>
<tr>
<td>California, 492</td>
</tr>
<tr>
<td>Canopy architecture, 349</td>
</tr>
<tr>
<td>Canopy closure, 35</td>
</tr>
<tr>
<td>Canopy height, 407</td>
</tr>
<tr>
<td>Canopy structure, 520</td>
</tr>
<tr>
<td>Case characterization, 1</td>
</tr>
<tr>
<td>CFES2, 492</td>
</tr>
<tr>
<td>Change estimation, 433</td>
</tr>
<tr>
<td>China, 85</td>
</tr>
<tr>
<td>Choristoneura occidentalis, 280</td>
</tr>
<tr>
<td>Cognitive maps, 62</td>
</tr>
<tr>
<td>Coleotechnites sp. nr. milleri, 15</td>
</tr>
<tr>
<td>Collaborative decision-making, 62</td>
</tr>
<tr>
<td>Collaborative planning, 394</td>
</tr>
<tr>
<td>Community of interest, 394</td>
</tr>
<tr>
<td>Competition, 117</td>
</tr>
<tr>
<td>Confidence intervals, 528</td>
</tr>
<tr>
<td>Constrained least squares, 506</td>
</tr>
<tr>
<td>Continuous forest inventory, 433</td>
</tr>
<tr>
<td>Contractual forms, 272</td>
</tr>
<tr>
<td>Corynorhinus spp., 323</td>
</tr>
<tr>
<td>Coupled map lattice, 249</td>
</tr>
<tr>
<td>Criterion 400 dendrometer, 53</td>
</tr>
<tr>
<td>Critical extinction thresholds, 249</td>
</tr>
<tr>
<td>Crown architecture, 217</td>
</tr>
<tr>
<td>Crown area, 217, 407</td>
</tr>
<tr>
<td>Crown competition factor, 35</td>
</tr>
<tr>
<td>Crown dynamics, 35</td>
</tr>
<tr>
<td>Deadwood volume, 302</td>
</tr>
<tr>
<td>Decay resistance, 101</td>
</tr>
<tr>
<td>Decomposition strategy, 201</td>
</tr>
<tr>
<td>Deconvolution, 407</td>
</tr>
<tr>
<td>Defoliation, 74, 280</td>
</tr>
<tr>
<td>Deforestation, 552</td>
</tr>
<tr>
<td>Density management diagram, 452</td>
</tr>
<tr>
<td>Deployment population, 213</td>
</tr>
<tr>
<td>Development potential, 1</td>
</tr>
<tr>
<td>Differential equations, 85</td>
</tr>
<tr>
<td>Diffusion, 232</td>
</tr>
<tr>
<td>Direct-seeded stands, 506</td>
</tr>
<tr>
<td>Douglas-fir. See Pseudotsuga menziesii</td>
</tr>
<tr>
<td>Douglas-fir dwarf mistletoe. See Arceuthobium douglasii</td>
</tr>
<tr>
<td>Economic optimal rotation age, 163</td>
</tr>
<tr>
<td>Economic weights, 213</td>
</tr>
<tr>
<td>EM algorithm, 407</td>
</tr>
<tr>
<td>Environmental dispute resolution, 394</td>
</tr>
<tr>
<td>Environmental regulations, 342</td>
</tr>
<tr>
<td>Error components, 583</td>
</tr>
<tr>
<td>Error function, 407</td>
</tr>
<tr>
<td>European gypsy moth. See Lymantria dispar L.</td>
</tr>
<tr>
<td>Extreme value distribution, 407</td>
</tr>
<tr>
<td>Federal timber lease, 473</td>
</tr>
<tr>
<td>FIA data, 226</td>
</tr>
<tr>
<td>Finance, 473</td>
</tr>
<tr>
<td>Fire rate of spread, 492</td>
</tr>
<tr>
<td>Forest economics, 552</td>
</tr>
<tr>
<td>Forest harvest planning, 108</td>
</tr>
<tr>
<td>Forest management, 62, 201, 323, 500</td>
</tr>
<tr>
<td>Forest monitoring, 433</td>
</tr>
<tr>
<td>Forest planning, 366, 458</td>
</tr>
<tr>
<td>Forest policy, 259, 272, 342</td>
</tr>
<tr>
<td>Forest production, 333</td>
</tr>
<tr>
<td>Forest rotation model, 539</td>
</tr>
<tr>
<td>Forest surveys, 433</td>
</tr>
<tr>
<td>Forest weed control, 117</td>
</tr>
<tr>
<td>Forestry institutions, 272</td>
</tr>
<tr>
<td>Fusarium circinatum, 500</td>
</tr>
<tr>
<td>Fusarium moniliforme var. subglutinans, 500</td>
</tr>
<tr>
<td>Fusarium subglutinans, 500</td>
</tr>
<tr>
<td>Fusiform rust, 163</td>
</tr>
<tr>
<td>GA, 136</td>
</tr>
<tr>
<td>Gambel oak. See Quercus gambelii</td>
</tr>
<tr>
<td>Generalized method of moments, 484</td>
</tr>
<tr>
<td>Generalized regression estimator, 179</td>
</tr>
<tr>
<td>Genetic testing, 374</td>
</tr>
<tr>
<td>Genetic-gain multipliers, 186</td>
</tr>
<tr>
<td>Genotype × environment interaction, 572</td>
</tr>
<tr>
<td>Gibberellins, 136</td>
</tr>
<tr>
<td>Grosenbaugh’s estimator, 179</td>
</tr>
<tr>
<td>Growth, 359</td>
</tr>
<tr>
<td>Growth modeling, 186</td>
</tr>
<tr>
<td>Habitat edge effects, 249</td>
</tr>
<tr>
<td>Habitat use, 127</td>
</tr>
<tr>
<td>Harvest scheduling, 45, 201</td>
</tr>
<tr>
<td>Harvesting intensity, 26</td>
</tr>
<tr>
<td>Herbaceous vegetation, 117</td>
</tr>
<tr>
<td>Heuristic techniques, 292</td>
</tr>
<tr>
<td>Home range, 127</td>
</tr>
<tr>
<td>Horvitz-Thompson estimator, 179</td>
</tr>
<tr>
<td>Host-tree resistance, 15</td>
</tr>
<tr>
<td>Incomplete block designs, 374</td>
</tr>
<tr>
<td>Indirect selection, 572</td>
</tr>
<tr>
<td>Induced edge, 249</td>
</tr>
<tr>
<td>Industry evolution, 232</td>
</tr>
<tr>
<td>Initial attack, 492</td>
</tr>
<tr>
<td>Input-output analysis, 381</td>
</tr>
<tr>
<td>Insect defoliators, 15, 280</td>
</tr>
<tr>
<td>Insect outbreaks, 15</td>
</tr>
<tr>
<td>Instrument familiarity, 53</td>
</tr>
<tr>
<td>Integer optimization, 458</td>
</tr>
<tr>
<td>Integer programming, 45</td>
</tr>
<tr>
<td>Intensification, 359</td>
</tr>
<tr>
<td>Intergenerational equity, 366</td>
</tr>
<tr>
<td>Interspecific competition, 423</td>
</tr>
<tr>
<td>Intraspecific competition, 423</td>
</tr>
<tr>
<td>Inventory projections, 226</td>
</tr>
<tr>
<td>Investment timing, 171</td>
</tr>
<tr>
<td>Jack pine. See Pinus banksiana</td>
</tr>
<tr>
<td>Jackknife, 452</td>
</tr>
<tr>
<td>Juvenile wood, 101</td>
</tr>
<tr>
<td>Kentucky, 323</td>
</tr>
<tr>
<td>Kraft pulp, 213</td>
</tr>
<tr>
<td>Land-use planning, 458</td>
</tr>
<tr>
<td>Leaf anatomy, 512</td>
</tr>
<tr>
<td>Leaf area efficiency, 333</td>
</tr>
<tr>
<td>Lepidoptera, 74, 323</td>
</tr>
<tr>
<td>Limiting factors, 249</td>
</tr>
<tr>
<td>Linear-Programming-Tabu Search (LP/TS), 108</td>
</tr>
<tr>
<td>Lobolly pine. See Pinus taeda</td>
</tr>
<tr>
<td>Locally weighted regression (LOESS), 163</td>
</tr>
<tr>
<td>Lodgepole needle miner. See Coleotechnites sp. nr. milleri</td>
</tr>
<tr>
<td>Lodgepole pine. See Pinus contorta</td>
</tr>
<tr>
<td>Log merchandising, 108</td>
</tr>
<tr>
<td>Logging machinery, 26</td>
</tr>
<tr>
<td>Lymantria dispar L., 74</td>
</tr>
<tr>
<td>Marginal willingness to pay, 259</td>
</tr>
<tr>
<td>MAXMIN objective functions, 366</td>
</tr>
<tr>
<td>Mechanical pulp, 213</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Mechanistic models, 528</td>
</tr>
<tr>
<td>Mexican spotted owl. See Strix occidentalis lucia</td>
</tr>
<tr>
<td>Minimum bid valuation, 473</td>
</tr>
<tr>
<td>Missing observations, 374</td>
</tr>
<tr>
<td>Mississippi Delta, 381</td>
</tr>
<tr>
<td>Mixed effect models, 53</td>
</tr>
<tr>
<td>Mixed estimator, 433</td>
</tr>
<tr>
<td>Model, 26</td>
</tr>
<tr>
<td>Model forms, 583</td>
</tr>
<tr>
<td>Monte Carlo integer programming, 292</td>
</tr>
<tr>
<td>Monterey pine. See Pinus radiata</td>
</tr>
<tr>
<td>Mortality, 374</td>
</tr>
<tr>
<td>Multinomial logit model, 226</td>
</tr>
<tr>
<td>Multiple-use forestry, 259</td>
</tr>
<tr>
<td>Multivariate analysis, 1</td>
</tr>
<tr>
<td>Mycorrhizae, 280</td>
</tr>
<tr>
<td>National income accounts, 552</td>
</tr>
<tr>
<td>Natural regulation, 15</td>
</tr>
<tr>
<td>Natural resource management, 394</td>
</tr>
<tr>
<td>Net domestic product, 552</td>
</tr>
<tr>
<td>Net revenue, 366</td>
</tr>
<tr>
<td>New Zealand, 186</td>
</tr>
<tr>
<td>Non-Timber Forest Products (NTFP), 1</td>
</tr>
<tr>
<td>Nonindustrial private forest owner, 539</td>
</tr>
<tr>
<td>Nonlinear models, 85</td>
</tr>
<tr>
<td>Northern hardwood, 349</td>
</tr>
<tr>
<td>Northern spotted owl. See Strix occidentalis</td>
</tr>
<tr>
<td>Nutrients, 280</td>
</tr>
<tr>
<td>Old growth, 302, 520</td>
</tr>
<tr>
<td>Optimal public harvesting, 259</td>
</tr>
<tr>
<td>Optimization modeling, 458</td>
</tr>
<tr>
<td>Option value, 473</td>
</tr>
<tr>
<td>Oregon, 15</td>
</tr>
<tr>
<td>Oriented strandboard, 232</td>
</tr>
<tr>
<td>Pacific Northwest, 62, 359</td>
</tr>
<tr>
<td>Photosynthesis, 280</td>
</tr>
<tr>
<td>Picea mariana, 484</td>
</tr>
<tr>
<td>Pine-oak forest, 127</td>
</tr>
<tr>
<td>Pinus banksiana, 136</td>
</tr>
<tr>
<td>P. contortus, 333</td>
</tr>
<tr>
<td>P. ponderosa, 127</td>
</tr>
<tr>
<td>P. radiata, 186, 500</td>
</tr>
<tr>
<td>P. taeda, 35, 213, 506, 528</td>
</tr>
<tr>
<td>Pitch canker. See Fusarium circinatum</td>
</tr>
<tr>
<td>Plant area index, 349</td>
</tr>
<tr>
<td>Plywood, 232</td>
</tr>
<tr>
<td>Poison sampling, 179</td>
</tr>
<tr>
<td>Policy expectations, 171</td>
</tr>
<tr>
<td>Ponderosa pine, 127</td>
</tr>
<tr>
<td>Posterior distribution, 528</td>
</tr>
<tr>
<td>PPS sampling, 407</td>
</tr>
<tr>
<td>Present net worth, 366</td>
</tr>
<tr>
<td>Private forests, 259</td>
</tr>
<tr>
<td>Processing, 26</td>
</tr>
<tr>
<td>Productivity, 26</td>
</tr>
<tr>
<td>Productivity gradient, 302</td>
</tr>
<tr>
<td>Pseudotsuga menziesii, 117, 217, 280, 359</td>
</tr>
<tr>
<td>Public forests, 259</td>
</tr>
<tr>
<td>Public participation, 394</td>
</tr>
<tr>
<td>Pulp and paper industry, 342</td>
</tr>
<tr>
<td>Quality of resolution, 394</td>
</tr>
<tr>
<td>Quercus gambelii, 127</td>
</tr>
<tr>
<td>Radiata pine. See Pinus radiata</td>
</tr>
<tr>
<td>Radio telemetry, 127, 520</td>
</tr>
<tr>
<td>Reaction-diffusion, 249</td>
</tr>
<tr>
<td>Reciprocal yield models, 423</td>
</tr>
<tr>
<td>Rectangularity, 35</td>
</tr>
<tr>
<td>Red maple. See Acer rubrum</td>
</tr>
<tr>
<td>Red:far red ratio, 512</td>
</tr>
<tr>
<td>Reforestation, 117, 381</td>
</tr>
<tr>
<td>Relative economic weights, 213</td>
</tr>
<tr>
<td>Research benefits, 163</td>
</tr>
<tr>
<td>Research Natural Areas, 458</td>
</tr>
<tr>
<td>Reserve selection, 458</td>
</tr>
<tr>
<td>Rule-based methods, 108</td>
</tr>
<tr>
<td>Sample size distribution, 179</td>
</tr>
<tr>
<td>Sampling with partial replacement, 433</td>
</tr>
<tr>
<td>Seed orchards, 136, 213</td>
</tr>
<tr>
<td>Selection criteria, 583</td>
</tr>
<tr>
<td>Selection index, 213</td>
</tr>
<tr>
<td>Silver maple. See Acer saccharinum</td>
</tr>
<tr>
<td>Simulated annealing, 292</td>
</tr>
<tr>
<td>Simulation, 374</td>
</tr>
<tr>
<td>Simultaneous linear equations, 484</td>
</tr>
<tr>
<td>Single-grip harvester, 26</td>
</tr>
<tr>
<td>Site index, 484</td>
</tr>
<tr>
<td>Snags, 302</td>
</tr>
<tr>
<td>Social accounting matrix, 342</td>
</tr>
<tr>
<td>Social-conflict models, 394</td>
</tr>
<tr>
<td>Soil fertilization, 136</td>
</tr>
<tr>
<td>Soil organic matter (OM), 423</td>
</tr>
<tr>
<td>Spatial analysis, 201</td>
</tr>
<tr>
<td>Spatial and temporal distribution, 302</td>
</tr>
<tr>
<td>Spatial optimization model, 249</td>
</tr>
<tr>
<td>Spatial scale, 45</td>
</tr>
<tr>
<td>Spot herbicide application, 117</td>
</tr>
<tr>
<td>Stand density indexes, 452</td>
</tr>
<tr>
<td>Stand dynamics, 74, 528</td>
</tr>
<tr>
<td>Stand structure, 520</td>
</tr>
<tr>
<td>Stand table projection, 506</td>
</tr>
<tr>
<td>Stochastic simulation model, 492</td>
</tr>
<tr>
<td>Strix occidentalis, 520</td>
</tr>
<tr>
<td>S. occidentalis lucia, 127</td>
</tr>
<tr>
<td>Structural wood panel products, 232</td>
</tr>
<tr>
<td>Subsampling, 583</td>
</tr>
<tr>
<td>Subsidies, 171</td>
</tr>
<tr>
<td>Subsidy design, 381</td>
</tr>
<tr>
<td>Sugar maple. See Acer saccharum</td>
</tr>
<tr>
<td>Superior National Forest, 458</td>
</tr>
<tr>
<td>Sweetgum. See Liquidambar styraciflua L.</td>
</tr>
<tr>
<td>Tabu search, 292</td>
</tr>
<tr>
<td>Taper equation, 53</td>
</tr>
<tr>
<td>Theory of real options, 171</td>
</tr>
<tr>
<td>Thinning, 26</td>
</tr>
<tr>
<td>Three-stage least squares, 484</td>
</tr>
<tr>
<td>Thuja plicata, 101</td>
</tr>
<tr>
<td>Thuja plicinum, 101</td>
</tr>
<tr>
<td>Timber harvesting, 323, 473</td>
</tr>
<tr>
<td>Timber product classes, 226</td>
</tr>
<tr>
<td>Timber production, 342</td>
</tr>
<tr>
<td>Timber stocks, 552</td>
</tr>
<tr>
<td>Timber supply, 226</td>
</tr>
<tr>
<td>Time-series analysis, 15</td>
</tr>
<tr>
<td>Tobit model, 539</td>
</tr>
<tr>
<td>Tree form, 85</td>
</tr>
<tr>
<td>Tree improvement, 186</td>
</tr>
<tr>
<td>Tropolones, 101</td>
</tr>
<tr>
<td>Two-stage least squares, 484</td>
</tr>
<tr>
<td>Type B genetic correlations, 572</td>
</tr>
<tr>
<td>Uncertainty, 171, 528</td>
</tr>
<tr>
<td>Upland oak, 349</td>
</tr>
<tr>
<td>Utility-based rotation model, 539</td>
</tr>
<tr>
<td>Valuation, 552</td>
</tr>
<tr>
<td>Vegetation management, 117</td>
</tr>
<tr>
<td>Vigor, 359</td>
</tr>
<tr>
<td>Vulnerability, 74</td>
</tr>
<tr>
<td>Water relations, 280</td>
</tr>
<tr>
<td>Weibull cumulative distribution function, 349</td>
</tr>
<tr>
<td>Weibull distribution, 407, 506</td>
</tr>
<tr>
<td>Weighting, 583</td>
</tr>
<tr>
<td>Western redcedar. See Thuja plicata</td>
</tr>
<tr>
<td>Western spruce budworm. See Choristoneura occidentalis</td>
</tr>
<tr>
<td>Wildland fire protection planning model, 492</td>
</tr>
<tr>
<td>Wildlife edge effects, 249</td>
</tr>
</tbody>
</table>