Life under pressure: insights from electronic data-storage tags into cod swimbladder function

Jeroen van der Kooij, David Righton, Espen Strand, Kathrine Michalsen, Vilhjalmur Thorsteinsson, Henrik Svedäng, Francis C. Neat, and Stefan Neuenfeldt

The behavioural response of cod (Gadus morhua) to sudden pressure reductions was investigated in a large electronic-tagging experiment using data collected from 141 cod tagged in five different areas of the Northeast Atlantic. More than 40% of cod exhibited a characteristic equilibration behaviour after a rapid pressure reduction caused either by capture before tagging, or by pressure reduction during a rapid ascent from the seabed, or when migrating to deeper water. The equilibration allowed the cod to regain demersal residence. The rate of descent averaged 10 m d⁻¹ (ranging from 2 to 23 m d⁻¹) over periods of less than a day to 1 month. Descent rates for cod on the Icelandic shelf were inversely related to fish length, i.e. smaller fish descended more rapidly, findings consistent with results achieved in the past under laboratory conditions. Modelling of swimbladder volume during equilibration suggested that cod were negatively buoyant for most of the time. The results imply that swimbladder functionality is retained after the probable barotrauma that would follow a large and rapid ascent, and that rates of gas exchange into the swimbladder may be naturally variable. These findings have implications for assumptions on discard mortality, the interpretation of cod behaviour, and its impact on biomass estimates obtained from acoustic surveys.

Keywords: behaviour, buoyancy, cod, discard, physoclists.

Received 21 February 2007; accepted 3 June 2007; advance access publication 31 August 2007.

J. van der Kooij and D. Righton: Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 OHT, UK. E. Strand: Department of Biology, University of Bergen, PO Box 7800, N-5020 Bergen, Norway. K. Michalsen: Institute of Marine Research, PO Box 1870 Nordnes, N-5817 Bergen, Norway. V. Thorsteinsson: Marine Research Institute, Skúlagata 4, PO Box 1390, 121 Reykjavik, Iceland. H. Svedäng: Swedish Board of Fisheries, Institute of Marine Research, PO Box 4, S-453 21 Lysekil, Sweden. F. C. Neat: Marine Laboratory, Fisheries Research Services, 375 Victoria Road, 101, AB11 9DB Aberdeen, UK. S. Neuenfeldt: Danish Institute for Fisheries Research, Charlottenlund Castle, 2920 Charlottenlund, Denmark. Correspondence to J. van der Kooij: tel: +44 1502 524416; fax: +44 1502 513865; e-mail: jeroen.vanderkooij@cefas.co.uk.

Introduction

The Atlantic cod (Gadus morhua) is a highly adaptive boreal species with a broad distribution through different ecosystems, from temperate waters at the southern limit of its latitudinal range to Subarctic waters at its northern limits. Diet, environmental factors, and population dynamics vary enormously throughout this range, and behaviours are extremely plastic. However, the behaviour of cod will always be constrained by physiology, be it temperature tolerance, swimming speed, or buoyancy control.

Cod, like other gadoids and species such as bass (Dicentrarchus labrax), redfish (Sebastes spp.), and horse mackerel (Trachurus spp.), are physoclists, i.e. they have a closed, compliant swimbladder that can be filled or emptied to achieve neutral buoyancy at any depth (Arnold and Greer-Walker, 1992). In cod, the swimbladder occupies between 4% and 5% of the volume of the fish. Pressure changes caused by vertical movements lead to expansion and compression of the swimbladder as fish ascend or descend, respectively. Over time, the amount of gas in the swimbladder will change so that individuals can maintain neutral buoyancy with minimum effort (Strand et al., 2005). In cod, this is achieved by the secretion or excretion of gas by two specialized vascular structures in the swimbladder. Gas is secreted to the swimbladder through a gas gland, and is a chemical process, so it varies with temperature (Scholander, 1954). Resorption is a solely physical process that occurs through a specialist organ called the oval, and is only limited by the oval’s supply of blood. Resorption is therefore faster than secretion and increases with hydrostatic pressure (Harden Jones and Scholes, 1985). However, as gas secretion and resorption proceed slowly, relative to the short-term (seconds to minutes) vertical movements of cod (Heffernan et al., 2004), it follows that there must be some restriction on the extent and speed of the changes in depth a cod can make while still enjoying the advantages of neutral buoyancy. Arnold and Greer-Walker (1992) describe a free vertical range (FVR) within which a cod can use compensatory swimming movements to move freely without needing to change the volume of gas in the swimbladder. The FVR has been shown experimentally to be at pressures 25% less and 50% more than the pressure at the depth at which neutral buoyancy is achieved (Harden Jones and Scholes, 1985).

Crown Copyright © 2007. Published by Oxford Journals on behalf of the International Council for the Exploration of the Sea. All rights reserved.
 Nonetheless, changes in the depth of neutral buoyancy are likely at all times because the swimbladder and associated organs respond to medium-term (hours to days) changes in residence depth (Strand et al., 2005). At times or in places where seabed depth changes rapidly, e.g. during offshore migration (Godø and Michalsen, 2000), compensatory swimming will not be sufficient for buoyancy control, and significant changes in residence depth on a time-scale of hours to days will require changes in the amount of gas in the swimbladder, if energy expenditure on buoyancy control is to be minimized (Strand et al., 2005). Aside from the energetic considerations of buoyancy control (Strand et al., 2005), and the limits that this imposes on cod behaviour (Arnold and Greer-Walker, 1992; Godø and Michalsen, 2000; Heffernan et al., 2004), understanding the buoyancy control of cod in more detail has relevance to the design of acoustic surveys and the interpretation of acoustic data, because of the correlation between swimbladder volume and target strength (MacLennan and Simmonds, 1992; Rose and Porter, 1996; Godø and Michalsen, 2000; Heffernan et al., 2004).

The difficulties of obtaining reliable estimates of the rate of gas exchange in swimbadders are well documented (Arnold and Greer-Walker, 1992; Strand et al., 2005). Here, we used data collected from cod tagged with electronic tags and released across the various regions of the Northeast Atlantic to investigate the neutrally buoyant descent rates of cod moving from shallow depths of residence to deeper ones. First, we describe the patterns of this equilibration behaviour in terms of vertical movement and rates of descent in the recuperation period following tagging, when the swimbladder is re-inflating to compensate for loss of gas due to pressure reduction during capture, and to achieve neutral buoyancy at capture depth. Second, using this recuperation behaviour as an indication of swimbladder inflation during extreme depth changes, we describe and compare similar patterns of natural-equilibration behaviour during medium-term transitions from shallow to deeper water, as cod move across different areas during migration, and following rapid ascents from the seabed. Third, we investigate the energetic costs associated with behaviour of this type, and assess the null hypothesis that this is the most energetically efficient way of coping with large transitions in depth. Finally, we estimate the buoyancy status of cod during these transitory phases, and both assess and discuss the implications for acoustic surveys.

Material and methods

Tags and tagging

Atlantic cod were tagged with electronic data-storage tags (DSTs) at various locations in the Northeast Atlantic between 1999 and 2004. Data from 342 of these tags had been returned by early 2006 and were available for analysis.

Several different types of tag were used in this study: the LTD_1200, the LTD_2400 (LOTTEK Marine Technologies, St Johns, Newfoundland, Canada, www.lotek.com), the DST_300, the DST Milli, and the DST Centi (Star-Oddi Corporation, Vatnagarðar 14, 104 Reykjavik, Iceland, www.star-oddi.com). DSTs were programmed to record depth and temperature at intervals between 10 s and 15 min.

Capture methods

Cod were caught using different methods depending on the location of tagging, prevailing conditions, and the particular expertise of the fishers involved (Table 1). In the southern North Sea, cod were caught in shallow water (~25 m) by rod or longline (Righton et al., 2006). In the northern North Sea, cod were caught in deeper water (>60 m) using a BT 158 Jackson rock-hopper trawl (Neat et al., 2006). In the Skagerrak, cod were caught in cages or by 30-min trawl (Svedäng et al., 2006), and in the Irish Sea, cod were caught using rod and line in water 75–90 m deep (Righton and Metcalfe, 2002). In the Barents Sea, cod were caught in 100 m of water using bottom trawl or purse-seine (Michalsen et al., 2006). Aside from these transitory phases, and both assess and discuss the implications for acoustic surveys.

<table>
<thead>
<tr>
<th>Region</th>
<th>Capture methods</th>
<th>Capture depth (m)</th>
<th>Tagging method</th>
<th>Number examined</th>
<th>Number equilibrating</th>
<th>Temperature (°C) and (s.d.)</th>
<th>Length (cm) and (s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baltic sea</td>
<td>Longline</td>
<td>30–40</td>
<td>External</td>
<td>17</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Barents sea</td>
<td>Trawl/purse-seine</td>
<td>100</td>
<td>Internal/external</td>
<td>25</td>
<td>8</td>
<td>5.3 (±2.2)</td>
<td>72.9 (±10.3)</td>
</tr>
<tr>
<td>Icelandic shelf</td>
<td>Gillnet/Danish seine</td>
<td>20–110</td>
<td>Internal</td>
<td>13</td>
<td>11</td>
<td>7.2 (±1.9)</td>
<td>97.0 (±5.6)</td>
</tr>
<tr>
<td>Irish sea</td>
<td>Rod</td>
<td>75–90</td>
<td>External</td>
<td>4</td>
<td>4</td>
<td>8.3 (±0.9)</td>
<td>64.5 (±7.3)</td>
</tr>
<tr>
<td>North sea</td>
<td>Longline/rod</td>
<td>25</td>
<td>Internal/external</td>
<td>61</td>
<td>27</td>
<td>7.3 (±2.1)</td>
<td>61.1 (±6.6)</td>
</tr>
<tr>
<td></td>
<td>Trawl</td>
<td>>60</td>
<td>Internal</td>
<td>10</td>
<td>4</td>
<td>7.0 (±0.43)</td>
<td>67.0 (±4.2)</td>
</tr>
<tr>
<td>Skagerrak*</td>
<td>Trawl/cages</td>
<td>>50</td>
<td>External</td>
<td>11</td>
<td>1*</td>
<td>7.1</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>141</td>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Most Skagerrak tags were set to record at irregular intervals, and only the data from one DST covered the whole equilibration period in regular recording intervals. More examples were found, but only one complete example could be used for analysis.

N/A, not applicable.
external injury, such as bloodied fins or net-marks. Healthy cod were then measured to the nearest centimetre total length (TL). Skagerrak cod >37 cm, owing to the exclusive use of the smaller, Lotek 2400 tags, and in other regions >50 cm, were considered suitable for tagging. Fish were tagged either externally or internally (Table 1). External tags were attached by threading monofilament line or wire from the attachment points of the DST through the muscles anterior to the first dorsal fin, and fastening the ends securely on the other side (Godø and Michalsen, 2000; Righton et al., 2006; Neuenfeldt et al., in press). For internal tagging, individuals at all release locations except the Icelandic plateau were first placed in a shallow (~20 cm) bath containing anaesthetic until light anaesthesia was achieved. Subsequently, a small (1.5 cm) incision was made in the skin of the belly, just behind the ventral fins, and a DST was inserted. The incision was then stitched twice with absorbable sutures and the wound smeared with antibiotic powder mixed with orahesive (for detail, see Pálsson and Thorsteinsson, 2003; Neat et al. 2006; Righton et al. 2006). All surgical instruments were sterilized before use on each fish.

Tagging was conducted under Government licence and always adhering to national regulations on the treatment of experimental animals.

Tag recovery
Fish were recaptured by the commercial fishery, with a financial incentive offered for their return. Capture information requested included location, date, and water depth. Specimen information included fish length, weight, and sex.

Definition of equilibration behaviour
Previously described as recuperation (Nichol and Chilton, 2006) and depth adaptation (Heffernan et al., 2004), we redefined the typical post-release patterns of gradual descent as equilibration behaviour, because we found the same behaviour occurring naturally well after release. Equilibration behaviour is characterized by a series of large depth fluctuations over a period of days, during which the depth attained on successive ascents increases linearly (as for Arnold and Greer-Walker, 1992; Hobson et al., in press). Seabed equilibration is characterized by the fish spending more time on the seabed than in midwater, midwater equilibration by more time in midwater than near the seabed, and neutral equilibration by approximately equal amounts of time spent in midwater and near the seabed (Figure 2).

Analysis of descent rate and equilibration period
The recording frequency of the DSTs varied by region, but was standardized to 10-min intervals for the analyses, either by re-sampling at a lower frequency or interpolating data to a higher frequency. In all, 141 DST records from six different regions were investigated for the presence of depth adaptation.

Each depth time-series was scrutinized to identify times of rapid transition to deeper water, and examples of equilibration behaviour were then extracted. For each example, the starting point of equilibration was taken as the time and depth of the shallowest point at the start of the descent (Figure 1). The maximum depth attained during this descent was typically the depth at which the individual would become resident. In several cases, the assumed seabed depth changed during the equilibration period, suggesting that the fish was migrating as it equilibrated. The endpoint of equilibration was taken to be when the individual ceased to undertake vertical migration away from the new residence depth. The descent rate over the equilibration period was estimated by manually fitting a line that extended through the uppermost portion of the depth range (Figure 1) of each equilibration period, based on the assumption that cod were neutrally buoyant only at the upper limit of their depth range (Harden Jones and Scholes, 1985; Arnold and Greer-Walker, 1992). Although we also applied a linear regression to the data during equilibration, visual comparison indicated that the lines fitted manually followed the uppermost points more accurately, and were therefore selected for further analyses. Nichol and Chilton (2006) found that the descent rate in most of the Pacific cod (Gadus macrocephalus) they analysed decreased in time, and they attributed this curvilinearity to increasing diffusion and leakage of gas from the swimbladder with depth. Initial examination of our equilibration data showed that only a few examples showed curvilinear descent rates: cod 514 from the Icelandic shelf first shows an increase in the descent rate (between 70 and 120 h) followed by a decrease (120 h to the end Figure 2). As the descent rates of most Atlantic cod from our study areas were more or less linear, we made no further attempt to fit curvilinear regressions slopes.

Figure 1. Post-tagging example of equilibration behaviour in cod 11788 (Skagerrak), including start and end time, and start depth (D_s) and end depth (D_e) of equilibration.
From all the records we examined, 73 cod displayed a total of 134 equilibration behaviours. These examples were scrutinized carefully and only the clearest 83 examples (from 55 fish) were used for further analyses. For each equilibration example, several variables were collected: start and end time and depth, rate of descent, mean temperature, and fish length. Scatterplots were produced to explore the relationships between variables. Multiple linear regression was then used to relate the descent rate during equilibration to independent variables from all regions using

\[Y = a + b_1X_1 + b_2X_2 + \cdots + b_pX_p, \]

where the dependent \(Y \) variable (descent rate in m d\(^{-1}\)) was expressed in terms of a constant \((a) \) and a slope \((b) \) times the \(X_n \) variable. The independent explanatory variables used were fish length, water temperature during equilibration (both continuous variables), and region (categorical variable), as well as their various interactions. Region was included to explore the regional effects of temperature and length.

Modelling energy expenditure and neutral buoyancy

We used a bioenergetic model (Strand et al., 2005) to explore buoyancy regulation, including its restrictions and energetic costs. The model was parameterized for Atlantic cod and based on the integration of existing theory and experimental data on bioenergetics, physiology, and hydromechanics. As the swimbladder is subject to the physical laws for gases, swimbladder dynamics and gas exchange in particular are dependent on depth, body size, and temperature. Input variables in the model were therefore the individual vertical depth and temperature profile from the DST, standardized to 10-min intervals, as well as cod length and weight upon release. For each depth profile, the model calculates swimbladder buoyancy status relative to the neutrally buoyant state (1 is neutrally buoyant, i.e. perfect volume, 0 an empty swimbladder, and 2 double the neutrally buoyant volume) and energy expenditure (in J kg\(^{-1}\) s\(^{-1}\)). These energetic costs calculated by the model consisted of standard metabolic rate and those costs exclusively involved in maintaining neutral buoyancy: gas secretion into the swimbladder and compensatory swimming (see Strand et al., 2005, for more detail). The bioenergetic model was run on the time, depth and temperature data of 20 pre-selected cod, each with one or more cases of equilibration. The model assumed the starting state of the swimbladder upon release to be neutrally buoyant and fully functioning.

We also ran the model on two theoretical post-tagging scenarios to explore the energetic efficiency of equilibration behaviour: one cod that went straight to the seabed after release, and one cod that gradually descended at the same rate as observed in a “real cod” profile (Irish Sea Tag 1362), but without intermittent vertical excursions to the seabed.

Results

Patterns of equilibration

Of the 141 cod examined, 55 showed clear examples of equilibration behaviour. Of these, 47 displayed post-release equilibration, and there were 36 mid-record examples. None of the Baltic Sea cod showed equilibration. The three types of equilibration identified (neutral, seabed, and midwater equilibration) were found in similar proportions in all regions (except in the Baltic) and in both post-tagging and mid-record equilibration episodes (see Figure 2 for examples).

The duration of the equilibration period varied between 0.34 and 28.33 d, with an average of 3.81 d (s.d. ± 4.54). As expected, there was a positive linear relationship (\(r^2 = 0.46, \text{d.f.} = 1, 81, p < 0.0001 \)) between the change in depth during the equilibration period \([D_s - D_e(m)]\) and the duration of equilibration (Figure 3). With increasing depth change, the length of equilibration period increased.

Mid-record equilibration behaviour was found in all months of the year except November (Figure 4). As most data from the DSTs covered spring and early summer, the frequency occurrence of
Equilibration was corrected for cod data available by month. Some 39% of equilibration behaviour was observed in April, mainly cod from the southern North Sea and the Barents Sea.

Description of rates of descent

Descent rates ranged from 1.44 to 24 m d$^{-1}$ (Figure 5) with an average of 10.3 m d$^{-1}$ (s.d. \pm 5.24) for post-tagging cases, and 10.6 (s.d. \pm 5.26) for mid-record cases. To test whether post-tagging equilibration differed from mid-record equilibration, we applied a Mann–Whitney U-test to the descent rates. The results reject the null hypothesis that there is a difference between the two [Rank sum (PT) = 1571.5, (MR) = 1614.5; $z = 0.1603; p = 0.8726$]. The fastest descent rates (the steepest slopes) were also among the shorter descents, and the rates of descent of those cod that underwent the longest equilibration periods were slower (Figure 6). Neither cod length (Figure 7) nor temperature (Figure 8) appeared to have an effect on the descent rate. This was supported by the results of the multivariate analyses, when these variables and their interactions were used in the model (Table 2). Only the region “Iceland” significantly contributed to the model in interaction terms with temperature, length, and temperature combined with length. Backward, stepwise elimination of non-significant variables and interactions resulted in a model with only data from that area and length, temperature, and length–temperature interaction all highly significant (Table 3). Descent rate increased the smaller the fish and with lower temperature.

Bioenergetic model

The outputs from the model confirmed the expectations that during equilibration, neutral buoyancy is maintained at the top of the cod’s position in the water column, and that cod are negatively buoyant most of the time. The slope of this descent was...
Figure 8. Relationship between descent rate and mean ambient temperature during equilibration.

usually in agreement with the speed of the cod’s ability to maintain neutral buoyancy. Figure 9 a shows the first 10 d of the depth profile of an Irish Sea cod after release and its corresponding calculated swimbladder volume (Figure 9b; horizontal line at swimbladder volume = 1 represents the neutrally buoyant state) and energy expenditure (Figure 9c), which included secretion, compensatory swimming, and the standard metabolic rate. The

Table 2. Regression summary of descent rate, as a function of region, fish length, mean water temperature, and their interactions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.69</td>
<td>0.3793</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>13.89</td>
<td>0.0160</td>
</tr>
<tr>
<td>Irish sea</td>
<td>248.70</td>
<td>0.1724</td>
</tr>
<tr>
<td>Northern North sea</td>
<td>-126.30</td>
<td>0.0519</td>
</tr>
<tr>
<td>Skagerrak</td>
<td>0.06</td>
<td>0.8567</td>
</tr>
<tr>
<td>Southern North sea</td>
<td>-0.49</td>
<td>0.7059</td>
</tr>
<tr>
<td>Length</td>
<td>0.00</td>
<td>0.8585</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.11</td>
<td>0.5298</td>
</tr>
<tr>
<td>Region interaction with length</td>
<td>-0.01</td>
<td>0.0167</td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irish sea</td>
<td>0.41</td>
<td>0.1722</td>
</tr>
<tr>
<td>Northern North sea</td>
<td>0.18</td>
<td>0.0528</td>
</tr>
<tr>
<td>Southern North sea</td>
<td>0.00</td>
<td>0.8212</td>
</tr>
<tr>
<td>Region interaction with temperature</td>
<td>-1.57</td>
<td>0.0414</td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irish sea</td>
<td>30.38</td>
<td>0.1678</td>
</tr>
<tr>
<td>Northern North sea</td>
<td>18.76</td>
<td>0.0515</td>
</tr>
<tr>
<td>Southern North sea</td>
<td>0.19</td>
<td>0.3950</td>
</tr>
<tr>
<td>Length: temperature interaction</td>
<td>0.00</td>
<td>0.5510</td>
</tr>
<tr>
<td>Region interaction with length and with temperature</td>
<td>0.00</td>
<td>0.0489</td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irish sea</td>
<td>-0.05</td>
<td>0.1683</td>
</tr>
<tr>
<td>Northern North sea</td>
<td>-0.03</td>
<td>0.0526</td>
</tr>
<tr>
<td>Southern North sea</td>
<td>0.00</td>
<td>0.4241</td>
</tr>
</tbody>
</table>

Temperature and length are continuous variables, region a categorical variable. Bolded variables are significant. Model $F = 1.76$, d.f. = 20, 62, $r^2 = 0.362$, $p = 0.04691$, $n = 83$.

starting state of the swimbladder (i.e. neutrally or negatively buoyant) had little effect on the swimbladder volume and energy-expenditure patterns: after ~24 h, there was little difference in volume and energy expenditure, and after 60 h they were equal for both scenarios. The model output from the theoretical “cod depth” profiles (Figure 10) revealed that a gradual linear descent, at the same rate as observed in cod 1362, without the rapid, intermittent, vertical excursions to the seabed (Figure 10a, solid line) was within the swimbladder’s ability to maintain neutral buoyancy throughout the equilibration period. The energetic costs involved in this descent were limited to the standard metabolic rate and gas secretion. A dive straight to the seabed after release (Figure 10a, dotted line) required several days

Figure 9. (a) The observed post-tagging equilibration depth profile of Irish Sea cod 1362. (b) The model's predicted swimbladder-buoyancy status of the same cod relative to neutral buoyancy, 1 being neutrally buoyant (optimal volume), 2 representing an empty swimbladder, and 2 would be double the neutrally buoyant swimbladder volume. The solid line is the buoyancy status when the cod was neutral at time 0, and the dashed line the status when the cod swimbladder was empty (negatively buoyant) at time 0. (c) The corresponding energy consumption, consisting exclusively of standard metabolic rate, gas secretion into the swimbladder, and compensatory swimming (solid line for neutrally buoyant start status, and dashed line for negatively buoyant start status).

Table 3. Regression summary of the descent rate for Icelandic cod as a function of fish length, mean water temperature, and the length–temperature interaction.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>14.57461</td>
<td>0.00203</td>
</tr>
<tr>
<td>Length</td>
<td>-0.014791</td>
<td>0.00527</td>
</tr>
<tr>
<td>Temperature</td>
<td>-1.676729</td>
<td>0.00519</td>
</tr>
<tr>
<td>Length–temperature interaction</td>
<td>0.001743</td>
<td>0.00520</td>
</tr>
</tbody>
</table>

Temperature and length are both continuous variables. Model $F = 6.05$, d.f. = 3, 14, $r^2 = 0.565$, $p = 0.0073$, $n = 18$.
given the temperature range during equilibration, the rates of
descent found for cod in our study areas are consistent with the
rate of gas secretion for the gas gland necessary to maintain
neutral buoyancy (Harden Jones and Scholes, 1985; Thorsteinsson,
1995; Heffernan et al., 2004; Nichol and Chilton, 2006). The rate in
descent rates was probably caused by variability in the rate of
secretion of gases into the swimbladder, but also by regional
differences in fish length, ambient temperature, and
seabed depth. In addition, cod might not always equilibrate
at the maximum possible rate. We expected a negative relationship
between fish length and descent rate, and the cod that descended
fastest were mainly smaller fish in the southern North Sea.
However, there was no overall relationship between length and
descent rate when data from all regions were combined. With
region included as a categorical variable in the multivariate anal-
ysis, a negative relation was found between fish length and descent
rate for Icelandic cod (Tables 2 and 3), as for Harden Jones and
Scholes (1985, using cod no larger than 50 cm). However, this
relationship was absent for all other regions and suggests that, in
the natural environment, there may be little or no difference in
the realized gas secretion rate of small and large fish (50–100 cm
in our study).

We expected a positive relationship between water temperature
and the rate of equilibration because gas secretion to the swim-
bladder is an active biochemical process. However, descent rate
was not related to water temperature when data from all regions
were combined, and there was a significant negative relationship
for the Icelandic region and temperature (Tables 2 and 3).
Nichol and Chilton (2006) found no temperature dependence
and attributed this to the narrow temperature range in their
study area. In our case, the temperatures experienced by the
tagged cod covered a wide range (mean temperature during equi-
libration ranging from 0.4 C to 14.4 C). One possible reason
why we did not find the expected relationship between temperature
and gas secretion is that the number of cod that exhibited equili-
bration in some of the regions was small, so the statistical power
of the dataset was limited. Again, regional differences between factors
other than length and temperature are likely to have had an effect
on the descent rates.

Any damage to the swimbladder as a result of catching the
fish from deep water in the more northerly areas (Barents Sea,
Icelandic Sea) may have influenced the results. However, the post-
tagging equilibration rates calculated from the tag data suggest
full swimbladder functionality even though the pressure
reduction during the capture of the cod was likely to have
caused damage to it. This suggests that, like Pacific cod (Nichol
and Chilton, 2006), Atlantic cod have very quick swimbladder-
repair mechanisms. This is supported by a recent study by
Midling et al. (2006) on Atlantic cod, describing the presence
of a membrane that lines the swimbladder and restores swimblad-
er functionality when damaged. This would explain the simi-
larity between the post-release equilibration descent rates and
those from natural (mid-record) observations. It is unlikely that
the swimbladder-repair mechanism developed in response to
fishing; it is more likely to be the result of evolutionary selection.
However, it does suggest that cod experience extreme pressure
reductions, and consequent barotrauma, naturally, as a consequence
of sudden ascents during, for example, foraging or predator-
avoidance behaviour.

Discussion

The characteristic vertical patterns of gradual descent punctuated
by bouts of extensive vertical movement, here described as equili-
ibration behaviour, were found in 55 of 141 cod (39%) from all
regions examined, though 42% if Baltic cod are removed from
the analysis. The behaviour was not solely associated with post-
tagging recovery of neutral buoyancy. In some cases (n = 16), indi-
vidual cod performed the equilibration behaviour more than once.
Cod equilibrated to depth changes of between 4 and 170 m (mean =
30 m, s.d. ± 31), at a mean descent rate of 10.5 m d⁻¹ (s.d. ± 5.28),
and the duration of equilibration ranged from 8 h to nearly a
month. The post-tagging equilibration rates calculated from
the tag data suggested full swimbladder functionality, supported
by the fact that there was no significant difference from natural
mid-record descent rates. On this assumption, our modelling of
swimbladder volume suggested that neutral buoyancy was main-
tained only at the top of the cod’s position in the water column.
The descent rate during equilibration was therefore determined
by a cod’s ability to increase its neutrally buoyant depth.

Rates of equilibration and gas secretion

![Figure 10.](https://academic.oup.com/icesjms/article-abstract/64/7/1293/728121)

Figure 10. (a) Two theoretical post-tagging scenarios of a cod
descending to the seabed at the same rate as cod 1362 (11.04 m d⁻¹),
but without the vertical excursions (solid line), and of a cod that heads
straight down to the seabed after release (dashed line). (b) The
model’s predicted swimbladder-buoyancy status of the same two
theoretical scenarios, 1 being neutrally buoyant (optimal volume),
0 representing an empty swimbladder, and 2 would be double the
neutrally buoyant swimbladder volume. (c) The corresponding energy
consumption of the two scenarios. Summed energetic costs of
scenario 1 where the cod descends gradually were 840.4 J kg⁻¹ s⁻¹,
and for scenario 2 were 1973.23 J kg⁻¹ s⁻¹. Energetic costs of observed
post-tagging descent (Figure 9c) were 1791.79 J kg⁻¹ s⁻¹.

(~185 h) of swimbladder adaptation before neutral buoyancy was
achieved, and was energetically relatively costly because of the
additional compensatory swimming.

Downloaded from https://academic.oup.com/icesjms/article-abstract/64/7/1293/728121 by guest on 21 March 2019
Interpreting equilibration behaviour

Given the plasticity in vertical movement behaviour that characterizes cod (Righton et al., 2001), the near ubiquity of equilibration behaviour is notable. The results of the swimbladder modelling suggest that cod were only either neutrally buoyant at the top of their vertical range or significantly negatively buoyant when they returned to the (assumed) seabed. Neither of these states would appear ideal, so the behaviour was probably a compromise between two preferred states: the physiological state of neutral buoyancy and the behavioural state of demersal residence. Again, such conjecture is supported by the swimbladder modelling, because those results suggest that the equilibration observed is not the most energetically advantageous pattern of vertical movement: the theoretical scenario where cod gradually descend without occasional sudden vertical descents was energetically cheaper than with the swift descents, although by a relatively small amount. To put this in perspective, the energy content of, for example, a 10 cm sand eel (Ammodytes spp.) or herring (Clupea harengus) is ~20 and 60 kJ, respectively (Wanless et al., 2005), two orders of magnitude greater than the difference in energetic costs of the different descent scenarios, and could be considered relatively trivial. Therefore, whereas some examples of equilibration indicate that prolonged periods (>8 h) are indeed spent efficiently in midwater, all our examples, as well as examples from similar studies (Heffernan et al., 2004; Nichol and Chilton, 2006), show frequent excursions to the seabed. It is therefore likely that cod descend to the seabed for other reasons, superimposed on the equilibration behaviour at slight energetic cost. This might be, for instance, a requirement to feed on demersal prey, or they may need to descend to obtain a positional reference. On the other hand, cod may have a natural preference for demersal residence, or perhaps wish to return to the depth at which they were originally adapted, i.e. before capture.

No examples of equilibration were found in cod from the Baltic Sea, most cod appearing, in this case, to return to their capture depth immediately after release. This could be because Baltic cod did not need to equilibrate after tagging because of the comparatively shallow depth of capture. Although cod caught and released in the similarly shallow southern North Sea did display equilibration, Baltic cod may not be as strongly associated with the seabed, because of the restricting effect of the physical environment there. The hostile low salinity and oxygen conditions (Neuenfeldt and Beyer, 2003) near the seabed may inhibit the manifestation of demersal residence.

The significance of equilibration

Although equilibration behaviour after tagging is undoubtedly an extreme version of the re-establishment of a behavioural (the need to be demersal or semi-pelagic) and physiological (the need to be neutrally buoyant) equilibrium, it is also likely to be natural when cod move between different water strata, as confirmed by the occurrence of equilibration many months after tagging. Although we found equilibration in nearly all months of the year, most mid-record equilibration examples were recorded in April and were mainly data from the southern North Sea. This coincides with a period when southern North Sea cod migrate to deeper offshore water after spawning (Righton et al., 2001, 2007). Most Barents Sea examples were in December and January, when Northeast Atlantic cod move from shallow coastal regions to deeper water (Michalsen et al., 2006). In some other instances, natural equilibration took place after sudden expeditions away from the seabed to midwater. Perhaps the presence of pelagic prey, such as herring or capelin (Mallotus villosus), triggered these rapid reductions in residence depth. The distribution and abundance of different prey types is an important factor determining the vertical migration patterns of top predators such as cod (Strand et al., 2005). As cod can reduce the amount of gas in the swimbladder faster than they can increase it, rapid reductions resulting from large ascents to feed on pelagic or semi-pelagic prey would require cod to re-fill the swimbladder, i.e. to re-equilibrate once the midwater foraging had ended. Alternatively, large ascents perhaps in response to attempted predation might cause rupture of the swimbladder and require subsequent re-inflation.

The similarity (i.e. similar rates of descent) between post-tagging and natural (mid-record) equilibration also suggests that although there may be barotrauma during capture, a cod is capable physically and physiologically of adapting to the effects of associated pressure reduction and of resuming normal behaviour shortly after release. This finding has implications in, for example, discard mortality, and suggests that barotrauma of captured cod may not have an impact on mortality as significant as previously thought. Unfortunately, there is limited information on the existence of equilibration or similar patterns in other physoclist species, but information on Pacific cod (Nichol and Chilton, 2006) and sea bass (Dicentrarchus labrax; DR, unpublished data) suggests that equilibration may be common to other physoclisti too.

The insight that our observations of post-tagging and natural equilibration behaviour provide is useful for making estimates of the rate of neutrally buoyant descent, and the rate of gas secretion into the swimbladder. In turn, these results could be helpful in validating, for example, individual-based models on cod behaviour (Strand et al., 2005), which can help in understanding vertical patterns and supporting the calculation of correction factors necessary to fine-tune the results of acoustic and trawl stock-assessment surveys (Foote, 1980; MacLennan and Simmonds, 1992; Aglen et al., 1999). Tilt angle and the physiological state of the swimbladder have a large effect on target strength, and are highly variable during patterns of behaviour such as equilibration. Spatial and temporal knowledge of this pattern will aid the design of survey methodologies and improve the accuracy of acoustic-biomass calculations.

Acknowledgements

Thanks are due to all the fishers and seagoing staff for their assistance with tagging and returning cod to us. Funding for the CODYSSEY project under which much of the work was carried out was from the EU (project code: Q5RT-2002-00813), with matching funding from national Governments. We are very grateful to Julian Metcalfe, Steve Cadrin, and an anonymous referee for comments that helped us greatly in improving the manuscript.

References

doi:10.1093/icesjms/fsm119