CRL4DCAF1 is required in activated oocytes for follicle maintenance and ovulation

Chao Yu, Yi-Wen Xu, Qian-Qian Sha, and Heng-Yu Fan*

Life Sciences Institute, Zhejiang University, Hangzhou 310058, China

*Correspondence address. Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China. Tel.: +86-571-88981370; Fax: +86-571-88981337; E-mail: hyfan@zju.edu.cn

Submitted on August 27, 2014; resubmitted on September 23, 2014; accepted on October 28, 2014

ABSTRACT: In mammals, oocytes within the primordial follicles require a number of essential factors to maintain their survival. However, the survival factors for activated oocytes have been poorly characterized. Recently we reported that damaged DNA binding protein-1 (DDB1), the linker subunit of the cullin ring-finger ubiquitin E3 ligase-4 (CRL4) complex, and its substrate adaptor, DDB1-CUL4 associated factor-1 (DCAF1), were essential for primordial follicle maintenance. In this study we specifically deleted these in the oocytes of growing follicles, to investigate if DDB1 and DCAFI were also survival factors for activated oocytes. In the ovaries of Ddb1fl/fl;Zp3-Cre mice, the primordial follicle pool was intact, but awakened oocytes and growing follicles beyond the primary stage were rapidly depleted. In the ovaries of Dcaf1fl/fl;Ptenfl/fl;Gdf9-Cre and Ddb1fl/fl;Ptenfl/fl;Gdf9-Cre mice, global primordial follicle activation was stimulated by enhanced PI3K signaling, but the awakened oocytes were rapidly lost due to no CRL4DCAF1 activity. These mouse models provided original evidence that CRL4DCAF1 was essential for maintaining oocyte survival, not only those in dormancy at the primordial follicle stage, but also naturally awakened oocytes and those awakened by hyper-activation of PI3K signaling. Interestingly, the oocyte-specific Ddb1 or Dcaf1 knockout mice had ovulation defects even before oocyte exhaustion. CRL4DCAF1 within oocytes was required for cumulus expansion and ovulation-related somatic gene expression in a cell non-autonomous manner. Granulosa cells that surrounded these Ddb1 or Dcaf1-deleted oocytes exhibited increased rates of apoptosis and showed poor responses to ovulation signals. These results suggested that CRL4 in oocytes also regulated granulosa cell functions in a cell non-autonomous manner.

Key words: DDB1 / oocyte / ovarian follicle / ovulation / primary ovarian insufficiency

Introduction

In female mammals, the primordial follicle pool at birth provides the germ cell reserve for their entire reproductive lives. A primordial follicle consists of a small oocyte arrested at the diplotene stage of meiosis I and a single layer of flat, non-mitotic somatic cells called granulosa cells. During post-natal ovarian development, some primordial follicles are released from their dormant status; oocytes significantly grow in size and the shape of surrounding pre-granulosa cells changes from flat to cuboid. This is called primordial follicle activation (Adhikari and Liu, 2009). Once activated, follicles undergo an irreversible developmental program and progressively grow into primary, secondary and antral follicle stages.

During the last decade, significant progress has been made in understanding primordial follicle maintenance and activation. Using gene knockout mouse models, it has been found that several transcriptional factors were enriched in the oocytes of primordial follicles, including NOBOX, FIGLA, SOHLH1/2 and LHX8, and were essential for maintaining the primordial follicle pool in post-natal ovaries (Soyal et al., 2000; Rajkovic et al., 2004; Pangas et al., 2006a; Choi et al., 2008). However, another transcription factor, FOXO3, was found to have an indispensable role in preventing primordial follicle activation (Castrillon et al., 2003). Furthermore, the intra-oocyte activity of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) pathway determines the primordial follicle fates of dormancy, activation or atresia (Reddy et al., 2008, 2009; Adhikari et al., 2009, 2010). In addition, it was previously reported that the PI3K/AKT signaling pathway was important for the survival of both oocytes and granulosa cells (Fan et al., 2008a; Li et al., 2013).

In mice, it takes 6–8 weeks for activated follicles to develop to the antral stage (Zheng et al., 2014). In growing follicles, granulosa cells secrete steroid and peptide hormones to regulate estrous cycles, and oocytes accumulate maternal mRNA and proteins to prepare for meiotic maturation, fertilization and early embryo development. Thus, it is possible that activated oocytes might require a number of essential factors to maintain their survival and normal gene expression. However, these survival factors for activated oocytes have been poorly characterized, as deleting the most essential oocyte genes causes primordial follicle exhaustion and primary ovarian insufficiency, which has prevented the investigation of gene functions in activated oocytes.
Recently, we reported that damaged DNA binding protein-1 (DDB1), the linker subunit of the cullin-ring-finger ubiquitin E3 ligase-4 (CRL4) complex, and its substrate adaptor, DDB1-CUL4 associated factor-1 (DCAF1), were essential for primordial follicle maintenance. Specifically deleting Ddb1 and Dcaf1 in the oocytes of primordial follicles using Gdf9-Cre caused rapid primordial follicle death and resulted in primary ovarian insufficiency in young adult mice (Yu et al., 2013b). In addition to the oocytes in a primordial follicle, DDB1 and DCAF1 proteins were also prominently expressed in the activated oocytes of primary, secondary and antral follicles. To investigate if DDB1 and DCAF1 were also survival factors for activated oocytes, we specifically deleted these in the oocytes of growing follicles using Zp3-Cre (Lewandoski et al., 1997). Our results showed that, although the primordial follicle pools remained intact in these conditional gene knockout mice, Ddb1 or Dcaf1 deletion in activated oocytes resulted in a rapid loss of growing follicles, which indicated that the CRL4 complex was essential for oocyte survival after their release from dormancy. Furthermore, granulosa cells that surrounded these Ddb1 or Dcaf1-deleted oocytes exhibited increased rates of apoptosis and showed poor responses to ovulation signals. These results suggested that CRL4 in oocytes also regulated granulosa cell functions in a cell non-autonomous manner.

Materials and Methods

Mice

Wild type (WT) C57/B6 mice were from the Zhejiang Academy of Medical Science, China. Ddb1flox/flox, Dcaf1flox/flox, and Gdf9-Cre and Zp3-Cre mice were generated as previously reported (Reddy et al., 2008; Yu et al., 2013b). Mice were maintained under SPF conditions in a controlled environment of 20–22°C, with a 12/12 h light/dark cycle, 50–70% humidity, and food and water ad libitum. Animal care and experimental procedures were in accordance with the Animal Research Committee guidelines of Zhejiang University. Mice that lacked Ddb1 or Dcaf1 in their oocytes were generated by crossing Gdf9-Cre or Zp3-Cre mice with previously reported Ddb1flox/flox and Dcaf1flox/flox mice, respectively (Cang et al., 2006; McCall et al., 2008). All mutant mouse strains were in a C57BL/6 background.

Superovulation

Pubertal mice (21–23 days old) were injected i.p. with 5 IU of pregnant mare serum gonadotrophin (PMSG) (Ningbo Sansheng Pharmaceutical Co., Ltd, P.R. China) and 44 h later with 5 IU hCG (Ningbo Sansheng Pharmaceutical Co., Ltd, P.R. China). After an additional 16 h, oocyte/cumulus masses were surgically removed from oviducts and the numbers of oocytes were counted after digestion with 0.3% hyaluronidase (Sigma-Aldrich).

Histological analysis and immunohistochemistry

Ovaries were fixed overnight in 10% phosphate-buffered saline (PBS)-buffered formalin, dehydrated using an ascending series of graded ethanol solutions, and then embedded in paraffin. Ovary samples were serially sectioned at 5 μm thickness and stained with hematoxylin and eosin (H&E). The number of follicles per ovary was counted only when they contained oocytes with clearly visible nuclei. Follicles were classified as previously described (Yu et al., 2013b). For immunohistochemistry, sections were deparaffinised and rehydrated with xylene and an alcohol gradient. Sections were incubated with primary antibodies at room temperature for 1 h, followed by reaction with biotin-labeled secondary antibodies for 30 min. Staining used Vectastain ABC kits and DAB peroxidase substrate kits (Vector Laboratories, Burlingame, CA, USA). The primary antibodies used and their applications were identical to those in our previous report (Yu et al., 2013b).

TUNEL assays

Terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) assays were done with 10% formalin-fixed paraffin-embedded sections using an ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit (Serologicals Corporation, Norcross, GA, USA), according to the manufacturer’s instructions.

Immunofluorescent microscopy for ovarian sections

Ovarian tissues were fixed in 4% paraformaldehyde, embedded in O.C.T. compound (Sakura Finetek USA, Inc.), and stored at −80°C before preparing 7 μm sections using a Leica CM1950 cryomicrotome (Leica Microsystems, Wetzlar, Germany). Sections were blocked with PBS that contained 0.3% Triton X-100 and 5% bovine serum albumin (blocking buffer), and were sequentially probed with primary antibodies (indicated in Results) and Alexa Fluor 594- or 488-conjugated secondary antibodies (Molecular Probes). Slides were mounted using VectaShield with 4’,6-diamidino-2-phenylindole (DAPI, Vector Laboratories). Digital images were acquired using an epifluorescent microscope (Nikon Eclipse 80i) with 4–100× objectives.

Western blot analysis

Ovarian protein extracts were dissolved in sodium dodecyl sulfate (SDS) sample buffer. Protein lysates (30 μg total protein per lane) were separated by SDS-polyacrylamide gel electrophoresis and electrophoretically transferred to polyvinylidene difluoride (PVDF) membranes (Millipore Corp., Bedford, MA, USA). After probing with primary antibodies, membranes were washed in Tris-buffered saline that contained 0.05% Tween-20 (TBST) and incubated with a horse-radish peroxidase-linked secondary antibody. Finally, bands in the membranes were detected using an Enhanced Chemiluminescence Detection Kit (Amersham).

RNA extraction and real-time RT–PCR analysis

Total RNA was extracted using Trizol (Invitrogen), according to the manufacturer’s instructions. Real-time PCR analysis used Q Tag SYBR Green Master Mix (Becton Dickinson Medical Devices Co., Ltd, USA) and an Applied Biosystems 7500 Real-Time PCR System. Relative mRNA levels were determined by normalizing to endogenous Gapdh mRNA levels (used as an internal control) using Microsoft EXCEL®. For each of the indicated genes, the relative transcript level of a control sample was set at 1. The relative transcript levels of other samples were compared with the control and the fold-changes are shown in the graphs. Quantitative RT–PCR reactions were done in triplicate for each experiment. Sequences of PCR primers are shown in Table I.

Statistical analysis

Quantitative RT–PCR results are given as mean ± SD; each experiment included at least three independent samples and was repeated at least three times. Group comparisons were made by two-tailed unpaired Student’s t-tests using Microsoft EXCEL®.
Dcaf1 deletion in activated mouse oocytes results in a loss of growing follicles

We selectively deleted Dcaf1 in activated follicles by crossing Dcaf1fl/fl mice with Zp3-Cre mice. Immunohistochemistry results showed that in the ovaries of Dcaf1fl/fl;Zp3-Cre mice, which were harvested at post-natal day (PD) 21, DCAFl protein expression was specifically deleted in activated oocytes but not in dormant oocytes within primordial follicles (Fig. 1A). At PD21, Dcaf1fl/fl;Zp3-Cre mice had comparable numbers of activated follicles compared with their control litter mates (Fig. 1A and B). However, a rapid loss of growing follicles was found in Dcaf1fl/fl;Zp3-Cre mice at 4 weeks of age. No activated follicles beyond the primary stages were found in the ovaries of mice that were older than 6 weeks (Fig. 1B). Immunohistochemical staining for the germ cell marker primary stages were found in the ovaries of mice that were older than 6 weeks (Fig. 1B). Immunohistochemical staining for the germ cell marker MVH (mouse VASA homolog) indicated normal numbers of primordial follicles in the ovaries of WT and S6 (pRPS6), a well-established downstream marker of PI3K/AKT pathway activity, in the ovaries of WT and Dcaf1fl/fl;Zp3-Cre mice by immunohistochemistry. WT and Dcaf1fl/fl;Zp3-Cre mice had similar levels of pRPS6, whereas the granulosa cells of growing follicles of Dcaf1fl/fl;Zp3-Cre mice had significantly reduced pRPS6 levels compared with those in control mice (Fig. 2C). These results suggested that Dcaf1 deletion in oocytes had impaired PI3K signaling in the surrounding granulosa cells and facilitated follicle atresia.

Table I

<table>
<thead>
<tr>
<th>Primer</th>
<th>F</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areg</td>
<td>GCAAGGAGACGGGCTTCTGCGATGTGAG</td>
<td>GTTGGAGGTGTTGGAGGAGA</td>
</tr>
<tr>
<td>Ereg</td>
<td>TTTATCTTCCACATCTCCTTTATGTACAG</td>
<td>GGAGGCTTGCACAAAGAAGAG</td>
</tr>
<tr>
<td>Btc</td>
<td>GTGCCCTGAGGCTACTCTCTC</td>
<td>R: ACACTGTTCTCGGAGTATG</td>
</tr>
<tr>
<td>Ptg2</td>
<td>AGGCTGTCTGCGATGTGAG</td>
<td>TCACTTCCCAAGGACCCTTTAT</td>
</tr>
<tr>
<td>Has2</td>
<td>TTTACATGTTGCTGCTGGAATTGAG</td>
<td>GGAGGCAACCACTAGTGT</td>
</tr>
<tr>
<td>Tnfap6</td>
<td>F: ACCATGGCTTAGAAAATTGAAG</td>
<td>R: ACAGCTAAGTCCCCATTGGTCAG</td>
</tr>
<tr>
<td>Fshr</td>
<td>GAPDHH</td>
<td>TGGAAATCTGTTGCTTTCAG</td>
</tr>
<tr>
<td>Egfr</td>
<td>GGGCTGGGCTGCTGGAATTGAG</td>
<td>GGGCTGGGCTGCTGGAATTGAG</td>
</tr>
<tr>
<td>Gapdh</td>
<td>F: ACACCAACCACTAGTGT</td>
<td>R: TACTCCTTGAGGAGGGCATAG</td>
</tr>
</tbody>
</table>

F: forward; R: reverse.

Results

Dcaf1 deletion in activated mouse oocytes results in a loss of growing follicles

We selectively deleted Dcaf1 in activated follicles by crossing Dcaf1fl/fl mice with Zp3-Cre mice. Immunohistochemistry results showed that in the ovaries of Dcaf1fl/fl;Zp3-Cre mice, which were harvested at post-natal day (PD) 21, DCAFl protein expression was specifically deleted in activated oocytes but not in dormant oocytes within primordial follicles (Fig. 1A). At PD21, Dcaf1fl/fl;Zp3-Cre mice had comparable numbers of activated follicles compared with their control litter mates (Fig. 1A and B). However, a rapid loss of growing follicles was found in Dcaf1fl/fl;Zp3-Cre mice at 4 weeks of age. No activated follicles beyond the primary stages were found in the ovaries of mice that were older than 6 weeks (Fig. 1B). Immunohistochemical staining for the germ cell marker MVH (mouse VASA homolog) indicated normal numbers of primordial follicles in the ovaries of adult Dcaf1fl/fl;Zp3-Cre mice (12–20 weeks old; Fig. 1C), suggesting that the primordial follicle pool was not affected by Zp3-Cre mediated Dcaf1 deletion.

At PD28, increased granulosa cell apoptosis (Fig. 2A, upper panels) and follicle atresia (Fig. 2A, lower panels) were detected by immunohistochemical staining of cleaved caspase 3 (CC3) and TUNEL assay, in the ovaries of Dcaf1fl/fl;Zp3-Cre mice compared with ovaries in control mice. Quantifying atretic follicles versus total follicles on ovarian sections indicated that the ovaries of Dcaf1fl/fl;Zp3-Cre mice had more atretic follicles at PD28 (Fig. 2B; n = 6 for each genotype).

Thus, we investigated the levels of phosphorylated ribosome protein S6 (pRPS6), a well-established downstream marker of PI3K/AKT pathway activity, in the ovaries of WT and Dcaf1fl/fl;Zp3-Cre mice by immunohistochemistry. WT and Dcaf1fl/fl;Zp3-Cre mice had similar levels of pRPS6, whereas the granulosa cells of growing follicles of Dcaf1fl/fl;Zp3-Cre mice had significantly reduced pRPS6 levels compared with those in control mice (Fig. 2C). These results suggested that Dcaf1 deletion in oocytes had impaired PI3K signaling in the surrounding granulosa cells and facilitated follicle atresia.

Dcaf1 deletion results in oocyte death independent of PI3K pathway activity

Because recent studies showed that PI3K signaling was essential for oocyte survival and awakening from dormancy within primordial follicles, it was possible that DCAFl might maintain oocyte survival by interacting with the PI3K pathway. To test this, we enhanced PI3K signaling activity in Dcaf1-deleted oocytes by deleting Pten, a key repressor of the PI3K signaling pathway. As shown by H&E staining (Fig. 3) and MVH immunohistochemistry (Fig. 4), Pten deletion in the oocytes of primordial follicles (Ptenfl/fl;Gdf9-Cre) stimulated global follicle activation. This was in agreement with the results in previous reports (Reddy et al., 2008).

In the ovaries of these mice, activated follicles continued to grow and survived up to 10–12 weeks after birth. However, Pten deletion within a Dcaf1 deletion background (Dcaf1fl/fl;Ptenfl/fl;Gdf9-Cre) failed to rescue the rapid loss of activated follicles (Figs 3 and 4), and resulted in a typical primary ovarian insufficiency phenotype (complete depletion of oocytes and follicles in the ovary of young adults) at ~6 weeks after birth (Fig. 3). Residues of dead oocytes within activated follicles were frequently observed in the ovaries of Dcaf1fl/fl;Ptenfl/fl;Gdf9-Cre mice, but not in those of WT or Ptenfl/fl;Gdf9-Cre mice between PD21 and PD28 (Fig. 4, arrows). This indicated that Pten/Dcaf1 double-deleted oocytes underwent death en masse shortly after their awakening from dormancy. Pten deletion also did not rescue the primary ovarian insufficiency phenotype (8–10 weeks after birth) caused by Ddb1 deletion in oocytes (Fig. 3). The ovaries of Ddb1fl/fl/Ptenfl/fl;Gdf9-Cre mice had a similar histology as those of the Ptenfl/fl;Gdf9-Cre mice at 3 and 4 weeks after birth (data not shown). We started to see differences between these two strains as early as 6 weeks after birth. We also observe dead oocytes in activated follicles in ovaries from Ddb1fl/fl;Ptenfl/fl;Gdf9-Cre mice. The phenotype was similar to that of the Dcaf1fl/fl;Ptenfl/fl;Gdf9-Cre mice (data not shown). These results indicated that CRL4DCAF1 activity was indispensable for oocyte survival, but was independent of PI3K signaling in oocytes.

DDB1 and DCAF1 in activated mouse oocytes regulates granulosa cell function during ovulation by a cell non-autonomous mechanism

In the ovaries of Ddb1fl/fl;Gdf9-Cre and Dcaf1fl/fl;Gdf9-Cre mice, activated oocytes were maintained for 6 weeks after birth. However, exogenous PMSG/hCG treatment failed to induce efficient ovulation in mice of both strains (Fig. 5A). Because the two mouse strains were phenocopies shortly after their awakening from dormancy, Pten deletion also did not rescue the primary ovarian insufficiency phenotype (8–10 weeks after birth) caused by Ddb1 deletion in oocytes (Fig. 3). The ovaries of Ddb1fl/fl/Ptenfl/fl;Gdf9-Cre mice had a similar histology as those of the Ptenfl/fl;Gdf9-Cre mice at 3 and 4 weeks after birth (data not shown). We started to see differences between these two strains as early as 6 weeks after birth. We also observe dead oocytes in activated follicles in ovaries from Ddb1fl/fl;Ptenfl/fl;Gdf9-Cre mice. The phenotype was similar to that of the Dcaf1fl/fl;Ptenfl/fl;Gdf9-Cre mice (data not shown). These results indicated that CRL4DCAF1 activity was indispensable for oocyte survival, but was independent of PI3K signaling in oocytes.
Figure 1 DDB1-CUL4 associated factor 1 (Dcaf1) deletion in activated mouse oocytes results in a loss of growing follicles. (A) DCAF1 immunohistochemistry showing specific DCAF1 protein depletion in the activated oocytes of Dcaf1^{fl/fl};Zp3-Cre mice. Scale bar, 100 μm. (B) Hematoxylin and eosin (H&E) staining showing representative ovarian histology of wild type (WT) and Dcaf1^{fl/fl};Zp3-Cre mice at 3, 4, 6, 12 and 20 weeks after birth. Scale bar, 100 μm. (C) Mouse VASA homolog (MVH) immunohistochemistry showing oocytes in the ovaries of WT and Dcaf1^{fl/fl};Zp3-Cre mice. Scale bar, 100 μm.
IHC staining indicated that in the pre-ovulatory follicles of Ddb1fl/fl; Gdf9-Cre mice, DDB1 protein was only deleted in oocytes but not in mural granulosa or cumulus cells (Fig. 5B), which suggested that DDB1 in oocytes was required for ovulation in a cell non-autonomous manner. Furthermore, the mRNA expression of numerous genes in granulosa/cumulus cells known to be essential for ovulation, including those encoding for EGF-like paracrine factors (Areg, Ereg, Btc) and signaling molecule receptors (Fshr, Npr2, Egfr), as well as those essential for cumulus expansion (Ptgs2, Has2, Tnfaip6) were compromised, after DDB1 deletion in oocytes (Fig. 5C).

In previous studies we showed that the pre-ovulatory LH surge induced transient activation of extracellular signal regulated kinase-1 and -2 (ERK1/2) in granulosa and cumulus cells, and that ERK1/2 activity was indispensable for LH-target gene expression and ovulation (Fan et al., 2008b, 2009). Thus, we determined protein levels of phosphorylated/activated ERK1/2 and its downstream target prostaglandin synthase-2 (PTGS2) in the granulosa cells of Ddb1fl/fl; Gdf9-Cre mice by western blotting (Fig. 5D) and immunofluorescent staining (Fig. 5E). These results showed that ERK1/2 phosphorylation levels were remarkably decreased in the granulosa/cumulus cells of Ddb1fl/fl; Gdf9-Cre mice at 4 h after hCG injection. Previous studies also showed that oocyte-secreted growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) induced phosphorylation/activation of their downstream signaling molecules, including SMAD2/3 and SMAD1/5, in adjacent cumulus cells, and that this transforming growth factor (TGF)-β signaling was a prerequisite for successful cumulus expansion and ovulation (Pangas et al., 2006b; Yu et al., 2013a). Moreover, expression of Gdf9, Bmp15 and Fgf8, were decreased in Ddb1- or Dcaf1-deleted oocytes, suggesting that TGF-β signaling between a CRL4DCAF1 deficient oocyte and its surrounding granulosa cells was impaired (Yu et al., 2013b). As shown in Fig. 5E, pSMAD1/5 and pSMAD2 levels were significantly lower in cumulus cells that surrounded Ddb1-deleted oocytes when compared with those that surrounded WT oocytes. Similarly, the protein expression of oocyte factor (GDF9, BMP15, FGF8)-regulated, ovulation-related genes in cumulus cells, including PTGS2 and pantraxin-3 (PTX3), were decreased in the pre-ovulatory follicles of Ddb1fl/fl; Gdf9-Cre mice (Fig. 5E).

Discussion

DDB1/DCAF1 involvement in maintaining oocyte survival in activated follicles

The molecular mechanisms that control reproductive aging and menopausal age in females are poorly understood. PI3K signaling in oocytes has received increasing attention in the last decade as a determinant of...
ovarian aging and menopausal age (Castrillon et al., 2003; Reddy et al., 2008, 2009). However, whether other pathways in oocytes have any direct effects on the survival and maintenance of the primordial follicle pool remains uncertain. In a recent study we identified CRL4DCAF1 E3 ligase as a crucial factor for oocyte survival and that deficiencies in DDB1 or DCAF1 caused primary ovarian insufficiency and infertility (Yu et al., 2013b). Those results indicated that a protein ubiquitination system regulated survival or loss, other than the activation, of primordial follicles to determine reproductive aging and menopause in females.

In the same report, mechanistic studies suggested that CRL4DCAF1 maintained oocyte genome DNA methylation levels and regulated the expression of essential oocyte genes, including Nobox, Figla, Sohlh1/2 and Lhx8, in both dormant oocytes of primordial follicles and activated oocytes of growing follicles (Yu et al., 2013b). In mice null for the genes Nobox, Figla, Sohlh1/2 and Lhx8, oocytes within primordial follicles were rapidly depleted after birth (Rajkovic et al., 2004; Pangas et al., 2006a; Choi et al., 2008). The young adult knockout (KO) mice had similar primary ovarian insufficiency phenotypes as those of Ddb1fl/fl;
Gdf9-Cre or Dcaf1fl/fl;Gdf9-Cre mice. However, it remained unclear if CRL4 and its targets were also essential for oocyte survival after they were awakened from their dormant status.

Our current study of activated oocyte-specific DCAF1-deficient mice provides new evidence that CRL4DCAF1 is a survival factor for fully grown oocytes and that its depletion in these oocytes causes primary ovarian insufficiency without affecting the primordial follicle reserves within adult ovaries. In addition, we explored possible gene interactions between CRL4DCAF1 and PI3K signaling in oocytes, which is a well-established master regulator of oocyte maintenance and awakening. Our results showed that they functioned independently in oocytes.

Pten deletion caused global primordial follicle activation, as was previously described, even though DDB1 or DCAF1 was absent in oocytes. DDB1- or DCAF1-deletion caused rapid oocyte losses that could not be rescued by Pten deletion or hyper-activation of PI3K signaling. This is important because it indicated that during natural reproductive processes or in assisted reproduction therapies, both the activities of the PI3K pathway and CRL4 E3 ubiquitin ligase must be simultaneously maintained for successful follicle growth and oocyte maturation.

DDB1/DCAF1 involvement in follicle growth and ovulation

Interestingly, our oocyte-specific Ddb1 or Dcaf1 KO mice had ovulation defects even before oocyte exhaustion. Using these animal models, we found that CRL4DCAF1 within oocytes was required for cumulus expansion and ovulation-related somatic gene expression in a cell non-autonomous manner. Our previous results suggested that the underlying mechanism was that Ddb1/Dcaf1 deletion impaired the expression of genes encoding oocyte-derived paracrine factors (Gdf9, Bmp15 and

Figure 4 MVH immunohistochemistry for mouse ovaries at PD-21 and -28 with the indicated genotypes. Oocyte-specific Pten deletion using Gdf9-Cre resulted in simultaneous primordial follicle activation. However, Dcaf1/Pten double deletion resulted in a rapid loss of oocytes within activated follicles. Arrows indicate follicle debris after oocyte death. Scale bar, 100 μm.
Figure 5 Ddb1 and Dcaf1 deletion in mouse oocytes results in ovulation defects. (A) Super-ovulation assay for the numbers of ovulated oocytes from 5-week old mice with the indicated genotypes. (B) H&E (upper and lower panels) and DDB1 immunohistochemistry staining (middle panels) showing the cell non-autonomous effect of DDB1 deletion on cumulus expansion and follicle rupture at 8 and 16 h post-hCG injection, respectively. Arrows and asterisks indicated ovulated and non-ovulated follicles, respectively. Scale bar, 50 µm. *P < 0.001 when compared with WT control mice. (C) Real-time RT–PCR results for the mRNA expression levels of the indicated genes in granulosa cells isolated from WT and Ddb1fl/fl;Gdf9-Cre mice at 4 h post-hCG injection. *P < 0.001 when compared with WT control mice. (D) Western blot results showing impaired extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation and decreased expression of ovulation-related protein prostaglandin synthase 2 (PTGS2) in the ovaries of Ddb1fl/fl;Gdf9-Cre mice at 4 h after hCG treatment. The proteins were loaded on the gel in replicates. Total ERK1/2 was blotted as loading control. (E) Immunofluorescent staining results showing reduced ERK1/2 phosphorylation and expressions of ovulation-related genes’ products in the pre-ovulatory follicles of Ddb1fl/fl;Gdf9-Cre mice. In control ovaries, phospho-ERK1/2, PTGS2 and pentraxin 3 (PTX3) were detected in granulosa cells, particularly in cumulus cells of pre-ovulatory follicles at 4 h post-hCG injection, but had weaker signals in Ddb1fl/fl;Gdf9-Cre ovaries. Cell nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI) in blue. COCs were circled by white dashed lines. Scale bar, 100 µm. (F) H&E staining results showing that in the ovaries of Ddb1fl/fl;Gdf9-Cre mice, non-ovulated oocytes were trapped within the corpus luteum at 48 h post-hCG. Arrows indicate non-ovulated oocytes trapped within the corpus luteum (CL).
Fgf8) due to hyper-methylation of their promoter regions (Yu et al., 2013b). Indeed, in oocytes that were isolated from Ddb1fl/fl;Gdf9-Cre mice, Gdf9, Bmp15 and Fgf8 mRNA levels were all decreased.

Previous studies showed that oocyte-secreted paracrine factors, including GDF9, BMP15 and FGF8, were essential for cumulus expansion and ovulation (Eppig et al., 2005; Diaz et al., 2007). GDF9 and BMP15 are TGF-β family ligands that promote SMAD2/3 and SMAD1/5/8 phosphorylation in granulosa cells. Furthermore, oocyte-secreted GDF9 and BMP15 are required for maintaining EGF receptor expression and ERK1/2 phosphorylation in cumulus cells (Su et al., 2010). Both the TGF-β and EGFR-ERK1/2 signaling pathways are required for oocyte survival within both primordial follicles and activated growing follicles (Fig. 6A). Furthermore, in fully grown oocytes of pre-ovulatory follicles, CRL4DCAF1 activity is also required for oocyte expression of the cumulus enabling factors GDF9 and BMP15, which activate TGF-β signaling in the surrounding cumulus cells and maintain COC responsiveness to the ovulation signal triggered by LH (Fig. 6B).

Implications for human primary ovarian insufficiency

Mouse models have been extensively used to study human primary ovarian insufficiency. However, the definitions of primary ovarian insufficiency used for gene mutated mice and humans are conceptually different. The primary ovarian insufficiency phenotype of gene mutated mice is usually defined as the complete depletion of oocytes, particularly those in dormant primordial follicles, at early ages in the ovaries of these mice, as judged by ovarian histological analyses. However, in humans, primary ovarian insufficiency is characterized by progressive depletion of oocytes, particularly those in primordial follicles, over time. Therefore, the molecular mechanisms underlying the depletion of oocytes in mouse and human primary ovarian insufficiency may differ. It is possible that CRL4DCAF1 activity plays a role in the depletion of oocytes in mouse primary ovarian insufficiency, but its role in human primary ovarian insufficiency remains to be determined.
ovarian insufficiency is usually diagnosed by elevated gonadotrophin levels and low estrogen levels in the blood circulation and by decreased ovary sizes, as determined by bio-imaging. Therefore, in some human patients, primary ovarian insufficiency could be caused by the absence of growing follicles beyond the primary stage, rather than by primordial follicle loss and, to date, no mouse models that mimic this category of primary ovarian insufficiency patients have been developed.

In this study, we reported on several primary ovarian insufficiency mouse models. In the ovaries of Ddb1fl/fl;Gdf9-Cre mice, the primordial follicle pool was intact, but awakened oocytes and growing follicles beyond the primary stage were rapidly depleted. In the ovaries of DCAF1 ubiquitin E3 ligase was essential for maintaining oocyte survival, not only those in dormancy at the primordial follicle stage, but also in naturally awakened oocytes and those awakened by hyper-activation of PI3K signaling.

Recently, small molecules that modulate the PI3K pathway have been used for treating the ovarian tissues of human primary ovarian insufficiency patients for assisted reproduction purposes (Li et al., 2010). In comparison, inhibitors of the CRL family ubiquitin E3 ligases have been used for cancer therapy (Pan et al., 2013). Our observations in these novel mouse models suggest that the key role of CRL4DCAF1 in oocytes of growing follicles should be considered when using these new drugs in medical practice.

Authors’ roles
C.Y., Y.-W.X. and Q.-Q.S. made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data. H.-Y.F. drafted the article and gave final approval of the version to be published.

Funding
This study was supported by the National Basic Research Program of China (2011CB944504, 2012CB944403) and the National Natural Science Foundation of China (81172473, 31371449).

Conflict of interest
None declared.

References

