Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa

P. Uribe¹, R. Boguen¹, F. Treulen¹, R. Sánchez¹, and J.V. Villegas¹,²,*

¹Center of Reproductive Biotechnology – Scientific and Technological Bioresource Nucleus (CEBIOR – BIOREN), Universidad de La Frontera, Temuco 4811230, Chile ²Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4781218, Chile

*Correspondence address. E-mail: juana.villegas@ufrontera.cl
Submitted on August 20, 2014; resubmitted on November 11, 2014; accepted on November 20, 2014

ABSTRACT: Nitrosative stress is produced by high levels of reactive nitrogen species (RNS). The RNS include peroxynitrite, a highly reactive free radical produced from a diffusion-controlled reaction between nitric oxide and superoxide anion. Peroxynitrite causes nitration and oxidation of lipids, proteins and DNA, and is thus considered an important pathogenic mechanism in various diseases. Although high levels of peroxynitrite are associated with astenozoospermia, few reports exist regarding the in vitro effect of high levels of this RNS on human sperm. The aim of this study was to evaluate the in vitro effect of nitrosative stress caused by peroxynitrite on the viability, motility and mitochondrial membrane potential of human spermatozoa. To do this, human spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a molecule that generates peroxynitrite. Incubations were done at 37°C for up to 4 h with SIN-1 concentrations between 0.2 and 1.0 mmol/l. Generation of peroxynitrite was confirmed using dihydrorhodamine 123 (DHR) by spectrophotometry and flow cytometry. Sperm viability was assessed by propidium iodide staining; sperm motility was analyzed by CASA, and the state of mitochondrial membrane potential (ΔΨm) by JC-1 staining. Viability and ΔΨm were measured by flow cytometry. The results showed an increase in DHR oxidation, demonstrating the generation of peroxynitrite through SIN-1. Peroxynitrite decreased progressive and total motility, as well as some sperm kinetic parameters. Mitochondrial membrane potential also decreased. These alterations occurred with no decrease in sperm viability. In conclusion, peroxynitrite-induced nitrosative stress impairs vital functions in the male gamete, possibly contributing to male infertility.

Key words: infertility / mitochondrial membrane potential / sperm motility / peroxynitrite / reactive nitrogen species

Introduction

Oxidative stress caused by an excess of reactive oxygen species (ROS) damages proteins, lipids and DNA in human spermatozoa and is considered a major cause of impaired sperm function (Makker et al., 2009; Gharagozloo and Aitken, 2011). Like ROS, reactive nitrogen species (RNS) when produced at high levels during so-called nitrosative stress, cause modifications to several biomolecules (Nash, 1999; Belen Herrero et al., 2000; Miraglia et al., 2011). In contrast, high levels of NO are associated with alterations in sperm function, particularly with decreased motility (Rosselli et al., 1995; Weinberg et al., 1995; Nobunaga et al., 1996), inhibition of cellular respiration (Weinberg et al., 1995) and DNA damage (Amiri et al., 2007; Santiso et al., 2012).

However, it has been suggested that most detrimental effects attributed to NO are the result of its reaction with superoxide (O₂⁻), which produces peroxynitrite (Pacher et al., 2007). Peroxynitrite covalently interacts with most biomolecules and its cytotoxicity is mediated through lipid peroxidation, protein oxidation and nitration, activation of matrix metalloproteinases and inactivation of several enzymes, particularly mitochondrial enzymes, and also DNA oxidation and fragmentation. Peroxynitrite adversely affects viability and cell function and can also induce cell death by apoptosis or necrosis, and has been implicated in several diseases [reviewed in Pacher et al. (2007) and Szabo et al. (2007)].
High levels of seminal ONOO⁻ have been associated with male infertility. In asthenozoospermic infertile men, higher levels of ONOO⁻ and nitration of the tyrosine residues have been found than in normozoospermic fertile men (Vignini et al., 2006; Salvolini et al., 2012). A negative correlation has been reported between ONOO⁻ concentration and sperm morphology and motility (Vignini et al., 2006; Khosravi et al., 2012). Also, negative associations were found between ONOO⁻ levels and Na⁺/K⁺-ATPase and Ca²⁺-ATPase activity, and total thiol content (Vignini et al., 2009). A positive correlation has also been reported between RNS and sperm DNA fragmentation (Khosravi et al., 2012). It has been suggested that ONOO⁻ generation is the result of excessive activity of nitric oxide synthase and nitric oxide formation, which would cause the decreased sperm function observed in patients with varicocele (Mitropoulos et al., 1996). Oztezcan et al. reported that upon in vitro exposure to ONOO⁻, human spermatozoa showed reduced motility and a decrease in the total sulphhydril group as well as increased lipid peroxidation (Oztezcan et al., 1999).

Although many studies have been published regarding the negative effect of peroxynitrite on somatic cells [for an extensive review, see Pacher et al. (2007)], few studies have reported the in vitro effect of peroxynitrite in human sperm. Therefore, the aim of this study was to evaluate the in vitro effect of peroxynitrite on human spermatozoa. To do this, human spermatozoa from healthy donors were exposed to a molecule that generates peroxynitrite and then sperm viability, motility and mitochondrial membrane potential were evaluated.

Materials and Methods

Semen preparation and analysis

The semen samples were obtained from four healthy donors during the study. Donors were informed and signed a written consent form. The samples obtained from the same donor were requested with at least a 15-day interval. The study was approved by the Scientific Ethics Committee of the Universidad de La Frontera.

Semen samples were obtained by masturbation, with at least 3 days of sexual abstinence. Semen was collected in sterile vessels and maintained at room temperature for 30 to 60 min until liquefaction. Standard semen analysis (CASA) was used through the Integrated Sperm Analysis System (Mecasys Co., Daejeon, Republic of Korea) which uses the reagent JC-1 (5,5′,6,6′-tetrachloro-1′,1″,3′,3″-tetraethyl-benzamidazolocarbocyanin iodide). JC-1 is a cationic dye which accumulates in mitochondria of live spermatozoa and emits orange fluorescence. Orange fluorescence levels of JC-1 aggregates are correlated to ΔΨm.

The experiments to evaluate the ΔΨm entailed sperm suspensions at 2 × 10⁶ spermatozoa/ml with spermatozoa-free seminal plasma and the suspension was kept at 37 °C (World Health Organization, 2010). Aliquots of 0.5 ml were incubated separately for 30 min at 37 °C and 4 h. An untreated control and a vehicle control were also included in each experiment. The vehicle control consisted of sperm aliquots exposed to 1% v/v of DMSO. After incubation, the spermatozoa were washed twice with DPBS at 500g for 5 min, the supernatant discarded and the cells were resuspended with DPBS to 400 μl. The percentage of living spermatozoa was determined by adding PI to a final concentration of 1 μmol/l and analyzing by flow cytometry. The sperm viability was determined as the mean percentage of PI-negative cells.

Sperm motility

To evaluate the effect of SIN-1 on sperm motility, Computer-Aided Sperm Analysis (CASA) was used through the Integrated Sperm Analysis System software (ISAS; Proser, Valencia, Spain). Negative contrast was used and a minimum of 200 spermatozoa were examined for each test using the adjustments for assessing human spermatozoa. The parameter settings were: 25 frames/s; 15–50 μm² for head area; and curvilinear velocity (VCL) > 10 μm/s to classify a spermatozoon as motile. Neat semen samples were diluted to 20 × 10⁶ spermatozoa/ml with spermatozoa-free seminal plasma and the suspension was kept at 37 °C (World Health Organization, 2010). Aliquots of 0.5 ml were incubated separately for 0.5 and 1.0 mmol/l of SIN-1 at 37 °C for 4 h. An untreated control was included. Sperm motility was assessed every hour. A vehicle control which consisted of sperm aliquots exposed to 1% v/v of DMSO was also incubated at 37 °C for 4 h. Progressive motility and kinetic sperm parameters were assessed.

Mitochondrial membrane potential

The mitochondrial membrane potential (ΔΨm) was assessed using the Mlt-E-W™ mitochondrial permeability detection kit (Enzo Life Science Inc.) which uses the reagent JC-1 (5,5′,6,6′-tetrachloro-1′,1″,3′,3″-tetraethyl-benzamidazolocarbocyanin iodide). JC-1 is a cationic dye which accumulates in ΔΨm intact mitochondria forming aggregates and emits orange fluorescence. Orange fluorescence levels of JC-1 aggregates are correlated to ΔΨm.

The experiments to evaluate the ΔΨm entailed sperm suspensions at 2 × 10⁶ spermatozoa/ml in DPBS being incubated with SIN-1 to 0.2, 0.4, 0.6, 0.8 and 1.0 mmol/l. A control without SIN-1 was also included. Rhodamine formation was monitored by increasing absorbance every 1 min for 4 h at 500 nm in a spectrophotometer Optizen 3220 UV (Mecasys Co., Daejeon, Republic of Korea).

For analysis of peroxynitrite permeability through cell membranes, aliquots of 1 ml of sperm suspension at 2 × 10⁶ ml⁻¹ were incubated with 0.8 mmol/l of SIN-1 at 37 °C for 4 h. An untreated sperm control and a vehicle control were included. The vehicle control consisted of sperm aliquots exposed to 1% v/v of DMSO (the highest concentration used). After the SIN-1 incubation period, the cells were washed once and incubated with 1 μmol/l of DHR at 37 °C for 20 min. The mean fluorescence intensity (MFI) of DHR in the cells was determined using flow cytometry.
After incubation, the sperm suspensions were washed once by centrifugation to 500g for 5 min and then the spermatozoa were resuspended in 1 ml of DPBS and 1 μl of reagent JC-1 was added. After 15 min incubation at 37 °C, the spermatozoa were washed once, resuspended in 500 μl of DPBS and then 1 μmol/l of PI was added prior to analysis in order to exclude dead cells from the analysis. The ΔΨm was evaluated by flow cytometry as the geometric mean of fluorescence of the JC-1 aggregates (see Flow cytometry analysis below).

Flow cytometry analysis

Fluorescence analysis was performed in a flow cytometer FACSCanto II (Becton, Dickinson and Company, BD Biosciences, San Jose, CA, USA). Samples were acquired and analyzed with the software FACSDiva™ v. 6.1.3 (Becton, Dickinson and Company). Sample aspiration speed was 60 μl/min and data from 10 000 sperm events were recorded. The excitation was realized at 488 nm with an argon laser. The green fluorescent staining (DHR) was detected using a 530/30 nm bandwidth filter; orange fluorescence (PI alone; JC-1 orange aggregates) was detected using a 585/42 nm bandwidth filter; and a band-pass filter >LP670 nm (long-pass, far red) was used to measure the fluorescence of PI when used in combination with JC-1. All were done on logarithmic scales.

Statistical analysis

The treatment of spermatozoa with SIN-1 at each dose was carried out in duplicate and the experiments were repeated at least three times on different days. Results were expressed as mean ± standard deviation (SD). Statistical evaluation was performed with the Prism 6 software package (GraphPad, La Jolla, CA, USA), applying D’Agostino’s K2 test to assess Gaussian distribution. To evaluate the effect of concentration of peroxynitrite on sperm viability, mitochondrial membrane potential, kinetic parameters of sperm motility and peroxynitrite permeability through cell membranes, a one-way analysis of variance (ANOVA) was used followed by Dunnett’s post-test. To evaluate the effect of time and concentration of peroxynitrite on sperm motility, a two-way ANOVA was used followed by Bonferroni’s post-test. A paired t-test was used to analyze vehicle control on total, progressive and kinetic parameters of sperm motility. P-values <0.05 were considered statistically significant.

Results

Demonstrating the generation of peroxynitrite

First, the proper generation of peroxynitrite with SIN-1 was verified. The generation of peroxynitrite through SIN-1 was demonstrated by oxidation of DHR, which was evidenced by the increase in absorbance at 500 nm. Absorbance of DHR increased exponentially in direct proportion to the concentration of SIN-1. For concentrations of SIN-1 between 0.4 and 1.0 mmol/l, the steady state was reached after about 100 min. These results confirmed the peroxynitrite generation by SIN-1 (Fig. 1).

Subsequently human sperm were exposed to 0.8 mmol/l SIN-1 for 4 h at 37 °C and DHR fluorescence intensity was measured in the cells by flow cytometry. A statistically significant increase was observed in the MFI of sperm cells treated with SIN-1 compared with untreated sperm (9780 ± 2472 versus 401 ± 223, respectively, P < 0.0001).

MFI of vehicle control (403 ± 192) did not show a significant increase compared with the untreated control (P > 0.05). The increase in MFI shows that peroxynitrite, generated by SIN-1 under the conditions used in this study, was able to cross cell membranes and enter the cells.

Effect of peroxynitrite on sperm viability and motility

The percentage of sperm viability was not affected by 0.5 and 1.0 mmol/l of SIN-1 (76.5 ± 10.4 and 73.0 ± 10.1, respectively) or vehicle (75.4 ± 10.0) when compared with the untreated control (75.8 ± 7.5) after 4 h of incubation at 37 °C (P > 0.05).

![Figure 1](https://academic.oup.com/molehr/article-abstract/21/3/237/1139319 сентябрь 2019)
For this, the spermatozoa were incubated with SIN-1 for 4 h at 37°C and sperm function and male infertility (Gharagozloo and Aitken, 2011), although oxidative stress has been widely associated with impaired sperm mitochondria (Uribe et al., 2012). Two-way ANOVA indicated statistically significant differences (P < 0.0001) for both time and dose factors. (*P < 0.01; (**) P < 0.001) compared with the untreated control within the same time point. SIN-1, 3-morpholinosydnonimine.

Then, the effect of peroxynitrite on sperm motility was assessed. For this, the spermatozoa were incubated with SIN-1 for 4 h at 37°C and sperm motility was measured every 1 h from the onset of incubation. A decrease in progressive sperm motility, which was both time- (P < 0.0001) and dose- (P < 0.0001) dependent, was observed after exposure to peroxynitrite. The decrease in progressive motility was significant compared with the untreated control from 3 h of incubation with 1.0 mmol/l of SIN-1 (Fig. 2). Total motility was also affected, decreasing significantly with 1.0 mmol/l of SIN-1 at 4 h in a time- and dose-dependent manner (data not shown). The vehicle control showed no differences in progressive sperm motility compared with the untreated control. The decrease in progressive sperm motility was SIN-1 concentration-dependent. Table I presents kinetic motility data of spermatozoa exposed to peroxynitrite for 4 h, showing that VCL, straight-line velocity (VSL) and average path velocity (VAP) were also affected. For all kinetic motility parameters, the vehicle control did not show any statistically significant differences compared with the untreated control (data not shown).

Table I Effect of peroxynitrite on sperm kinetic parameters at 4 h of incubation with SIN-1 at 37°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Untreated control</th>
<th>0.5 mmol/l of SIN-1</th>
<th>1.0 mmol/l of SIN-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCL (µm/s)</td>
<td>49.5 ± 3.9</td>
<td>45.4 ± 2.2</td>
<td>39.3 ± 5.4*</td>
</tr>
<tr>
<td>VSL (µm/s)</td>
<td>24.4 ± 1.3</td>
<td>22.8 ± 0.9</td>
<td>18.5 ± 1.6b</td>
</tr>
<tr>
<td>VAP (µm/s)</td>
<td>34.4 ± 1.9</td>
<td>31.8 ± 1.3</td>
<td>27.3 ± 2.8</td>
</tr>
<tr>
<td>LIN (%)</td>
<td>49.0 ± 6.0</td>
<td>50.4 ± 3.5</td>
<td>47.6 ± 6.3</td>
</tr>
<tr>
<td>STR (%)</td>
<td>71.0 ± 6.1</td>
<td>71.9 ± 5.2</td>
<td>68.0 ± 6.3</td>
</tr>
<tr>
<td>WOB (%)</td>
<td>69.8 ± 3.5</td>
<td>70.1 ± 2.6</td>
<td>69.5 ± 4.0</td>
</tr>
<tr>
<td>ALH (µm)</td>
<td>2.1 ± 0.2</td>
<td>2.0 ± 0.2</td>
<td>1.9 ± 0.2</td>
</tr>
<tr>
<td>BCF (Hz)</td>
<td>8.0 ± 0.2</td>
<td>7.8 ± 0.4</td>
<td>6.9 ± 1.2</td>
</tr>
</tbody>
</table>

Values correspond to mean ± SD. VCL, curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; LIN, linearity; STR, straightness; WOB, wobble; ALH, amplitude of lateral head displacement; BCF, beat-cross frequency.

*P < 0.01. **P < 0.0001, both compared with untreated control.

Figure 2 Effect of peroxynitrite on progressive sperm motility over time. Results are presented as mean ± SD. The experiment was repeated six times on different days using semen samples from four healthy donors. Two-way ANOVA indicated statistically significant differences (P < 0.0001) for both time and dose factors. (*P < 0.01; (**) P < 0.001) compared with the untreated control within the same time point. SIN-1, 3-morpholinosydnonimine.

Effect of peroxynitrite on sperm mitochondrial membrane potential

After exposure of spermatozoa to concentrations between 0.2 and 1.0 mmol/l SIN-1 for 1 h, there was a statistically significant decrease in the sperm ΔΨm compared with the untreated cells. The vehicle of SIN-1 did not induce a significant change. Figure 3 illustrates that the sperm ΔΨm decrease was SIN-1 concentration-dependent.

Discussion

Although oxidative stress has been widely associated with impaired sperm function and male infertility (Gharagozloo and Aitken, 2011), nitrosative stress caused by excessive RNS production may also contribute to impaired sperm function (Khosravi et al., 2012; Salvolini et al., 2012). We have demonstrated here the association between peroxynitrite and decreased motility and mitochondrial membrane potential in human spermatozoa. To our knowledge, this is the first study reporting the influence of peroxynitrite on the ΔΨm of human spermatozoa.

To mimic pathophysiological states in vitro, the peroxynitrite precursors NO and O2− can be simultaneously generated using compounds.

Figure 3 Effect of peroxynitrite on sperm mitochondrial membrane potential. Sperm were incubated for 1 h at 37°C with different concentrations of SIN-1; vehicle corresponds to 10 µl of DMSO; 0 mmol/l of SIN-1 corresponds to the untreated control. Results are presented as mean ± SD. The experiment was repeated three times on different days using semen samples from three healthy donors. (*) P < 0.001 compared with the untreated control. ΔΨm, mitochondrial membrane potential; MFI, mean fluorescence intensity; AU, arbitrary units; SIN-1, 3-morpholinosydnonimine; Veh, vehicle.
such as SIN-1 (Szabo et al., 2007). SIN-1 has been used in studies with several cell types, including human and bovine spermatozoa (Weinberg et al., 1995; Blanco Garcia et al., 2009; Rodriguez and Beconi, 2009; Agbani et al., 2011).

In this study, the suitable generation of peroxynitrite with SIN-1 was monitored using DHR, which is selectively oxidized by peroxynitrite (Blanco Garcia et al., 2009). Spectrophotometric measurements showed that the amount of SIN-1 added to the solution was directly correlated with the DHR oxidation and thus with the ONOO⁻ generated amount, as previously reported (Blanco Garcia et al., 2009). Then, the DHR oxidation was confirmed in the spermatozoa exposed to SIN-1 compared with the untreated sperm, demonstrating that with SIN-1 the effects of peroxynitrite could be analyzed on different cell variables.

We found that sperm viability was unchanged after treatment with concentrations up to 1.0 mmol/l of SIN-1 during an incubation time up to 4 h. These data are consistent with a previous study conducted on cryopreserved bovine spermatozoa, where incubation for 45 min at 37°C with up to 1.0 mmol/l of SIN-1 did not significantly reduce sperm viability (Rodriguez and Beconi, 2009). Considering that these SIN-1 concentrations did not alter sperm viability, we proceeded to evaluate motility.

Our results show a time- and dose-dependent decrease in progressive and total sperm motility and also in several sperm kinetic parameters after exposure to peroxynitrite. An association has been reported between sperm motility and the precursor of peroxynitrite, nitric oxide, high concentrations of which were associated with reduced sperm motility in in vitro studies (Tomlinson et al., 1992; Herrero et al., 1994; Rosselli et al., 1995; Weinberg et al., 1995; Rodriguez et al., 2005) and in asthenozoospermic patients (Aksoy et al., 2002; Balercia et al., 2004). Thus, if NO can generate ONOO⁻ in vivo, then this highly reactive radical could ultimately be responsible for impaired sperm function. Consistent with this, asthenozoospermic infertile men present significantly higher ONOO⁻ concentrations than normospermic fertile donors, revealing a negative correlation between ONOO⁻ concentration and sperm motility (Vignini et al., 2006). Also, it has been affirmed that the high levels of peroxynitrite observed in patients together with high NOS activity are involved in the pathogenesis of idiopathic asthenozoospermia (Salvolini et al., 2012).

In vitro studies have shown an association between high levels of peroxynitrite and impaired sperm motility. In a study using peroxynitrite, a decrease in human sperm motility was observed, which was associated with increased levels of lipid peroxidation (Oztezcan et al., 1999). Later, in bovine spermatozoa, a significant decrease in the motility of cryopreserved bull spermatozoa was reported after incubation with 160 μmol/l SIN-1 (Rodriguez and Beconi, 2009). Although we also worked with SIN-1, higher SIN-1 concentrations were needed to significantly decrease sperm motility. This difference could be explained by species-specific characteristics and by the higher susceptibility of cryopreserved spermatozoa to structural and physiological alterations induced by free radicals (Medeiros et al., 2002).

Considering the highly oxidizing nature of peroxynitrite and the multiple disorders caused by its exposure in somatic cells (Pacher et al., 2007), we hypothesize that impairment of sperm motility caused by peroxynitrite may be produced at different levels, including lipid peroxidation (Radi et al., 1991; Oztezcan et al., 1999), damage to the structure or function of contractile proteins responsible for the movement, or alteration of ATP production by the sperm, either by the glycolytic (Souza and Radi, 1998; Buchczyk et al., 2003; Koeck et al., 2004) or mitochondrial pathways (Radi et al., 2002). Possibly a combination of these or other factors may contribute to sperm motility impairment.

We also studied mitochondrial membrane potential and observed the decrease in sperm ΔΨm after incubation with SIN-1, demonstrating a negative effect of peroxynitrite on the mitochondrial function of human spermatozoa as well. The inhibition of cellular respiration has been previously reported in human spermatozoa induced by SIN-1 as a NO generator (Weinberg et al., 1995). In somatic cells, it has been shown that mitochondrial enzymes are particularly vulnerable to damage by peroxynitrite. Peroxynitrite causes, among other things, inhibition of most components of the electron transport chain (ETC) because it causes cysteine oxidation, tyrosine nitration and damage to iron sulfur centers [reviewed in Pacher et al. (2007)]. Therefore, inhibition of ETC proteins that maintain a proper transmembrane proton gradient could be responsible for the decrease in ΔΨm observed in human spermatozoa. The decrease in ΔΨm could also be due to lipid peroxidation. It has been demonstrated in human spermatozoa that lipid peroxidation generates electrophilic aldehydes that disrupt enzymes of the ETC, thereby increasing mitochondrial ROS generation. This process induces a series of harmful changes in spermatozoa which include a loss of ΔΨm (Aitken et al., 2012). Considering that peroxynitrite causes lipid peroxidation (Oztezcan et al., 1999), we could hypothesize that the generation of electrophilic aldehydes and their damaging effects could also contribute to the decrease in ΔΨm observed in our study.

Likewise, a positive correlation has been reported between ΔΨm and routine semen analysis parameters such as motility (Kasai et al., 2002; Espinoza et al., 2009). Interestingly in our study the ΔΨm decreased after 1 h of exposure to peroxynitrite, whereas progressive motility significantly decreased after 3 h of incubation and with a higher concentration of peroxynitrite. This suggests that ΔΨm is a more sensitive variable than motility to detect a decrease in sperm quality, as has already been suggested (Marchetti et al., 2002). Furthermore, the maintenance of sperm motility when the ΔΨm has already decreased may be consistent with glycolysis rather than oxidative phosphorylation as the primary energy source supporting sperm motility (Mukai and Okuno, 2004; Nascimento et al., 2008).

In conclusion, peroxynitrite causes decreased motility and mitochondrial membrane potential of human spermatozoa, compromising vital functions of the male gamete without affecting viability. As already been mentioned, studies in somatic cells have revealed many alterations caused by peroxynitrite [for an extensive review, see Pacher et al. (2007)]. Thus, it is expected that in human sperm, peroxynitrite will affect other functional parameters such as capacitacation, acrosome reaction and ATP synthesis. Signaling pathways and DNA integrity could also be affected. Peroxynitrite, at higher levels, might even induce apoptotic-like changes. In this way, earlier reports in spermatozoa have shown the negative effects of nitric oxide, a precursor of peroxynitrite, on cellular respiration (Weinberg et al., 1995). DNA integrity (Amiri et al., 2007) and sperm-zona binding (Wu et al., 2004). A better understanding of the influence on sperm function of ONOO⁻ and other RNS causing nitrosative stress is crucial to the future improvement of treating patients with impaired fertility. Anti-RNS drugs could be used to help patients affected by high levels of nitrosative stress, to improve semen quality in semen samples for fertilization therapies, and as cryoprotective agents in cryopreservation media. Alternatively, RNS could be used in male contraception.
Acknowledgements

The authors are very grateful to Dr Helen Lowry for providing language help.

Authors’ roles

P.U.: study conception and design, data acquisition, analysis and interpretation, drafting of the article and final approval of the version to be published. R.B. and F.T.: data analysis and interpretation, revising of the article critically for important intellectual content and final approval of the version to be published. R.S.: study conception and design, revising it critically for important intellectual content and final approval of the version to be published. J.V.V.: study conception and design, data analysis and interpretation, drafting of the article, revising it critically for important intellectual content and final approval of the version to be published.

Funding

This work was supported by: Fondo Nacional de Ciencia y Tecnología (grant number 1130888 to R.S.); Dirección de Investigación, Universidad de La Frontera (grant number DI12-0102 to J.V.V); and a scholarship from Comisión Nacional de Ciencia y Tecnología (grant number 21110812 to P.U.).

Conflict of interest

The authors declare no conflict of interest.

References

