Older Adults’ Detection of Misspellings During Reading

Lise Abrams, Meagan T. Farrell, and Sara J. Margolin

Department of Psychology, University of Florida.

Objectives. Previous research has suggested that older adults’ ability to detect a word as correctly or incorrectly spelled is intact, relative to younger adults. The purpose of the present experiment was to investigate the stability of misspelling detection processes across older adulthood when misspellings are presented in the context of reading.

Methods. Participants included 180 older adults represented equally from three decades: young–old adults in their 60s, middle-old adults in their 70s, and old–old adults in their 80s. They read sentences about health-related topics one word at a time and pressed a key to detect misspellings. A repeated measures analysis of variance was conducted on misspelling detection accuracy as well as response times for correctly detected misspellings.

Results. There was a consistent age-related decline in misspelling detection, where middle-old and old–old adults were less accurate and slower than young–old adults in detecting misspellings.

Discussion. Requiring misspelling detection during reading increases the working memory demands that are necessary for successful comprehension. In resource-demanding contexts, the top–down verification process of confirming a word’s orthographic features becomes more difficult with increasing age.

Key Words: Aging—Misspelling detection—Reading—Working memory.
The context in which misspelled words are presented may also be important for determining when age differences will occur. The majority of research on misspelling detection in old age has involved briefly showing words one at a time. When asked to judge the correctness of a word’s spelling, younger and older adults were equivalently accurate at detecting misspelled words (MacKay et al., 1999; Margolin & Abrams, 2007; see Abrams & Stanley, 2004, for an exception with rapid presentation rates). However, single-word presentation studies represent a limited context to assess misspelling detection and do not capture language processes in more real-world situations, such as reading, where detecting misspellings in sentences may become more difficult with advancing age because of the working memory resources required for successful comprehension (e.g., Just & Carpenter, 1992). The current experiment presented misspellings embedded in sentences about health-related topics to be read for recall. To assess possible influences of resource demands on misspelling detection during reading, we manipulated the position of the misspellings within the sentence, where misspellings could occur near the beginning, middle, or end of the sentence. We hypothesized that detecting misspellings near the end of the sentence may be particularly demanding of working memory because the reader has to hold the entire sentence until this point and synthesize its meaning for comprehension. Working memory capacity generally declines with advancing age even within older adulthood (e.g., De Beni, Borella, & Carretti, 2007), so old–old adults and middle-old adults may have exacerbated difficulty in detecting misspellings that occur later in the sentence relative to young–old adults.

Method

Participants

Participants included 60 young–old adults in their 60s ($M = 66.3$ years, $SD = 2.7$, range = 60–69 years), 60 middle-old adults in their 70s ($M = 74.3$ years, $SD = 2.9$, range = 70–79 years), and 60 old–old adults in their 80s ($M = 82.8$ years, $SD = 2.5$, range = 80–88 years). They were recruited from the University of Florida Cognition and Aging Laboratory participant pool, a database of older adult volunteers from the Gainesville community and surrounding areas. All participants spoke fluent English and had normal or corrected-to-normal vision. There were no age differences in vocabulary as measured by a 25-item multiple choice vocabulary test, $p > .12$, or in backward digit span, a task in which the central executive component of working memory is thought to play a significant role (e.g., Groeger, Field, & Hammond, 1999). However, young–old adults had higher Mini-Mental State Examination (MMSE) scores than old–old adults, $p < .013$, and more years of education than both middle-old and old–old adults, $p < .016$.

Apparatus and Materials

The experiment was performed on Pentium II, 350 MHz, PC–compatible computers using a program written in Visual Basic 5.0. Eighty-nine sentences ranging in length from 9 to 20 words ($M = 14.5$, $SD = 3.8$) were taken from different passages on three websites (WebMD.com, Walgreens.com, and the National Institute on Aging website) involving health-related topics of interest to older adults. Sentences contained 168 target words (mean length = 7.9 letters, mean word frequency = 46.4; there were 88 nouns, 43 adjectives, 31 verbs, and 6 adverbs), which were modified to contain misspellings involving a single letter that was added, deleted, or substituted for another letter. Sentences contained three target words, of which one, two, or three were misspelled, with position of misspellings within each sentence counterbalanced across experimental versions. For example, the three-misspelling sentence “Although _surgicial_ methods of _treatment_ for prostate cancer can be _successful_, the surgery can be _risky_” shows the three possible positions for targets (underlined here). In one-misspelling versions of this sentence, the misspelled target could appear either in the early position, the middle position, or the late position (and the remaining positions would be correctly spelled). Similarly for two-misspelling sentences, targets could appear in the early and middle positions, the early and late positions, or the middle and late positions.

Procedure

Each sentence appeared one word at a time in the center of the screen at a rate of 800 ms/word, which was pilot tested as a manageable reading rate for older adults without time pressure to minimize effects of age-related declines in visual acuity. Participants were instructed to watch each word carefully and to press a designated key on the keyboard whenever a word was misspelled; the key was dependent on handedness so that detection would occur using the participants’ dominant hand. After the last word in the sentence was presented, a string of question marks appeared, which was the cue for participants to recall the sentence verbatim. Requiring recall ensured that participants were reading sentences for comprehension, rather than solely focusing on detecting misspellings of individual words. (The recall task was designed to test a separate issue and therefore will not be discussed further.)

Results

Misspelling Detection Accuracy

A 3 (Age Group: young–old, middle-old, and old–old) × 3 (Position of Misspelling: early, middle, and late) repeated measures analysis of variance (ANOVA) was conducted by participants on the mean proportion of targets correctly detected as misspelled. Means and standard deviations from this analysis are shown in percents in Table 1. Both the main
effect of age group, $F(2, 168) = 6.68$, mean square error (MSE) = .15, $p < .002$, and position, $F(2, 336) = 109.72$, MSE = .01, $p < .001$, were significant. Young–old adults ($M = 66\%$) were more accurate in detecting misspellings than either middle-old adults ($M = 57\%$), $p < .029$, or old–old adults ($M = 51\%$), $p < .001$, who did not differ, $p > .133$. In terms of position, misspellings in the middle position ($M = 63\%$) were detected more accurately than misspellings in the early position ($M = 61\%$), $p < .012$, which in turn were detected more accurately than misspellings in the late position ($M = 50\%$), $p < .001$. Position did not interact with age group, $F < 1$.

Response Times for Correctly Detected Misspellings

Response times for misspelling detection were also recorded via keypress. Responses times that were $±2.5$ SD from the overall mean (814 ms) were deemed outliers and were removed prior to analysis. This resulted in the removal of 1.5% of responses for young–old, 2.6% of responses for middle-old, and 4.9% of responses for old–old adults. A 3 (Age Group: young–old, middle-old, and old–old) × 3 (Position of Misspelling: early, middle, and late) repeated measures ANOVA was conducted by participants on mean response times to correctly detect target misspellings. Means and standard deviations are shown in Table 1. The main effect of age group was significant, $F(2, 161) = 17.66$, MSE = 20062.09, $p < .001$, with young–old adults ($M = 782$ ms) having faster misspelling detection than middle-old adults ($M = 817$ ms), $p < .026$, who in turn were faster than old–old adults ($M = 875$ ms), $p < .001$. There was also a main effect of position, $F(2, 322) = 11.3$, MSE = 2810.53, $p < .001$, where misspellings in the middle ($M = 817$ ms) or late ($M = 817$ ms) position (which did not differ, $p > .938$) were detected more quickly than misspellings in the early position ($M = 841$ ms), $ps < .001$. Age group and position did not interact, $F(4, 322) = 1.63$, MSE = 2810.53, $p > .166$. Furthermore, for both the accuracy and response time analyses, the main effect of age group remained significant when MMSE and education were included as covariates.

Table 1. Older Adults’ Accuracy (in %) and Response Times (in milliseconds) for Detecting Misspelled Targets as a Function of Position of Misspelling in Sentence

<table>
<thead>
<tr>
<th>Age group</th>
<th>Young–old adults</th>
<th>Middle-old adults</th>
<th>Old–old adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early position</td>
<td>69.2</td>
<td>21.2</td>
<td>59.2</td>
</tr>
<tr>
<td>Middle position</td>
<td>70.9</td>
<td>21.5</td>
<td>62.0</td>
</tr>
<tr>
<td>Late position</td>
<td>58.1</td>
<td>22.1</td>
<td>50.0</td>
</tr>
<tr>
<td>Response times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early position</td>
<td>800.9</td>
<td>73.0</td>
<td>831.4</td>
</tr>
<tr>
<td>Middle position</td>
<td>782.5</td>
<td>91.1</td>
<td>808.2</td>
</tr>
<tr>
<td>Late position</td>
<td>763.7</td>
<td>87.8</td>
<td>811.6</td>
</tr>
</tbody>
</table>

Discussion

Contrary to previous research comparing younger adults with a relatively young group of older adults (e.g., MacKay et al., 1999), the present experiment demonstrated age-linked declines in misspelling detection, where adults in their 70s and 80s were slower and less accurate at identifying misspellings during reading compared with adults in their 60s. Findings of exacerbated declines with increasing age converge with cognitive aging studies of language production (e.g., Au et al., 1995; Davis et al., 1990) and extend them to “input” processes required for detecting misspellings.

Why do age-related declines in misspelling detection become increasingly pronounced in late adulthood when reading misspellings in context? One possibility is that embedding misspellings into ecologically valid contexts makes the misspelling detection task more challenging because of the resource demands imposed by comprehension (Just & Carpenter, 1992), which typically increase with age (De Beni et al., 2007). The context of reading does make misspelling detection more difficult, evidenced by misspellings near the end of the sentence being the least likely to be detected, a sentence location where readers typically allocate more time to integrate the beginning part of the sentence and construct a cohesive representation of the text. Although misspellings in the early position were also less accurately detected than misspellings in the middle position, this difference was much smaller and could be caused by difficulties focusing sufficient attention on the first few words while acclimating to the dual-task demands of both misspelling detection and reading for recall. Support for this interpretation comes from the response time data, where readers took significantly longer to correctly detect misspellings in the early position than misspellings in the other positions.

However, even though misspelling position affected its probability of detection, these position effects occurred for all age groups to the same degree. Failure to find an interaction may be due to older participants not differing on our measure of working memory (contrary to De Beni et al., 2007, who used a reading span task). In any case, the age-related decline in misspelling detection found in the present study cannot be explained by age-related differences in working memory. Instead, our findings are consistent with the idea that the top–down verification process of confirming a word’s orthographic features becomes more difficult with age in resource-demanding contexts, consistent with the transmission deficit hypothesis’s overarching principle of top–down connections to lower level representations being more susceptible to age-related declines (MacKay & Burke, 1990).

The present results highlight the importance of acknowledging potential changes in language processing that occur in late adulthood and the heterogeneity that exists within older adults. Comparing several groups of older adults across a larger age range helps to more precisely define the
onset of specific age-related cognitive declines, especially in tasks relevant to older adults’ functioning in real-world contexts. People regularly encounter misspellings in their daily lives, such as reading the newspaper, browsing websites, and reading and writing emails, situations that require comprehension in the presence of misspellings. An interesting question for future research is whether older adults’ reduced ability to detect misspellings during reading may actually be adaptive in these situations, allowing them to focus more on the content to enhance comprehension, which would parallel other findings (e.g., Smiler, Gagne, & Stine-Morrow, 2003) that demonstrate older adults’ ability to self-regulate cognitive resource allocation during challenging tasks.

Funding
This work was supported by a National Institute on Aging grant R03 AG 20405, awarded to L.A.

Acknowledgments
We thank Stephanie MacLaverty, Katie Hoffman, Shannon Hack, Kathryn Lucas, Cortney Mauer, Emily Rodriguez, and Ashley Wallingford for their assistance in stimuli development and data collection. Sara Margolin is now at the State University of New York, College at Brockport.

Correspondence
Address correspondence to Lise Abrams, PhD, Department of Psychology, University of Florida, PO Box 112250, Gainesville, FL 32611-2250. Email: abrams@ufl.edu

References

