Structure and provenance of the Cretaceous Pingshanhu Basin in the Hexi Corridor: Implications for Mesozoic tectonics in the northern Tibetan Plateau

Wenyou Liu1,2, Chen Wu1, Jie Li3, Cunhui Zhang1,4, Tian Jiang5, Andrew V. Zuza6, Peter J. Haproff7, Xuanhua Chen8, and Yahui Yue1

1State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
2School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
3Chongqing Key Laboratory of Complex Oil and Gas Field Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China
4University of Chinese Academy of Sciences, Beijing 100049, China
5School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
6Nevada Bureau of Mines and Geology, Nevada Geosciences, University of Nevada, Reno, Nevada 89557, USA
7Department of Earth and Ocean Sciences, University of North Carolina, Wilmington, North Carolina 28403, USA
8SinoProbe Center, Chinese Academy of Geological Sciences, Beijing 100037, China

ABSTRACT

The construction of Earth’s largest highland, the Tibetan Plateau, is generally considered to have been generated by the Cenozoic India-Asia collision. However, the extent to which high topography existed prior to the Cenozoic remains unclear. The Hexi Corridor foreland basin of the northern Tibetan Plateau is an ideal region in which to investigate this history, given its widespread exposure of Early Cretaceous sedimentary sequences. In this study, we examined the Early Cretaceous strata in the northern Hexi Corridor to understand the relationships between pre-Cenozoic sedimentation and tectonic deformation and constrain the late Mesozoic tectonic setting of the adjacent Qilian Shan and Alxa blocks bordering the northern Tibetan Plateau. Results of sandstone petrology analyses, paleocurrent observations, and U-Pb geochronology suggest that the oldest Early Cretaceous sediments deposited in the northern Hexi Corridor were sourced from the southern Alxa block during the earliest Cretaceous. By the late Early Cretaceous, Hexi Corridor sediments were sourced from both the southern Alxa block to the north and the Qilian Shan to the south. Sandstone petrologic results indicate that the northern Hexi Corridor experienced a tectonic transition from contraction to extension during the Early Cretaceous. These findings suggest that the northern Tibetan Plateau region was partially uplifted to a high elevation during the late Mesozoic before the India-Asia collision.

1. INTRODUCTION

The tectonic evolution and formation mechanism(s) of the Tibetan Plateau and Asian tectonic system have profound implications for understanding the dynamics of intracontinental deformation (Figs. 1A and 1B; Burchfiel et al., 1991; Yin and Harrison, 2000; Tapponnier et al., 2001; Taylor et al., 2003; Royden et al., 2008; Yin, 2010; Clark, 2012; Ren et al., 2013; Wu et al., 2021b; Ding et al., 2022). Furthermore, deformation along the northernmost margin of the Tibetan Plateau is key to understanding how and when the plateau was constructed (e.g., Meyer et al., 1998; Clark et al., 2010; Clark, 2012; Duvall et al., 2011; Yuan et al., 2013; Zheng et al., 2017a; Li et al., 2019a, 2020b; Yu et al., 2019; Zuza et al., 2016, 2019; An et al., 2020; Wang et al., 2020a, 2022, 2023; Wu et al., 2021a, 2021b). Numerous investigations have focused on Cenozoic deformation across the northern Tibetan Plateau, which was induced by the India-Asia collision to the south. However, distributed faulting, overprinting relationships, relatively slow erosion, and limited exhumation in the northern Tibetan Plateau have hindered the use of traditional techniques, such as low-temperature thermochronology, to precisely resolve deformation kinematics, resulting in an incomplete understanding of the strain history (e.g., Chen et al., 2019a, 2019b; Zuza et al., 2019; Li et al., 2020a).

Two existing end-member models describe deformation along the northernmost Tibetan Plateau. In one model, deformation gradually propagated northward from the Himalayan collisional front to the northern plateau margin (e.g., Tapponnier et al., 2001; Clark, 2012; Wang et al., 2014, 2020a, 2020b; Zheng et al., 2017a; Yu et al., 2019). In the second model, deformation occurred across most of the Himalayan-Tibetan orogen shortly after the initial India-Asia collision, exploiting preexisting weaknesses, such as older suture zones. This was followed by out-of-sequence deformation along the northern Tibetan Plateau margin from the Eastern Kunlun Range in the south to the Hexi Corridor foreland basin in the northeast (Fig. 1B; e.g., Yin and Harrison, 2000; Chen et al., 2019a, 2020; Li et al., 2019a, 2020a; Wu et al., 2019b; Zuza et al., 2019, 2020; Bian et al., 2020). These two end-member models make predictions for the expansion directions of the thick and high Tibetan Plateau to the north and east, along with the kinematics and timing of intracontinental deformation and
The location of Figure 2 is shown by a pink dashed box. Data were compiled from: 1—Ye et al. (2018); 2—Tang et al. (2019); 3—Ye et al. (2019); 4—Chen et al. (2016); 5—Zhang et al. (2016); 6—Wang et al. (2016); 7—Li et al. (2017); 8—Chen et al. (2018a); 9—Zhang et al. (2017); 10—Wu et al. (2017); 11—Wu et al. (2018); 12—Chen et al. (2018b); 13—Huang et al. (2017); 14—Chen et al. (2012); 15—Zhou et al. (2014); 16—Li et al. (2020); 17—Mao et al. (2009); 18—Gao et al. (2008b); 19—Wang et al. (2021); 20—Li et al. (2021); 21—Peng et al. (2018); 22—Guo et al. (2019); 23—Wan et al. (2019); 24—Tang et al. (2017); 25—Xu et al. (2017); 26—Yang et al. (2018); 27—Xue et al. (2000); 28—Tang et al. (2015); 29—Yu et al. (2013); 30—Huang et al. (2011); 31—Yan et al. (2010); 32—Zhang et al. (2014); 33—Xu et al. (2011); 34—Song et al. (2012); 35—Liu et al. (2015); 36—Dong et al. (2015); 37—Guo et al. (2017); 38—Li et al. (2015); 39—Zhang et al. (2011); 40—Guo et al. (2016); 41—Shi et al. (2015); 42—Luo et al. (2015); 43—Song et al. (2016); 44—Su et al. (2016); 45—Su et al. (2016a); 46—Su et al. (2014c); 47—Tong et al. (2008); 48—Wu et al. (2010); 49—Song et al. (2014); 50—Song et al. (2012); 51—Gao et al. (2014); 52—Cui et al. (2014); 53—Li et al. (2014); 54—Xu et al. (2014); 55—Li et al. (2015); 56—Huang et al. (2014); 57—Huang et al. (2015); 58—Wu et al. (2009); 59—Huang et al. (2013); 60—Guo and Huang (2016); 61—Wang et al. (2016); 62—Wang et al. (2018); 63—Peng et al. (2017); 64—Li et al. (2017); 65—Zhu et al. (2017); 66—Zhe et al. (2014); 67—Xu et al. (2019b); 68—Guo et al. (2013b); 69—Wu et al. (2018a); 70—Zhang et al. (2018b); 71—Li et al. (2017); 72—Liu et al. (2014); 73—Wang et al. (2015a); 74—Fan et al. (2012b); 75—Wu et al. (2017); 76—Mesut et al. (2011); 77—Xu et al. (2015c); 78—Zhang et al. (2014a); 79—Chen et al. (2019b); 80—Jia et al. (2017); 81—Zhang et al. (2016b); 82—Luo et al. (2014); 83—Shi et al. (2015); 84—Zhu et al. (2015); 85—Li et al. (2018b); 86—Hu et al. (2016); 87—Yu et al. (2012); 88—Wu et al. (2014b); 89—Zhang et al. (2015b); 90—Tian et al. (2015); 91—Li et al. (2017); 92—Guo et al. (2017); 93—Cai et al. (2016); 94—Li et al. (2016a); 95—Zhang et al. (2018a); 96—Chen et al. (2018); 97—Zhang et al. (2018c); 98—Chen et al. (2019c); 99—Tian et al. (2017); 100—Yang et al. (2019); 101—Chen et al. (2019d); 102—Guo et al. (2020); 103—Li et al. (2014b); 104—Yang (2016); 105—An (2015); 106—Zuo et al. (2019); 107—Zhou et al. (2019); 108—Zhu et al. (2018a); 109—Zhu et al. (2018b); 110—Wang et al. (2017); 111—Li et al. (2016a); 112—Zhu et al. (2016); 113—He et al. (2019); 114—Zhang et al. (2019b); 115—Li et al. (2016c); 116—Wu et al. (2016b); 117—Wu et al. (2022a); 118—Wang et al. (2008b); 119—Zhou et al. (2016b); 120—Li et al. (2016a); 121—Tang (2015); 122—Zhang et al. (2017); 123—Zhu et al. (2015); 124—Zhang et al. (2016); 125—Yang et al. (2012b); 126—Den et al. (2016); 127—Den et al. (2015a); 128—Den et al. (2015b); 129—Den et al. (2015c); 130—Zhu et al. (2015); 131—Geng and Zhou (2012); 132—Hu et al. (2015); 133—Lin et al. (2015); 134—Wang et al. (2015a); 135—Yi et al. (2015b); 136—Ran et al. (2012); 137—Shi et al. (2014c); 138—Shi et al. (2014d); 139—Wang et al. (2015b); 140—Wu et al. (2015b); 141—Xu et al. (2013); 142—Zhang et al. (2013a); 143—Zhang et al. (2013c); 144—Zhang et al. (2013d); 145—Zhang et al. (2013e); 146—Zhang et al. (2014); 147—Zhang et al. (2014b); 148—Den et al. (2019); 149—Den et al. (2019b); 150—Li et al. (2019b); 151—Li et al. (2019c); 152—Wu et al. (2012a); 153—Xue et al. (2014); 154—Yang et al. (2012b); 155—Yang et al. (2012a); 156—Chen et al. (2015b); 157—Chen et al. (2015c); 158—Deng et al. (2017); 159—Geng et al. (2009); 160—Guo and Zhou (2013); 161—Li et al. (2012); 162—Zhu (2012); 163—Wang (2012); 164—Wu et al. (2009a); 165—Zhu et al. (2014); 166—Zhu et al. (2014b); 167—Xu et al. (2006); 168—Xu et al. (2006a); 169—Xue et al. (2010); 170—Xue et al. (2010a); 171—Xue and Xiao (2010); 172—Xue and Xiao (2010); 173—Xue and Xiao (2011); 174—Yang et al. (2014); 175—Wu et al. (2015); 176—Zhang and Gong (2018); 177—Zhang et al. (2013b); 178—Zhang et al. (2016).
cooling and exhumation histories of the northern Tibetan Plateau. The out-of-sequence deformation model predicts that Cenozoic sedimentation occurred directly north of the Tibetan Plateau shortly after the India-Asia collision. Evidence in support of these predictions has come from both basal sedimentology studies and bedrock thermochronology. For instance, the earlier uplift of the Qilian Shan in the north contradicts the long-established idea of a gradual northward progression within the Himalayan-Tibetan orogen. The northern Tibetan Plateau and Hexi Corridor to the northeast (Fig. 1A) experienced late Mesozoic tectonic activity, as evidenced by cooling ages in the Qilian Shan, which has complicated our understanding of Cenozoic tectonic evolution in that area (e.g., Li et al., 2019a, 2020a; An et al., 2020; Wu et al., 2021a). Early Cretaceous crustal uplift and shortening remain enigmatic but have been linked to the general absence of Cretaceous strata in the Qilian Shan and the widespread occurrence of early Cenozoic coarse-grained alluvial sediments in the Hexi Corridor (Fig. 1B; e.g., BGMR, 1969; Vincent and Allen, 1999; Chen et al., 2019a). The Cenozoic Qilian Shan–Nan Shan thrust belt developed shortly after the Cenozoic India-Asia collision (Fig. 1B; e.g., Yin et al., 2008a, 2008b; Clark et al., 2010; Clark, 2012; Duvall et al., 2011; Qi et al., 2016; Yu et al., 2017) and has remained active along the same northeastern Tibetan Plateau margin via out-of-sequence thrusting (e.g., George et al., 2001; Jolivet et al., 2001; Li et al., 2019a, 2020a; Wu et al., 2019a; Zuza et al., 2019). Subsequent Miocene deformation along the northeastern margin of the Tibetan Plateau may have affected the Hexi Corridor. The late Mesozoic spatiotemporal tectonic evolution of the Qilian Shan and Hexi Corridor remains poorly resolved, and characterization of this evolution can improve our understanding of the growth history and mechanisms of the northern Tibetan Plateau and its foreland.

Whether the present-day high topography formed during the Cenozoic or Mesozoic remains controversial, as researchers have suggested that the northern Tibetan Plateau experienced regional contraction and subsequent extension during the Mesozoic, despite significant Cenozoic overprinting and reactivation of older structures (Yin and Harrison, 2000; Chen et al., 2003, 2004, 2019a, 2019b; Horton et al., 2004; Pan et al., 2004; Yin et al., 2008a, 2008b; Yin, 2010; Gao et al., 2013; Zuza et al., 2018, 2019; He et al., 2019; Shao et al., 2019; Wu et al., 2021a; Wang et al., 2022). Late Mesozoic sedimentary successions are widespread in the Hexi Corridor, providing a key window to better understand the late Mesozoic deformation and sedimentation history of the northern Tibetan Plateau (Fig. 1B).

The Pingshanhu Basin of the northern Hexi Corridor contains Early Cretaceous siliciclastic strata that provide a record of tectonic events in the northern Tibetan Plateau (Figs. 1 and 2). In this contribution, we integrated geologic field mapping, detrital zircon U-Pb geochronology, sandstone petrographic compositional analyses, Kolmogorov-Smirnov statistical tests, and multidimensional scaling analyses to document the late Mesozoic sedimentary provenance of the Pingshanhu Basin and tectonic history of the Hexi Corridor and adjacent mountain blocks. Our findings allow us to present a model for the Early Cretaceous tectonic evolution of the northern Tibetan Plateau.

2. REGIONAL GEOLOGICAL SETTING

The high elevation of the Tibetan Plateau was primarily attained in the Cenozoic as a result of the India-Asia collision (Yin and Harrison, 2000; Tapponnier et al., 2001; Royden et al., 2008; Ding et al., 2022), but there is evidence for prior Mesozoic crustal thickening, particularly along the southern and eastern plateau margins (e.g., Worley and Wilson, 1996; Murphy et al., 1997). The average elevation of the northeastern Tibetan Plateau (~3.5 km) is slightly lower than the rest of the plateau and sharply decreases to <1.5 km in the Hexi Corridor to the northeast (Fig. 1B). The Qilian Shan–Nan Shan thrust belt, located between the Alxa block and North China craton to the north and the Qaidam Basin to the south, marks the northeastern margin of the Tibetan Plateau (Fig. 1B). The Qilian Shan has a complex pre-Cenozoic tectonic history involving multiple phases of Proterozoic basement deformation, early Paleozoic orogeny, Mesozoic extension, and Cenozoic intracontinental deformation (e.g., Vincent and Allen, 1999; Yin and Harrison, 2000; Gehrels et al., 2003a, 2003b; Yin et al., 2007; Zuza et al., 2018). The development of the Qilian Shan–Nan Shan thrust belt is largely considered to have been a Cenozoic structural event; however, recent studies reported the occurrence of Early Cretaceous thrust faults in the northern Qilian Shan (Chen et al., 2019a; Wang et al., 2022). In addition, Jurassic–Cretaceous extensional and transtensional basins developed in the northern Tibetan Plateau, which were interpreted to have resulted from the far-field effects of the collision between the Lhasa and Qiangtang blocks to the south (e.g., Horton et al., 2004; Pan et al., 2004). Normal faults associated with Jurassic–Cretaceous extension do not appear to have been reactivated during Cenozoic contraction, as evidenced by both seismic reflection images (Yin et al., 2008a) and field observations (Zuza et al., 2019). Protracted cooling and deformation since the Early Cretaceous are recorded throughout the northern Tibetan Plateau and its foreland region (e.g., George et al., 2001; Jolivet et al., 2001; Li et al., 2019a, 2020a; An et al., 2020; Wu et al., 2021a). In this section, we describe the geology and tectonic setting of the Hexi Corridor, Qilian Shan to the south, and Alxa block to the north (Fig. 1B).

The early Paleozoic Qilian orogen exposed in the Qilian Shan contains several subparallel ophiolitic mélangé belts of the North and South Qilian suture zones that separate the Qaidam continent to the south from the combined North Tarim and North China cratons to the north (Fig. 1B). In general, the primary tectonic domains of the early Paleozoic Qilian orogen include, from north to south (Fig. 1B): (1) the southern margin of the North China craton, including Paleoproterozoic metamorphic basement rocks and a Mesoproterozoic cover sequence, Neoproterozoic passive-margin strata, and postcollisional intrusions; (2) the North Qilian suture zone, consisting of discontinuously exposed, blueschist-facies ophiolitic rocks; (3) the Central Qilian terrane, consisting of Precambrian basement rocks intruded by early Neoproterozoic plutons; (4) the South Qilian suture zone, consisting of intermittently exposed ophiolitic rocks and widely exposed magmatic arc volcanic and plutonic rocks that overlie and/or intrude amphibolite-facies metamorphic rocks; and (5) the North Qaidam ultrahigh-pressure metamorphic rocks and Zongwulong ophiolitic
complex. Key geologic relationships and rock ages of the Qilian Shan divided into northern, central, and southern segments have been summarized in simplified tectonostratigraphic columns and regional geologic maps by Wu et al. (2022a). The Qilian Shan experienced three periods of magmatism (Fig. 1B; Cowgill et al., 2003; Gehrels et al., 2003b; Wu et al., 2017, 2022a; Zuza et al., 2018), as evidenced by: (1) ca. 960–820 Ma plutons intruding Proterozoic basement rocks (Yin et al., 2007), (2) ca. 520–400 Ma magmatic arc plutons and volcanic rocks; and (3) less prevalent ca. 270 Ma plutons related to the Permian Kunlun arc magmatism scattered throughout the southern Qilian Shan and northern Qaidam Basin.

The Hexi Corridor foreland basin is located along the northeastern margin of the Tibetan Plateau, surrounded by the Tarim Basin to the west, Qilian Shan to the south, and Alxa block to the north (Fig. 1B). The Hexi Corridor contains folded and faulted late Mesozoic–Cenozoic sedimentary rocks that
3. GEOLOGY OF THE PINGSHANHU BASIN

3.1. Stratigraphy

The ~30 × 30 km Pingshanhu Basin is bounded by the right-slip Longshoushan fault to the south, Heli Shan to the west, and Beida Shan to the north (Figs. 1 and 2). Basement rocks of the Pingshanhu Basin, largely exposed in the Longshoushan area, consist of mostly Paleoproterozoic (ca. 2.69–1.76 Ga) granitic intrusions and granitic gneisses and a few Neoproterozoic metasedimentary rocks (Fig. 2; Gong et al., 2016; Wu et al., 2021b, 2022b). Middle Carboniferous strata of the Pingshanhu Basin consist of metasandstone, slate, phyllite, and lenticular crystalline limestone (Fig. 3; BGGP, 1973). Middle to Upper Carboniferous strata of the basin consist of crystalline limestone, sericite schist, and quartzite. Jurassic strata of the basin consist of fine-grained sandstone, siltstone, and sandy shale (Fig. 3).

Within the Pingshanhu Basin, widespread Lower Cretaceous strata overlie Middle to Upper Carboniferous strata along an angular unconformity. The Lower Cretaceous stratigraphy can be divided into a lower section, represented by the lower Miaogou Group (labeled K1mg), which strikes northwest in the southern part of the basin, and an upper section, represented by the upper Miaogou Group (labeled K2mg), which constitutes most of the basin (Fig. 3). The lower Miaogou Group has an average thickness of ~900 m and consists of blocky conglomerate and sandstone with minor gravels (Fig. 3; e.g., BGGP, 1973; Shao et al., 2019). The conglomerate is poorly sorted and contains mostly 1–5 cm granitic clasts and angular, sandy gravels. These lithologies indicate an alluvial fan–delta sedimentary environment during the earliest Cretaceous Period. The upper Miaogou Group has an average thickness of ~1900 m and consists of claystone, fine-grained sandstone, and carbonate shale with trough cross-beds (Fig. 3; e.g., BGGP, 1973; Shao et al., 2019). The coarse- and fine-grained sandstones locally display well-developed, ~4-m-thick cross-beds (Fig. 4A). These strata were deposited in an alluvial environment that transitioned to a lacustrine environment (e.g., Vincent and Allen, 1999; Peng et al., 2011). Cretaceous strata are unconformably overlain by Miocene claystone and brick-red sandstone (BGGP, 1973). Quaternary alluvial fans, eolian deposits, and terrace sediments overlie older strata along unconformities (Fig. 3).

3.2. Structural Observations

3.2.1. Folds and Growth Strata

We observed northwest-trending folds in the Pingshanhu Basin mostly comprised of the Lower Cretaceous upper Miaogou Group strata (Fig. 2). These folds are open and symmetric, and they have wavelengths of ~0.5–1 km, axial trace lengths up to ~2 km, and plunges of ~5°–20° (Fig. 2).

Syntectonic growth strata in foreland basins offer a direct connection to tectonic deformation. Two sections of growth strata occur throughout the
Lower Cretaceous Miaogou Group, indicating two syndepositional tectonic events (Figs. 4B and 4C). Lower Cretaceous growth strata of the lower Miaogou Group occur along the margin of the Pingshanhu Basin and have dips of 12°–40° that shallow up section to the south (Fig. 4B). Pregrowth strata contain sediment grain sizes that transition from coarse at the basal section to fine at the uppermost section.

Lower Cretaceous growth strata of the upper Miaogou Group are localized to the southern limb of an anticline in the basin center and have dips of 17°–52° that shallow up section (Fig. 4C). Deposition of the growth strata was coeval with folding and thrusting, as the oldest growth strata suggest the initiation of anticlinal growth.

3.2.2. Faults

We used field observations and satellite imagery to map the extent of northwest-striking thrust and normal faults throughout the Pingshanhu Basin (Figs. 4D and 4F). For convenience of description, the faults are labeled f1 to f4 from south to north (Fig. 2A).

Fault 1 (f1 in Fig. 2) is a southwest-dipping, curvilinear thrust fault exposed along the southwestern margin of the Pingshanhu Basin, interpreted to be the along-strike continuation of the Longshoushan fault (Fig. 2A). Along its eastern segment, fault 1 juxtaposes Carboniferous strata over Lower Cretaceous growth strata of the upper Miaogou Group (K mg; Fig. 2). Fault 1 can be traced for ~15 km to the southeast to the southwestern margin of Longshoushan, where the fault is buried by Quaternary strata (Fig. 2A). Fault 2 (f2 in Fig. 2) is a northeast-dipping thrust fault (strike 115° and dip 42°N) exposed in the center of the Pingshanhu Basin (Fig. 2A). We identified three sets of marker beds characterized by gray-white sandstone and estimated their offsets by fault 2 (Fig. 4D). Along its northern segment, fault 2 juxtaposes hanging-wall strata that form an ~50-m-wide syncline over footwall growth strata (Fig. 4D). Fault 3 (f3 in Fig. 2) is a northeast-dipping normal fault that cuts the upper Miaogou Group (Fig. 4E). Hanging-wall strata dip 53°N, and footwall strata dip 43°N (Fig. 4E). Fault 3 has offset an ~0.5-m-thick, gray-white sandstone marker bed by ~1.5 m. Fault 4 (f4 in Fig. 2) is a northeast-dipping normal fault that cuts the upper Miaogou Group by ~20 m (Fig. 4F). Fault 4 is buried by Quaternary strata (Fig. 4F).

Several northwest-striking, normal right-slip faults cut the Lower Cretaceous upper Miaogou Group (Figs. 4G and 5). These normal right-slip faults may continue to the southeast for ~10 km and link with fault 1 (Fig. 5). Mapped separations and striations on fault surfaces indicate normal right-slip kinematics (Fig. 4H). Marker beds are offset by ~2–20 m along these faults (Figs. 4I and 4J). We also observed a domino-type extensional normal fault system that cuts the upper Miaogou Group (Fig. 4K). Elsewhere, we observed low-angle thrust faults cut by younger, high-angle normal faults within the upper Miaogou Group (Fig. 6). The photo locations and directions are also shown in Google Earth imagery in the figures (Fig. 5A).
Figure 4. Original and interpreted field photographs of sedimentary and structural features of the Pingshanhu Basin discussed in the text. Photograph locations are shown in Figures 2 and 5. (A) Trough cross-bedding in the upper Miaogou Group (K1 mgb). (B) Growth strata in the lower Miaogou Group (K1 mga). (C) Growth strata in the upper Miaogou Group. (D) A northeast-dipping thrust fault (labeled “f2”; strike 115° and dip 42°N). MB—marker bed. (Continued on following two pages.)
Figure 4 (continued). (E) Three north-dipping normal faults, including fault “f3,” in the Miaogou Group. (F) Two northeast-dipping normal faults, including fault “f4,” in the upper Miaogou Group (K1mgb) are overlaid by Quaternary alluvial-fan deposits. (G) Normal right-slip faults in the upper Miaogou Group (K1mgb). The inset stereonet plot shows the orientations of bedding and fault planes. (H) Striations on the fault surfaces in part G. (I) Kinematic indications of normal right-slip fault. (Continued on following page.)
Figure 4 (continued). (J) East-dipping normal faults in Pingshanhu Basin. (K) East-dipping, domino-type extensional fault structure. (L) Pebbles and coarse-grained sands in the lower section of Miaogou Group.
3.3. Balanced Cross-Section Restoration

Based on the results of geologic mapping, we constructed an east-west-oriented balanced cross section across the southwestern Pingshanhu Basin to calculate the local extension of the upper Miaogou Group (B–B’ in Figs. 5A and 5B). Restoration of the cross section was performed by measuring the line lengths of observed Cretaceous marker beds and retrodeforming slip along the faults to restore the marker beds to a continuous and subhorizontal configuration (Fig. 5C). The restoration yielded a magnitude of extension of 7.17 km across an original section length of 5.09 km (29% extensional strain; Figs. 5B and 5C). This strain estimate is a minimum given that our cross section only restored plane-strain normal-fault slip, thus ignoring any potential out-of-plane motion due to strike-slip or oblique-slip faulting.

3.4. Paleocurrent Analysis

Paleocurrent directions indicate sediment dispersal patterns and can be used to resolve sediment provenance (DeCelles et al., 1983; Amajor, 1987). We collected paleocurrent measurements in the upper and lower Miaogou Group following the method of DeCelles et al. (1983) (Figs. 4A and 4L). Sixty paleocurrent measurements were collected in the lower and upper Miaogou
Group, which were measured on one stratigraphic section. The first group of paleocurrent data was collected in the lower Miaogou Group with 36 measurements (Fig. 4L). The second group of paleocurrent data was collected in the upper Miaogou Group with 24 measurements (Fig. 4A). Horizontal bedding rotations were corrected, and the results are shown in rose diagrams (Fig. 3). Strata-corrected paleocurrent flow directions are directed southwestward for the lower Miaogou Group, but they are predominantly directed northward, with some minor southward measurements, for the upper Miaogou Group (Fig. 3).

4. SAMPLING STRATEGY AND ANALYTICAL METHODS

We collected two coarse-grained sandstone samples (HX20220815–4 and HX20220822–1) from the lower Miaogou Group and six fine-grained sandstone and silty claystone samples (HX20220815–2, HX20220815–3, HX20220816–1, HX20220816–2, HX20220816–3, HX20220816–4, HX20220816–5, HX20220816–6, and HX20220816–7) from the upper Miaogou Group to examine sediment compositions for provenance and tectonic setting determinations. Sample locations are listed in Table 1 and shown in Figure 2A.

4.1. Sandstone Composition

We performed quartz–feldspar–lithic fragment (Qt-F-L) composition analyses for seven sandstone samples and one silty claystone sample (HX20220815–2; HX20220815–3; HX20220815–4; HX20220816–1; HX20220816–2; HX20220822–1; HX20220822–2; HX20220822–3) using the Gazzi-Dickinson method to determine whether sediment of the Early Cretaceous Miaogou Group was derived from stable continental blocks, recycled orogens, and/or magmatic arcs (Dickinson, 1970, 1985). To eliminate the effects of grain size, grains larger than 0.625 mm were counted as monocrystalline (Fig. 7; Dickinson, 1970, 1985; Ingersoll et al.,...
TABLE 1. SUMMARY OF SAMPLE LOCATIONS AND DETRITAL ZIRCON U-Pb RESULTS FOR THE PINGSHANHU BASIN

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Description</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Elevation (m)</th>
<th>Sample site</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>HX2020815-2</td>
<td>Sandstone</td>
<td>39°10'56.50″</td>
<td>100°38’51.50″</td>
<td>1758</td>
<td>Upper section of Cretaceous Miaogou Group</td>
<td>81 of 100</td>
</tr>
<tr>
<td>HX2020815-3</td>
<td>Sandstone</td>
<td>39°11’20.10″</td>
<td>100°40’46.10″</td>
<td>1853</td>
<td>Upper section of Cretaceous Miaogou Group</td>
<td>74 of 100</td>
</tr>
<tr>
<td>HX2020816-1</td>
<td>Sandstone</td>
<td>39°08’23.90″</td>
<td>100°32’17.70″</td>
<td>1619</td>
<td>Upper section of Cretaceous Miaogou Group</td>
<td>75 of 100</td>
</tr>
<tr>
<td>HX2020816-2</td>
<td>Silty claystone</td>
<td>39°08’58.70″</td>
<td>100°30’25.90″</td>
<td>1663</td>
<td>Upper section of Cretaceous Miaogou Group</td>
<td>66 of 100</td>
</tr>
<tr>
<td>HX2020822-2</td>
<td>Sandstone</td>
<td>39°07’27.82″</td>
<td>100°32’43.54″</td>
<td>1580</td>
<td>Upper section of Cretaceous Miaogou Group</td>
<td>80 of 100</td>
</tr>
<tr>
<td>HX2020822-3</td>
<td>Sandstone</td>
<td>39°10’59.74″</td>
<td>100°35’32.89″</td>
<td>1719</td>
<td>Upper section of Cretaceous Miaogou Group</td>
<td>71 of 100</td>
</tr>
<tr>
<td>HX2020822-1</td>
<td>Sandstone</td>
<td>39°06’24.41″</td>
<td>100°32’36.85″</td>
<td>1584</td>
<td>Lower section of Cretaceous Miaogou Group</td>
<td>84 of 100</td>
</tr>
<tr>
<td>HX2020815-4</td>
<td>Sandstone</td>
<td>39°06’14.60″</td>
<td>100°32’28.80″</td>
<td>1572</td>
<td>Lower section of Cretaceous Miaogou Group</td>
<td>90 of 100</td>
</tr>
</tbody>
</table>

1984). Monocrystalline quartz (Qm), polycrystalline quartz (Qp), plagioclase (P), K-feldspar (K), volcanic/metavolcanic lithic fragments (Lv), and sedimentary/metasedimentary lithic fragments (Ls) were differentiated optically in petrographic thin sections. Based on the petrologic compositions, total quartzose grains (Qt = Qm + Qp), feldspar grains (F = P + K), total unstable lithic fragments (L = Lv + Ls), and total lithic fragments (Lt = L + Qp) were calculated. Detailed sample locations and results are listed in Tables 1 and 2, respectively.

4.2. Detrital Zircon U-Pb Geochronology

We performed detrital zircon U-Pb geochronology on eight sedimentary rock samples to determine the magmatic record of the northern Tibetan Plateau and provenance of the Lower Cretaceous Miaogou Group strata. Whole-rock samples were initially processed via standard crushing and sieving. Detrital zircon grains (Table S1 in the Supplemental Material) were separated from sieved material using typical heavy liquids and magnetic separation techniques. Zircon grains were randomly picked under a microscope and mounted in epoxy resin. Cathodoluminescence images of zircon grains were collected using a scanning electron microscope to identify their internal texture and determine laser-ablation (LA) spot targets. We analyzed one spot for each zircon grain. We targeted the clear growth zoning to obtain the youngest crystallization age. Detrital zircon U-Pb age and trace-element compositions were measured via LA–inductively coupled plasma–mass spectrometry (LA-ICP-MS) at the Key Laboratory of Continental Collision and Plateau Uplift, Chinese Academy of Sciences, Beijing, China. Reference standard zircon grains Plesovice and 91500 zircon, and glass reference materials NIST SRM 610 and NIST SRM 612 (Wiedenbeck et al., 1995; Pearce et al., 1997; Slăma et al., 2008) were each measured between 10 unknown sample analyses. An ATL 193 nm ArF excimer laser-ablation system and Agilent 7500a ICP-MS instrument were used to measure between 10 unknown sample analyses. An ATL 193 nm ArF excimer laser-ablation system and Agilent 7500a ICP-MS instrument were used.

4.3. Kolmogorov-Smirnov Statistical Tests and Multidimensional Scaling

We calculated Kolmogorov-Smirnov nonparametric statistics to quantify the age similarity of two detrital zircon samples. The maximum difference in ages between samples is defined as the D value, and α = 0.01 or 0.05. Typically, the null hypothesis (H_0) that the two samples were drawn from the same population can be rejected when $D_{observed}$ greater than $D_{critical}$ ($\alpha = 0.05$). For $\alpha = 0.05$, the $D_{critical}$ value is calculated as

$$D_{critical} = 1.36 \sqrt{\frac{N_1 + N_2}{N_1 N_2}}$$

where N_1 and N_2 are the numbers of zircon grain analyses for the two samples, respectively (Saylor and Sundell, 2016; Wu et al., 2019a). In the Kolmogorov-Smirnov test, the P value is the threshold of the significance level at which to reject the null hypothesis (H_0). Thus, a P value >0.05 corresponds to a >95% confidence level that the two samples are derived from the same parent distribution. Because the random sampling of a large population distorts the distributions introduced, relatively large sample sizes are required to reject the null hypothesis (H_0) (Saylor and Sundell, 2016).

We performed multidimensional scaling (MDS; Vermeesch, 2013) to visualize the dissimilarity between the ages of detrital samples (e.g., Wu et al., 2019a; Liu et al., 2023) and eliminate inherent bias stemming from sediment
Figure 7. (A–D, F–H) Photomicrographs of the sandstone samples in this study. (E) Photomicrograph of the claystone sample in this study. (I–L) Triangular modal compositional diagrams of sandstone samples analyzed in this study (Dickinson, 1985). The salmon-colored arrow indicates the transition of sediment provenance from the lower Miaogou Group (K1mg1) to the upper Miaogou Group (K1mg2). Qm—monocrystalline quartz; Qp—polycrystalline quartz; Qt—total quartzose grains; Q—quartz; P—plagioclase; K—K-feldspar; F—feldspar grains; L—total unstable lithic fragments; Lt—total lithic fragments; Lv—volcanic/metavolcanic lithic fragments; Ls—sedimentary/metasedimentary lithic fragments.
recycling and/or variations in zircon fertility in age comparisons (Nordsvan et al., 2020). In multidimensional Cartesian space, the greater distance between sample points corresponds to more dissimilarity between the samples. MDS results can be used to interpret stratigraphic correlations, constrain maximum depositional ages, and understand broader tectonic histories (e.g., Cawood et al., 2012; Gehrels, 2014). MDS analyses were conducted on a compilation of the zircon ages of our samples and potential source areas to interpret the provenance of the Early Cretaceous Miaogou Group of the Pingshanhu Basin. We compared the Cretaceous strata with bulk compilations of Qilian Shan and Alxa block to investigate their depositional relationships (Yang et al., 2019). Based on overlapping and older ages, we also compared our sampled ages with the published ages of 8 samples from the Qilian Shan and Alxa block to investigate their depositional relationships (Yang et al., 2002; Corfu et al., 2003).

The detrital materials of eight sandstone and silty claystone samples from the Lower Cretaceous Miaogou Group of the Pingshanhu Basin are moderately sorted and rounded grains and composed of monocrystalline (~42%–93%) and polycrystalline quartz (~3%–18%), feldspar (~5%–52%), and unstable lithic fragments (~1%–44%) defined by volcanic (~0.7%–1.2%) and sedimentary (~1%–43%) fragments (Fig. 7). Petrologic compositional fields and detrital mode triangular diagrams suggest different sources for the samples (Dickinson and Suczek, 1979; Dickinson et al., 1983). In the Qt-F-L and Qm-F-Lt diagrams, the sandstone and silty claystone compositions generally plot within the recycled orogen field and continental block field, respectively (Figs. 7I and 7J).

5. RESULTS

5.1. Sandstone Petrography

The detrital materials of eight sandstone and silty claystone samples from the Lower Cretaceous Miaogou Group of the Pingshanhu Basin are moderately sorted and rounded grains and composed of monocrystalline (~42%–93%) and polycrystalline quartz (~3%–18%), feldspar (~5%–52%), and unstable lithic fragments (~1%–44%) defined by volcanic (~0.7%–1.2%) and sedimentary (~1%–43%) fragments (Fig. 7). Petrologic compositional fields and detrital mode triangular diagrams suggest different sources for the samples (Dickinson and Suczek, 1979; Dickinson et al., 1983). In the Qt-F-L and Qm-F-Lt diagrams, the sandstone and silty claystone compositions generally plot within the recycled orogen field and continental block field, respectively (Figs. 7I and 7J). Furthermore, the sandstone and silty claystone compositions indicate a provenance transition from the craton interior to basement uplift, indicating that the maturity and/or stability of the source decreased. In the Qt-Lv-Ls diagram, collisional sutures or fold-and-thrust belts are shown as potential sources of the sandstone and silty claystone material (Fig. 7K). In the Qm-P-K diagram, the sandstone and silty claystone compositions generally plot within the Qm region, but the data show a trend of decreasing provenance maturity and/or stability with the Miaogou Group strata becoming younger (Fig. 7L).

5.2. Detrital Zircon U-Pb Geochronology

Zircon grains from the samples of the Miaogou Group were mostly subhedral and colorless except for a few elongated, euhedral grains (Fig. 8). Zircon grains were ~50–200 μm long and had aspect ratios of 1.1–3.1. Cathodoluminescence images of zircon grains showed clear growth zoning (Fig. 8). The chondrite-normalized rare earth element patterns of the analyzed zircon grains (Figs. 9A and 9B; Table 1) show heavy rare earth element enrichment with a positive Ce anomaly and negative Eu anomaly. These patterns suggest that the grains were mostly sourced from igneous rocks, with few grains sourced from metamorphic rocks (Belousova et al., 2002; Corfu et al., 2003; Hoskin, 2005). The Th/U values of the zircon grains were mostly >0.1, except for 11 zircon grains with Th/U values <0.1 (Fig. 9C; Table S1). These values suggest that most of the zircon grains came from a magmatic origin (Belousova et al., 2002; Corfu et al., 2003).

5.2.1. Lower Miaogou Group

Sandstone sample HX20220815–4 was collected from the lower Miaogou Group in the southern part of the Pingshanhu Basin (Figs. 2 and 5A).

TABLE 2. MODAL COMPOSITIONS OF THE SANDSTONE SAMPLES IN THIS STUDY

<table>
<thead>
<tr>
<th>Component</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qm</td>
<td>0</td>
</tr>
<tr>
<td>Qp</td>
<td>0</td>
</tr>
<tr>
<td>Lm</td>
<td>0</td>
</tr>
<tr>
<td>Pt</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
</tr>
<tr>
<td>Lt</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: Total = Qm + Qp + Lv + Ls + Lm + Pt + F. Abbreviations: monocrystalline quartz (Qm), polycrystalline quartz (Qp), plagioclase (F), K-feldspar (K), volcanic/metavolcanic lithic fragments (Lv), sedimentary/metasedimentary lithic fragments (Ls), and metamorphic lithic fragments (Lm). Total quartzose grains (Qt) = Qm + Qp, feldspar grains (F) = Pt + F, total unstable lithic fragments (L) = Lv + Ls, and total lithic fragments (Lt) = L + Qp.
Figure 8. (A–H) U-Pb concordia diagrams showing age results of single-shot zircon grain analyses and representative cathodoluminescence images and age results of zircon grains for each sample. Error ellipses are 2σ. Circles with number represent ~30 μm diameter analyzed spots for U-Pb dating as a scale.
One-hundred zircon grain analyses yielded U-Pb ages ranging ca. 2830–430 Ma (Fig. 10A). The dominant age population of this sample (Figs. 3 and 10A) is ca. 480–400 Ma with a ca. 461 Ma peak (Fig. 10A). A second age population occurs ca. 1000–800 Ma with a ca. 908 Ma peak (Fig. 10A). Minor age populations occur ca. 2500–2400 Ma (Fig. 10A).

Sandstone sample HX20220822–1 was collected from the lower Miaogou Group in the southern part of the Pingshanhu Basin. Eighty-four zircon grains yielded U-Pb ages ranging ca. 2377–237 Ma (Fig. 10B). The dominant age population of this sample (Figs. 3 and 10B) occurs ca. 480–400 Ma with a ca. 412 Ma peak and ca. 1900–1800 Ma with a ca. 1849 Ma peak.

Sandstone sample HX20220816–1 was collected from the upper Miaogou Group in the southern part of the Pingshanhu Basin. One-hundred zircon grains yielded U-Pb ages ranging ca. 2461–234 Ma (Fig. 10B). The dominant age population of this sample (Figs. 3 and 10B) occurs ca. 480–400 Ma with a ca. 418 Ma peak (Fig. 10B). A second age population occurs ca. 1000–800 Ma with a ca. 933 Ma peak (Fig. 10B).

Silty claystone sample HX20220816–2 was collected from the upper Miaogou Group in the southern part of the Pingshanhu Basin (Figs. 2 and 5A). One-hundred zircon grains yielded U-Pb ages ranging ca. 2377–237 Ma (Fig. 10B). The dominant age population of this sample (Figs. 3 and 10B) occurs ca. 480–400 Ma with a ca. 418 Ma peak (Fig. 10B). A second age population occurs ca. 1000–800 Ma with a ca. 285 Ma peak (Fig. 10B).

Sandstone sample HX20220822–2 was collected from the upper Miaogou Group in the southern part of the Pingshanhu Basin (Fig. 2). One-hundred zircon grains yielded U-Pb ages ranging ca. 3171–310 Ma (Fig. 10B). The dominant age population of this sample (Figs. 3 and 10B) occurs ca. 480–400 Ma with a ca. 456 Ma peak (Fig. 10B). A second age population occurs ca. 1000–800 Ma with a ca. 929 Ma peak (Fig. 10B).

5.2.2. Upper Miaogou Group

Sandstone sample HX20220815–2 was collected from the upper Miaogou Group in the center of the Pingshanhu Basin. One-hundred zircon grains yielded U-Pb ages ranging ca. 2499–149 Ma (Fig. 10B). The dominant age population of this sample (Figs. 3 and 10B) occurs ca. 300–250 Ma with a ca. 272 Ma peak (Fig. 10B). Two other age populations occur ca. 480–400 Ma with a ca. 438 Ma peak and ca. 1900–1800 Ma with a ca. 1852 Ma peak (Fig. 10B). Few ages are clustered ca. 2500–2400 Ma (Fig. 10B).
Figure 10. (A–D) Normalized relative probability plots of detrital zircon U-Pb ages from Cretaceous strata samples. Data are from this study and Shao et al. (2019). (E–F) Magmatic ages from the Qilian Shan (E) and Alxa block (F) (Table S2; see text footnote 1). (G) Cumulative distribution curves of detrital zircon ages from the Lower Cretaceous strata of the Pingshanhu Basin. Colored areas represent distinct tectonic settings of deposition according to Cawood et al. (2012). CA-DA—crystallization age minus deposition age.
ca. 261 Ma peak (Fig. 10B). A second age population occurs ca. 480–400 Ma with a ca. 402 Ma peak (Fig. 10B).

Sandstone sample CQL2017-L1–42 was collected from the upper Miaogou Group (Fig. 3; Shao et al., 2019). Eighty zircon grains yielded U-Pb ages ranging ca. 3116–424 Ma (Fig. 10B). The age population of this sample (Fig. 10B) is ca. 480–400 Ma with a ca. 424 Ma peak. Second age populations occur ca. 1000–800 Ma with a ca. 97 Ma peak and ca. 2600–2400 Ma with a ca. 2494 Ma peak.

Sandstone sample CQL2017-L1–88 was collected from the upper Miaogou Group (Fig. 3; Shao et al., 2019). Forty-nine zircon grains yielded U-Pb ages ranging ca. 2976–129 Ma (Fig. 10B). The age population of this sample (Fig. 10B) is ca. 300–200 Ma with a ca. 272 Ma peak, with a second population ca. 500–400 Ma with a ca. 452 Ma peak.

Sandstone sample CQL2016-L1–154 was collected from the upper Miaogou Group (Fig. 3; Shao et al., 2019). Seventy-five zircon grains yielded U-Pb ages ranging ca. 2776–209 Ma (Fig. 10B). The age population of this sample (Fig. 10B) is ca. 300–200 Ma with a ca. 297 Ma peak, with second populations ca. 500–400 Ma with a ca. 406 Ma peak and ca. 2000–1800 Ma with a ca. 1817 Ma peak.

Sandstone sample CQL2017-L1–183 was collected from the upper Miaogou Group (Fig. 3; Shao et al., 2019). Seventy-five zircon grains yielded U-Pb ages ranging ca. 2617–236 Ma (Fig. 10B). The age population of this sample (Fig. 10B) is ca. 300–200 Ma with a ca. 257 Ma peak, with a second population ca. 500–400 Ma with a ca. 426 Ma peak.

5.3. Statistical Results

5.3.1. Lower Miaogou Group

We used the Kolmogorov-Smirnov statistic and MDS tests to compare the ages of Miaogou Group samples with those of Qilian Shan and Alxa block plutons (Fig. 11; Table 3). Large P values (i.e., 0.902 and 0.194) correspond to sample HX20220815–4 and Silurian and Ordovician strata of the Alxa block (Table 3). The D values for the ages of sample HX20220815–4 compared to those of Alxa block strata are 0.084 and 0.164, respectively, which are less than D critical (α = 0.05). Sample HX20220822–1 and Alxa block samples deposited in the Neoproterozoic, Cambrian, and Ordovician yielded P values of 0.282, 0.066, and 0.481, respectively (Table 3). The D values for the ages of sample HX20220822–1 compared to those of Cambrian, Ordovician, and Neoproterozoic strata of the Alxa block are 0.143, 0.196, and 0.130, respectively, which are less than D critical (α = 0.05).

5.3.2. Upper Miaogou Group

The P values of 0.136 and 0.429 were calculated for sample HX20220822–2 and Silurian strata of the Alxa block and Devonian strata in the Qilian Shan (Table 3). The D values for the ages of sample HX20220822–2 compared to those of Silurian strata of the Alxa block and Devonian strata of the Qilian Shan are 0.176 and 0.133, respectively, which are less than D critical (α = 0.05). Sample HX20220816–1 and Devonian strata of the Qilian Shan yielded a P value of 0.055 (Table 3). The D value for the ages of sample HX20220816–1 compared to those of Devonian strata of the Qilian Shan is 0.226, which is less than D critical (α = 0.05). Sample HX20220816–2 and Permian strata of the Alxa block yielded a P value of 0.267 (Table 3). The D value for the ages of sample HX20220816–2 compared to those of Permian strata of the Alxa block is 0.172, which is less than D critical (α = 0.05). Sample HX20220815–3 and Cretaceous and Triassic strata of the Qilian Shan yielded P values of 0.220 and 0.390 (Table 3). The D values for sample HX20220815–2 compared to those of Cretaceous and Triassic strata of the Qilian Shan are 0.163, and 0.134, which are less than D critical (α = 0.05). Sample HX20220815–3 and the Cretaceous and Triassic strata of the Qilian Shan yielded P values of 0.260 and 0.313 (Table 3), which are consistent with sample HX20220815–2. The D values for the ages of sample HX20220815–3 compared to those of Cretaceous and Triassic strata of the Qilian Shan are 0.160 and 0.147, which are less than D critical (α = 0.05). Given the P and D values being larger than the D values, the null hypothesis (H0) can be accepted.

The Shepard plot shows the dissimilarities between the upper Miaogou Group and the plutons in the Alxa block and Qilian Shan pluton, with a low-stress value of 0.31316 (left panel in Fig. 11). The two-dimensional MDS plot shows a systematic similarity in sediment provenance between the lower Miaogou Group and the Alxa block plutons (i.e., Carboniferous, Ordovician, Cambrian, and Proterozoic plutons) and the Qilian pluton (i.e., Ordovician, Cambrian, and Proterozoic plutons). The upper Miaogou Group has an inherent connection with the Alxa block plutons (i.e., Triassic, Permian, Carboniferous, Devonian, and Silurian plutons) and Qilian plutons (i.e., Permian, Devonian, Silurian, and Cambrian plutons; right panel in Fig. 11).

6. Discussion

6.1. Sediment Sources of the Early Cretaceous Pingshanhu Basin

In the following sections, we discuss the implications of our field observations, compilation of detrital zircon U-Pb ages (Fig. 10), results of petrologic compositional analyses (Fig. 7), and results of Kolmogorov-Smirnov (Table 3) and MDS analyses (Fig. 11) on tectonic setting and depositional systems of the Hexi Corridor and the northern Tibetan Plateau during the Cretaceous.

6.1.1. Lower Cretaceous Lower Miaogou Group

Three samples collected from the lower Miaogou Group of the Pingshanhu Basin contained five prominent age populations with peaks at ca. 278 Ma, ca. 471 Ma, ca. 951 Ma, ca. 1847 Ma, and ca. 2450 Ma (Fig. 10C). Plutons with Triassic ages occur along the north margin of Qaidam Basin (Figs. 1B and 10E).
Figure 11. Shepard and two-dimensional multidimensional scaling (2D MDS) plots for detrital zircon samples and adjacent magmatic samples from the Pingshanhu Basin. Dissimilarity is based on the complement of the cross-correlation. The black solid lines and gray dashed lines in the MDS plot represent the point from each sample to its closest neighbor and second closest neighbor, respectively.

TABLE 3. TWO-SAMPLE KOLMOGOROV-SMIRNOV TEST RESULTS FOR THE SAMPLES COLLECTED FROM THE PINGSHANHU BASIN AND ADJACENT REGION

<table>
<thead>
<tr>
<th>P values/</th>
<th>Distances</th>
<th>Disparities</th>
</tr>
</thead>
<tbody>
<tr>
<td>D values</td>
<td>HX0815-2</td>
<td>HX0815-3</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>HX0815-2</td>
<td>–</td>
<td>0.350</td>
</tr>
<tr>
<td>HX0815-3</td>
<td>0.150</td>
<td>–</td>
</tr>
<tr>
<td>HX0815-4</td>
<td>0.366</td>
<td>0.453</td>
</tr>
<tr>
<td>HX0816-1</td>
<td>0.441</td>
<td>0.373</td>
</tr>
<tr>
<td>HX0816-2</td>
<td>0.477</td>
<td>0.406</td>
</tr>
<tr>
<td>HX0822-1</td>
<td>0.388</td>
<td>0.471</td>
</tr>
<tr>
<td>HX0822-2</td>
<td>0.345</td>
<td>0.352</td>
</tr>
<tr>
<td>HX0822-3</td>
<td>0.348</td>
<td>0.289</td>
</tr>
<tr>
<td>Qilian-Cretaceous</td>
<td>0.163</td>
<td>0.160</td>
</tr>
<tr>
<td>Qilian-Triassic</td>
<td>0.134</td>
<td>0.147</td>
</tr>
<tr>
<td>Qilian-Devonian</td>
<td>0.462</td>
<td>0.365</td>
</tr>
<tr>
<td>Alxa-Permian</td>
<td>0.520</td>
<td>0.463</td>
</tr>
<tr>
<td>Alxa-Silurian</td>
<td>0.369</td>
<td>0.449</td>
</tr>
<tr>
<td>Alxa-Ordovician</td>
<td>0.377</td>
<td>0.459</td>
</tr>
<tr>
<td>Alxa-Cambrian</td>
<td>0.444</td>
<td>0.514</td>
</tr>
<tr>
<td>Alxa-Neoproterozoic</td>
<td>0.444</td>
<td>0.513</td>
</tr>
</tbody>
</table>

Notes: Bold indicates P and Dmax values are larger than D values, the null hypothesis (H0) can be accepted. Triangular area on the upper-right of the table represents the P values. Triangular area on the lower-left of the table represents the D values.
Therefore, the Triassic zircon grains in the Lower Cretaceous lower Miaogou Group were likely sourced from the Alxa block to the north via southward flow (Fig. 10F). These age populations are consistent with reported magmatic ages for the Alxa block to the north (Fig. 10F; e.g., Wei et al., 2013; Duan et al., 2015; Tang, 2015; Liu et al., 2016b; Liu et al., 2017a; Zhou et al., 2016; Zhang et al., 2017b, 2018d; Wang et al., 2020b; Table S2). In addition, paleocurrent results in the lower Miaogou Group indicate southward flow (Fig. 10C). These constraints suggest that the provenance of sediment in the Pingshanhu Basin during the earliest Cretaceous was the Alxa block to the north. This interpretation is consistent with the sedimentary records and detrital age compositions of the Early Cretaceous strata of the Yumu Shan in the southern Hexi Corridor (Wang et al., 2022).

6.1.2. Lower Cretaceous Upper Miaogou Group

The detrital zircon age distributions of the sandstone samples collected from the basal portion of the upper Miaogou Group (i.e., CQL2017-L1–42, HX20220822–2; Figs. 10A and 10B) are comparable to those of sandstone samples collected from the lower Miaogou Group. This similarity implies that the Miaogou Group sediment continued to be sourced from the Alxa block during the late Early Cretaceous. The detrital zircon ages of other samples from the upper Miaogou Group (Figs. 10B and 10D) are consistent with the ages from both the northern Qilian Shan and Alxa block (Figs. 10E and 10F). Particularly, the detrital zircon age peaks at ca. 928 Ma, ca. 1839 Ma, and ca. 2466 Ma in samples from the upper Miaogou Group allow us to suggest that Cretaceous sediments of the Pingshanhu Basin were partially sourced from late Paleozoic magmatic rocks related to subduction of Paleo-Asian oceanic lithosphere. Detrital zircon ages for the upper Miaogou Group show a slight increase in grains younger than 300 Ma compared to samples from the lower Miaogou Group. This transition in detrital ages may reflect an increased contribution of sediment from the Qilian Shan in response to regional extension in the northern Tibetan Plateau at that time.

In contrast to the Lower Cretaceous lower Miaogou Group, paleocurrent results in the upper Miaogou Group suggest predominantly northward flow, with minor southward flow (Figs. 3 and 12). These findings suggest that the sediment provenance of the Pingshanhu Basin changed as the basin margins evolved and igneous rocks in the adjacent Beida Shan and Longshoushan were exhumed to the surface. Some metamorphic zircons found in the Miaogou Group sediments may have been derived from Precambrian metamorphic rocks in the Alxa block. This indicates that the Alxa block might have been a continuous source of the sediments. Taken together, we interpret that the Miaogou Group sediments of the Pingshanhu Basin were sourced from the north during the earliest Cretaceous and from both the north and south during the late Early Cretaceous. This interpretation is consistent with the results of our Kolmogorov-Smirnov statistical test (Table 3) and MDS analyses (Fig. 11).

6.2. Tectonic Evolution of the Hexi Corridor and Northern Tibetan Plateau

A qualitative evaluation of the tectonic setting of the Pingshanhu Basin can be conducted based on the detrital zircon ages minus the host depositional ages plotted in synthetic relative probability diagrams (Cawood et al., 2012). A significant proportion of the detrital zircon ages is within 150 m.y. of the host depositional ages, which correspond to a continental collision setting (Fig. 10G; Cawood et al., 2012). Three samples from the lower Miaogou Group and two samples from the upper Miaogou Group suggest an extensional setting (Fig. 10G). In contrast, eight samples from the upper Miaogou Group correspond to a continental collision setting (Fig. 10G). Cumulative probability curves demonstrate the transition in the sedimentary environment from an extensional basin to a continental collision setting during the Early Cretaceous (Fig. 10G). However, extension is not reported for the northern Tibetan Plateau and Alxa block during the Late Jurassic and Early Cretaceous. Rather, the northern Tibetan Plateau and Alxa block experienced contraction and uplift during this time, related to the closure of the Mongol-Okhotsk Ocean and the Lhasa-Qiangtang block collision (Zhang et al., 2017a, 2021; Song et al., 2018; Chen et al., 2019a, 2019b; Wang et al., 2022; Han et al., 2023). Furthermore, the upper Miaogou Group contains an appreciable percentage of Permian-aged zircon grains. This is consistent with the tectonic setting and sedimentary environment in the Yumu Shan of the southern Hexi Corridor (Wang et al., 2022), implying that the same tectonic-sedimentary environment was present throughout the Hexi Corridor during the Early Cretaceous.

Based on new and previously published constraints, we propose the following model for the Mesozoic tectonic evolution of the Hexi Corridor (Fig. 12): During the Late Jurassic, the southwestern Alxa block was uplifted and exhumed in response to the Mongol-Okhotsk orogeny (Song et al., 2018). During earliest Cretaceous contraction, the northern Hexi Corridor received sediment from the Alxa block to the north, as evidenced by growth strata and paleocurrent indicators in the Miaogou Group (Figs. 3, 4B, and 12). Mesozoic unroofing of the southwestern Alxa block supplied sediment with ample Paleozoic zircon grains to the Hexi Corridor (Fig. 12). By ca. 130 Ma, the continued Lhasa-Qiangtang block collision resulted in contraction and exhumation of the Longshoushan (Zhang et al., 2017a). During this time, the Longshoushan contributed detrital materials to the Hexi Corridor. Early Cretaceous regional contraction was succeeded by ~2 km of extension (~29% strain) and right-slip faulting in the Hexi Corridor (Figs. 5C and 12; Wang et al., 2022). This extensional event is also evidenced in the Jiuquan and Yin’e basins (Chen et al., 2014a; Zhang et al., 2019a, 2019b; Hou et al., 2020). During this time, both the northern Qilian Shan to the north and Alxa block to the north supplied sediment to the Hexi Corridor, with a progressively more dominant detrital input from the Qilian Shan (Fig. 12). This is consistent with the tectonic setting of the Pingshanhu Basin in the northern Hexi Corridor as the northern Tibetan Plateau experienced a complex deformation history during the Mesozoic. Specifically, field observations and detrital zircon...
Figure 12. Three-stage tectonic evolution model of the northern Tibetan Plateau during the Early Cretaceous. (1) During the early stage of Early Cretaceous deposition, the northern Hexi Corridor basin received sediment from the Alxa block to the north. (2) Continued collision of the Lhasa and Qiangtang blocks resulted in ca. 130 Ma contraction and exhumation of the Pingshanhu Basin. (3) Early Cretaceous regional contraction was succeeded by extension and right-slip faulting in the Hexi Corridor basin. K—Lower Cretaceous; C–P—Carboniferous–Permian; S—Silurian; O—Ordovician; E—Cambrian; SYNF—South Yenigou fault; NQT—North Qilian thrust; YMF—Yumushan fault; LSF—Longshoushan fault.
ages suggest that the Hexi Corridor underwent regional contraction and subsequent extension during the Early Cretaceous (Shao et al., 2019; Wang et al., 2022). At the onset of the Early Cretaceous, the depositional environment of the Pingshanhu Basin remained relatively stable with sediment sourced from the southern Alxa block, which had been uplifted since the Triassic (Song et al., 2018). Due to the far-field effects of the Qiangtang-Lhasa block collision, the Qilian Shan was uplifted during the late Early Cretaceous and contributed detrital materials to the Hexi Corridor. Uplift of the Qilian Shan was accommodated via ~48 km of slip along the North Qilian thrust system (Wang et al., 2022). Our model also suggests that deformation in the northern Tibetan Plateau beginning in the Mesozoic may also have continued into the Cenozoic after the initial India-Asia collision as out-of-sequence thrusting.

The Qilian Shan was the dominant sediment source for the Hexi Corridor during the Early Cretaceous, suggesting that tectonic activity was focused in the Qilian Shan at that time. Sedimentary structures within the Pingshanhu Basin suggest the occurrence of a prograding deltaic system (Peng et al., 2011; Wang et al., 2022). Closures of the Tethys and Paleo-Asian Ocean systems (Peng et al., 2013; Zhang et al., 2021; Wang et al., 2022) and normal and right-slip faulting occurred in the Pingshanhu Basin and surrounding areas (Vincent and Allen, 1999; Wang et al., 2022). The notable absence of Late Cretaceous strata in the Hexi Corridor may have resulted from uplift and erosion throughout the northern Tibetan Plateau as a result of the Cenozoic India-Asia collision.

7. CONCLUSIONS

Structural, petrologic, and geochronologic data collected from the Cretaceous section of the Pingshanhu Basin in the Hexi Corridor foreland basin led to the following key findings:

(1) The Early Cretaceous Miaogou Group exhibits five prominent age populations at ca. 300–250 Ma, ca. 480–400 Ma, ca. 1000–800 Ma, ca. 1900–1800 Ma, and ca. 2500–2400 Ma.

(2) Pingshanhu Basin strata were sourced from the Alxa block to the north during the earliest Cretaceous. During the late Early Cretaceous, Pingshanhu Basin strata were predominantly sourced from the Qilian Shan to the south, with minor continued sediment contribution from the Alxa block to the north.

(3) Field observations, petrologic compositions, and provenance interpretations from detrital zircon ages of Pingshanhu Basin strata indicate that the northern Hexi Corridor experienced regional contraction and subsequent extension (~2 km, ~29%) during the Early Cretaceous.

(4) During the late Mesozoic, the uplift of the Qilian Shan in the northern Tibetan Plateau resulted in sediment dispersal throughout the Hexi Corridor.

ACKNOWLEDGMENTS

We thank Science Editor Christopher Spencer, Associate Editor Jiuyan Yin, and four anonymous reviewers for their critical, careful, and very constructive reviews. This research was financially supported by the National Natural Science Foundation of China (grants 41988101 and 42072021), the Second Tibetan Plateau Scientific Expedition and Research Program (grant 2019QZXK0708), and the Tectonics Program of the U.S. National Science Foundation (EAR-1914503 and EAR-1914501), and Geological Exploration Project of Qinghai (20230308027yky002).

REFERENCES CITED

An, Y.L., 2015, Geochemistry, Geochronology of the Dandeur Intrusive Rocks in the Middle Section of the Central Qilian Mountain and their Tectonic Significance [M.A. thesis]: Beijing, China University of Geosciences (Beijing), 57 p.

Wenyou Liu et al. | Mesozoic tectonics of northern Tibet

