Binocular vision in patients undergoing haemodialysis

Sir,

Many patients on chronic haemodialysis (HD) suffer from chronic eye diseases, and the interaction of these diseases with the dialysis procedure can lead to worsening of vision [1]. Different studies have emphasized the effect of HD on visual acuity (VA), ocular surface disorders and tear function changes, fundus changes, VEP parameters, visual field findings and contrast sensitivity [2–5].

The purpose of this study was to investigate the relation between binocular vision disorders in patients with chronic renal failure undergoing HD. In this prospective study, 51 patients (32 males and 19 females, mean age 55.73 ± 11.22) with chronic renal failure underwent orthoptic evaluation, just before and half an hour after the treatment.

Orthoptic assessment included Jaeger VA, cover test (CT), ocular motility, convergence, binocular correspondence (Maddox wing and Worth test) and stereo tests (Lang I and Titmus).

χ² test did not confirm any significant difference in CT and motility before and after the HD (P > 0.05). Student’s t-test confirmed a significant difference in near VA and convergence, measured before and after treatment (P < 0.001).

Maddox wing, Worth and TNO tests showed significantly worse results after HD compared with results gained before HD (Wilkinson test, P < 0.001). In Lang I test, there was no significant difference in recognizing before and after the treatment (P > 0.05).

According to our knowledge, there is no previous report on changes in binocular vision induced by HD in chronic renal patients. Rapid shifts of body fluid and disturbances of glycaemic control could affect changes of monocular and binocular VA. The pathophysiology of visual system disarrangement could be metabolic in origin, such as uraemia, hyponatraemia or hypocalcaemia in so far as they influence the neurological status.

University Department of Ophthalmology
Clinical and Hospital Center
Zvezdara
Belgrade
Serbia
Email: kate@eunet.yu

doi:10.1093/ndt/gfl614
investigate the relative association between *C. pneumoniae* infection and the development of MPO-ANCA-associated GN, we compared the titres of *C. pneumoniae* abs in the active and remission phase of the disease in the same patients. The titres of anti-*C. pneumoniae* IgM and IgA, but not IgG abs in ANCA (remission) group significantly decreased compared with that in ANCA (active) (IgM ab: 1.22 ± 0.47 vs 1.05 ± 0.49 U, *P* < 0.05; IgA ab: 1.70 ± 1.20 vs 1.29 ± 0.88 U, *P* < 0.05). ANCA (active) vs ANCA (remission)). Our study revealed that the presence of positive IgM ab against *C. pneumoniae* was closely associated with the development of MPO-ANCA-associated GN, while the presence of positive IgG- and IgA ab against *C. pneumoniae* as a risk factor did not reach statistical significance. In addition, our study confirmed that the increased titres of IgM- and IgA ab against *C. pneumoniae* in the ANCA (active) group was significantly reduced in the ANCA (active) group. The serological pattern of increased IgM and IgA titres has been suggested to indicate active infection and chronic persistence of active infection, respectively. IgG titres in the absence of IgM or IgA titres may be a serological marker of an older, inactive infection. Thus, active or chronically active rather than inactive *C. pneumoniae* infection may increase the risk of MPO-ANCA-associated GN. Based on the results, we propose a possibility that *C. pneumoniae* influences the pathogenesis of MPO-ANCA-associated GN.

Our experiment indicates for the first time, a significantly higher prevalence of active *C. pneumoniae* infection in patients with MPO-ANCA-associated GN. The hypothesis that *C. pneumoniae* is aetiologically involved in MPO-ANCA-associated GN is of particular therapeutic relevance, because this is a potentially eradicable infectious agent. However, the number of patients in our study was small, a large-scale prospective confirmation of these findings is thus required.

Conflict of interest statement. None declared.

Department of Nephrology

Masayuki Iyoda

Aki Kuroki

Tetsuzo Sugisaki

Showa University School of Medicine

1-5-8 Hatanodai

Shinagawaku

Tokyo 145-8666

Japan

Email: iyoda@med.showa-u.ac.jp

5. Grayston JT. Background and current knowledge of *Chlamydia pneumoniae* and atherosclerosis. *J Infect Dis* 2000; 181 [Suppl 3]: S402–S410

Primary biliary cirrhosis associated with minimal change disease

Sir,

Primary biliary cirrhosis (PBC), which is probably of autoimmune origin, is a chronic inflammatory disease of the intrahepatic biliary system. However, its pathogenesis is still unclear. PBC has been reported to be associated with certain autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and Sjögren’s syndrome [1]. The association of glomerular diseases with PBC has been rare. Rai et al. [2] first noted the association of PBC with diffuse membranous glomerulonephritis. There have been six PBC cases reported with nephrotic syndrome, in which the patients had membranous glomerulonephritis, with or without vasculitis [3]. We present a case of minimal change disease (MCD) in a PBC patient, in which the renal pathology diagnosis has not been previously reported.

Table 1. Results of Chlamydial analysis in patients and control subjects

<table>
<thead>
<tr>
<th>Antibody to C. pneumoniae</th>
<th>Patients</th>
<th>Control subjects</th>
<th>ANCA (active) vs ANCA (remission)</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>ANCA (active) vs ANCA (remission)</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>ANCA (remission) vs control subjects</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCA (active) [n = 15 (%)]</td>
<td>ANCA (remission) [n = 10 (%)]</td>
<td>Control subjects [n = 50 (%)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG seropositivity</td>
<td>6 (40.0)</td>
<td>3 (30.0)</td>
<td>28 (56.0)</td>
<td>0.52 (0.16–1.69)</td>
<td>0.28</td>
<td>1.56 (0.28–8.53)</td>
<td>0.69</td>
<td></td>
<td>0.34 (0.08–1.45)</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>IgA seropositivity</td>
<td>11 (73.3)</td>
<td>6 (60.0)</td>
<td>23 (46.0)</td>
<td>3.23 (0.90–11.52)</td>
<td>0.08</td>
<td>1.83 (0.33–10.10)</td>
<td>0.67</td>
<td></td>
<td>1.76 (0.44–7.01)</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>IgM seropositivity</td>
<td>9 (60.0)</td>
<td>3 (30.0)</td>
<td>13 (26.0)</td>
<td>4.27 (1.27–14.33)</td>
<td>0.01</td>
<td>3.50 (0.64–19.20)</td>
<td>0.22</td>
<td></td>
<td>1.22 (0.27–5.43)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Data are expressed as *n* (%).

Grayston JT. Background and current knowledge of *Chlamydia pneumoniae* and atherosclerosis. *J Infect Dis* 2000; 181 [Suppl 3]: S402–S410

doi:10.1093/ndt/gfl622

Advance Access publication 2 November 2006

© The Author [2006]. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

For Permissions, please email: journals.permissions@oxfordjournals.org