Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide

Ping Yuan¹,², Hong Xue¹, Li Zhou¹, Linping Qu¹, Cheng Li³, Zhen Wang¹, Jun Ni¹, Chen Yu³, Tai Yao¹, Yu Huang⁴, Rui Wang¹,³ and Limin Lu¹

¹Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University Shanghai 200032, China, ²Department of Pulmonary Circulation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China, ³Department of Nephrology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China, ⁴Li Ka Shing Institute of Health Sciences, Institute of Vascular Medicine and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China and ⁵Department of Biology, Lakehead University, Thunder Bay, Canada P7B 5E1

Correspondence and offprint requests to: Limin Lu; E-mail: lulimin@shmu.edu.cn

*Ping Yuan and Hong Xue contributed equally.

Abstract

Background. Hydrogen sulfide (H₂S) is considered as the third gasotransmitter after nitric oxide and carbon monoxide. This gas molecule participates in the regulation of renal function. Diabetic nephropathy (DN) is one of the major chronic complications of diabetes. The present study aimed to explore the changes in H₂S metabolism in the early stage of DN and the effects of H₂S on cultured rat renal glomerular mesangial cells (MCs).

Methods. Cultured rat MCs and streptozotocin (STZ)-induced diabetic rats were used in this study. Expression levels of cystathionine γ-lyase (CSE), transforming growth factor-β1 (TGF-β1) and collagen IV in rat renal cortex and in cultured MCs were determined by quantitative real-time PCR and western blot. Reactive oxygen species (ROS) released from rat MCs was assessed by fluorescent probe assays. MCs proliferation was analyzed by 5′-bromo-2′-deoxyuridine incorporation assay.

Results. H₂S levels in the plasma and renal cortex and the levels of cystathionine mRNA (mRNA) and protein in renal cortex were significantly reduced, while the levels of TGF-β1 and collagen IV increased 3 weeks after STZ injection. Administration of NaHS, a H₂S donor, reversed the increases in TGF-β1 and collagen IV in diabetic rats. By contrast, NaHS did not alter the TGF-β1 and collagen IV levels in non-diabetic rats. But NaHS lowered the CSE mRNA level in renal cortex. Exposure to high glucose promoted ROS generation and cell proliferation, up-regulated the expression of TGF-β1 and collagen IV but decreased the CSE expression in cultured MCs. Treatment of cultured MCs with NaHS reversed the effect of high glucose. NaHS did not change ROS generation, cell proliferation, TGF-β1 and collagen IV expression in the cells cultured with normal glucose. Reduction of endogenous H₂S generation by DL-propargylglycine, a CSE inhibitor, produced similar cellular effects as high glucose, including increases in cell proliferation, TGF-β1 and collagen IV expressions and ROS generation.

Conclusion. Suppressed CSE-catalyzed endogenous H₂S production in the kidney by hyperglycemia may play an important role in the pathogenesis of DN.

Keywords: cystathionine-lyase; diabetic nephropathy; hydrogen sulfide; mesangial cell

Introduction

Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and a major pathological cause of chronic renal dysfunction. DN is characterized by a progressive loss of glomerular filtration surface areas and capillary volume. The latter is largely due to an aberrant expansion of the mesangial matrix derived from excessive production and deposition of extracellular matrix [1,2]. Previous studies confirmed that high glucose induces excessive production of reactive oxygen species (ROS) and up-regulates the expression of transforming growth factor-β1 (TGF-β1) in renal mesangial cells (MCs) and tubular epithelial cells. Consequently, extracellular matrix accumulates excessively in the kidney, results in glomerular sclerosis and tubulointerstitial fibrosis [3,4]. However, the molecular mechanisms for the hyperglycaemia-induced DN have not been clear.

Hydrogen sulfide (H₂S), the third gasotransmitter after nitric oxide and carbon monoxide [5], is produced in significant amounts in almost all tissues or organs, including brain, cardiovascular system, pancreas [6], liver and kidney [7]. In Sprague–Dawley (SD) rats, the concentrations of H₂S in the brain and plasma have been reported to be 50–160 µM [5,8]. H₂S generation is mainly catalyzed by two pyridoxal
5′-phosphate-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) [9]. CBS is the predominant H_{2}S-synthesizing enzyme in the central nervous system, while CSE is present in the cardiovascular system. In liver and kidney, both enzymes are distributed [9,10]. H_{2}S plays an important role in the regulation of both physiological and pathological functions of multiple organs. In the nervous system, H_{2}S is involved in regulating the learning and memory processes. In the cardiovascular system, H_{2}S relaxes blood vessels, inhibits smooth muscle cell proliferation and reduces oxidative damage [9]. In addition, H_{2}S participates in the functional regulation of the digestive system, urogenital system and metabolism [9,11]. Few previous studies focused on the role of H_{2}S in regulating renal function under both physiological and pathological conditions [12]. The present study was designed to determine the metabolism profile of H_{2}S in earlier stage of diabetes and the effect of H_{2}S in cultured renal MCs that are important cellular component of DN.

Materials and methods

Materials and reagents

Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum, streptozotocin (STZ), D-glucose, mannitol, DL-propargylglycine (PPG) and NaHS were purchased from Sigma (St Louis, MO). NaHS was used as a H_{2}S donor as widely used in previous studies [9,13,14]. Antibodies against β-actin or collagen IV were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). CSE antibody was from Abnova Corp. (Taipei, Taiwan). M-MLV reverse transcriptase was from Promega Co. (Madison, WI). SYBR Green qRT-PCR Master Mixture was from Applied Biosystems (Tokyo, Japan). RNA extraction kit was from Sangon Co. (Shanghai, China). Enhanced chemiluminescent detection kit (ECL detection) was from Pierce Biotechnology Inc. (Rockford, IL). 5′-Bromo-2′-deoxyuridine (BrdU) incorporation kit was from Roche (Mannheim, Germany). ROS assay kit was from Beyotime (Jiangsu, China). Polyvinylidene difluoride (PVDF) membrane was from BioRad (Munich, Germany). In Tris-buffered saline (TBS) and 0.1% Tween (TBS/Tween) for 1 h at room temperature with gentle rocking and then incubated in mouse anti-rat CSE antibodies (1:150) or goat anti-rat collagen IV antibodies (1:2000) at 4 °C overnight. After three washes with TBS/Tween, the membranes were blocked with 5% skim milk in Tris-buffered saline (TBS) and 0.1% Tween (TBS/Tween) for 1 h at room temperature with gentle rocking and then incubated in mouse anti-rat CSE antibodies (1:150) or goat anti-rat collagen IV antibodies (1:2000) at 4 °C overnight. After three washes with TBS/Tween, the membranes were incubated with secondary anti-mouse/goat antibody (1:2000) for 1 h at room temperature. The hybridizing signals were detected using the ECL detection kit according to the manufacturer’s instructions and exposed to X-ray film. Then the membranes were stripped and re-probed with mouse anti-β-actin antibody (1:10000) and developed as described above. The relative intensity of the bands exposed on the film was quantified using Smart view software (Furi Technology Co, Shanghai, China). The relative protein level was normalized by intensity of β-actin and the averaged relative protein level in control group is defined as 1.0.

Western blot analysis

Renal cortex or cultured renal MCs were lysed in 1× sodium dodecyl sulfate (SDS) supplemented with proteinase inhibitor at a dilution of 1:25. Protein concentrations were determined by bicinchoninic acid protein assay kit (Shenergy Biocolor BioScience and Technology, Shanghai, China). Thirty micrograms of protein lysate was electrophoresed on a 12% polyacrylamide SDS gel and transferred onto a PVDF membrane at 270 mA for 90 min. The membranes were blocked with 5% skim milk in Tris-buffered saline (TBS) and 0.1% Tween (TBS/Tween) for 1 h at room temperature with gentle rocking and then incubated in mouse anti-rat CSE antibodies (1:150) or goat anti-rat collagen IV antibodies (1:2000) at 4 °C overnight. After three washes with TBS/Tween, the membranes were incubated with secondary anti-mouse/goat antibody (1:2000) for 1 h at room temperature. The hybridizing signals were detected using the ECL detection kit according to the manufacturer’s instructions and exposed to X-ray film. Then the membranes were stripped and re-probed with mouse anti-β-actin antibody (1:10000) and developed as described above. The relative intensity of the bands exposed on the film was quantified using Smart view software (Furi Technology Co, Shanghai, China). The relative protein level was normalized by intensity of β-actin and the averaged relative protein level in control group is defined as 1.0.

Isolation of total RNA and synthesis of cDNA

Cultured rat MCs or renal cortex was lysed in TRIzol reagent and total RNA was isolated. The amount of RNA isolated was determined by measuring the specific absorbance at 260 nm. One microgram of total RNA was used for cDNA synthesis in a 20 μL reaction mixture that contained 1 μg oligo dt, 10 mM dNTP, 20 U RNase inhibitor and 200 U M-MLV reverse transcriptase. A 1-μL aliquot of the resulting single-strand cDNA was used for polymerase chain reaction (PCR).

Quantitative real-time PCR

SYBR Green qRT-PCR was used to quantify the relative abundance of target messenger RNA (mRNA) in the samples. The accumulated fluorescence was detected using the iCycler iQ PCR detection system (Bio-Rad, Hercules, CA). The PCR amplification conditions were as follows: pre-denaturing at 95 °C for 3 min, followed by 40 cycles of amplifications by denaturing at 95 °C for 30 s, annealing at 60 °C (for TGF-β1), 60 °C (for collagen IV and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)) or 58 °C (for CSE) for 1 min, extension at 72 °C for 1 min. After a final extension at 72 °C for 10 min, the amplified products were subjected to a stepwise increase in temperature from 55 to 95 °C to construct disoci-
H2S in renal cortex homogenates was measured by a method used before [20]. Briefly, renal cortex (~50 mg) was homogenized in 500 μL of 1% (w/v) trichloroacetic acid (TCA), 133 μL of 20 mM N,N-dimethyl-p-phenylene-diamine dihydrochloride in 7.2 M HCl were added in sequence. After reactions were terminated, the absorbance at 670 nm was measured on a spectrophotometer (TECAN Infinite M200 Systems Inc., Salzburg Umgebung, Salzburg, Austria). All samples were assayed in duplicate. The optimal density value obtained at 670 nm was normalized by protein concentration and extrapolated from the stand-ard curve obtained from the same plate.

Statistical analysis

Data were means ± standard error of the means and analyzed using one-way analysis of variance with the Bonferroni correction for all pairwise comparisons. A P-value of <0.05 was considered statistically significant.

Results

Changes in H2S level and the expression of CSE and collagen IV in diabetic rat renal cortex

Three weeks after STZ injection, the plasma glucose concentration in both diabetic rats and NaHS-treated diabetic rats was significantly higher, while body weight was lower than that of control rats (Table 2). Blood creatinine, urea nitrogen and urea protein were elevated in diabetic rats and NaHS-treated diabetic rats. NaHS treatment did not change plasma glucose concentration in diabetic and non-diabetic rats nor affected the elevated blood creatinine.

Measurement of ROS production

Experiments were performed using the ROS assay kit (Beyotime, Haimen, China) according to the manufacturer’s instructions. Briefly, cells seeded in 96-well plates were incubated with 10 mM 2′,7′-Dichlorofluorescein diacetate probes (100 μL/well) at 37 °C for 30 min and then washed with PBS three times in order to remove residual probes. The fluorescence intensity at 488 nm excitation wavelength and 525 nm emission wavelength was measured using a luminometer (Tecan, Salzburg, Austria).

Table 1. The primer sets and PCR product characteristics

<table>
<thead>
<tr>
<th>Target</th>
<th>Oligonucleotide sequence</th>
<th>Tm</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β1</td>
<td>F: 5′-TTGCGTTACCTGGTAACC-3′
R: 5′-GGTGTGATTGCCCTTTCCAG-3′
F: 5′-ATTTCCTTTGTGATGCACACAG-3′
R: 5′-AACGTGTAAATTCTGGATAGTA-3′
F: 5′-GAGGAGGAATTGCTTGGAAA
R: 5′-GATGCCACCCTCCTGAAATGA-3′
F: 5′-CTTCTCATTTGGTGGATGACC-3′
R: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen IV</td>
<td>F: 5′-GACGAGGAATTGCTTGGAAA
R: 5′-GATGCCACCCTCCTGAAATGA-3′
F: 5′-CTTCTCATTTGGTGGATGACC-3′
R: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE</td>
<td>F: 5′-GACGAGGAATTGCTTGGAAA
R: 5′-GATGCCACCCTCCTGAAATGA-3′
F: 5′-CTTCTCATTTGGTGGATGACC-3′
R: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>F: 5′-GACGAGGAATTGCTTGGAAA
R: 5′-GATGCCACCCTCCTGAAATGA-3′
F: 5′-CTTCTCATTTGGTGGATGACC-3′
R: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Primer set</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β1</td>
<td>F</td>
<td>5′-TTGCGTTACCTGGTAACC-3′
F: 5′-ATTTCCTTTGTGATGCACACAG-3′
F: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
</tr>
<tr>
<td>Collagen IV</td>
<td>F</td>
<td>5′-GACGAGGAATTGCTTGGAAA
F: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
</tr>
<tr>
<td>CSE</td>
<td>F</td>
<td>5′-GACGAGGAATTGCTTGGAAA
F: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>F</td>
<td>5′-GACGAGGAATTGCTTGGAAA
F: 5′-CTTCTCATTTGGTGGATGACC-3′</td>
<td></td>
</tr>
</tbody>
</table>

*F, forward; R, reverse.

Table 2. Characterization of the experimental groups of rat

<table>
<thead>
<tr>
<th>Weight (g)</th>
<th>Control</th>
<th>Diabetes (1–21 days)</th>
<th>Diabetes + NaHS (15–21 days)</th>
<th>Control + NaHS (15–21 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 days</td>
<td>207.50 ± 4.23</td>
<td>209.29 ± 2.30</td>
<td>210.50 ± 3.83</td>
<td>205.00 ± 2.83</td>
</tr>
<tr>
<td>7 days</td>
<td>244.17 ± 5.23</td>
<td>218.57 ± 6.14**</td>
<td>220.50 ± 3.96</td>
<td>244.38 ± 3.95</td>
</tr>
<tr>
<td>14 days</td>
<td>296.67 ± 2.79</td>
<td>232.14 ± 6.80**</td>
<td>233.00 ± 5.12</td>
<td>295.00 ± 2.99</td>
</tr>
<tr>
<td>21 days</td>
<td>310.83 ± 9.87</td>
<td>242.86 ± 9.12**</td>
<td>250.50 ± 5.75</td>
<td>303.16 ± 4.72</td>
</tr>
<tr>
<td>Urea protein (mg)</td>
<td>41.24 ± 5.39</td>
<td>42.14 ± 4.35</td>
<td>43.60 ± 3.61</td>
<td>40.95 ± 3.73</td>
</tr>
<tr>
<td>0 days</td>
<td>36.81 ± 3.35</td>
<td>52.70 ± 8.61</td>
<td>51.75 ± 3.99</td>
<td>37.42 ± 2.80</td>
</tr>
<tr>
<td>7 days</td>
<td>34.48 ± 3.96</td>
<td>58.62 ± 3.82**</td>
<td>56.52 ± 4.34</td>
<td>37.52 ± 4.03</td>
</tr>
<tr>
<td>14 days</td>
<td>35.71 ± 4.98</td>
<td>61.74 ± 4.12**</td>
<td>48.46 ± 3.50#</td>
<td>40.00 ± 5.28</td>
</tr>
<tr>
<td>21 days</td>
<td>4.83 ± 0.43</td>
<td>19.56 ± 2.15***</td>
<td>22.66 ± 0.74</td>
<td>5.82 ± 0.67</td>
</tr>
<tr>
<td>Blood glucose (mmol/L)</td>
<td>46.04 ± 2.12</td>
<td>70.89 ± 0.96**</td>
<td>69.18 ± 3.67</td>
<td>49.35 ± 1.64</td>
</tr>
<tr>
<td>Blood creatinine (μmol/L)</td>
<td>8.87 ± 0.74</td>
<td>14.87 ± 1.32**</td>
<td>11.01 ± 0.59#</td>
<td>9.03 ± 1.12</td>
</tr>
</tbody>
</table>

*p < 0.01, **p < 0.001 versus control; #p < 0.05; ##p < 0.01 versus diabetes.
in diabetic rats, but this treatment lowered blood urea nitrogen and urea protein in diabetic rats but not in non-diabetic control rats.

As shown in Figure 1A and B, H2S in both plasma and renal cortex was decreased 3 weeks after STZ injection. Quantitative real-time-PCR data showed that the levels of both CSE mRNA (Figure 1C) and CSE protein (Figure 1D) in the renal cortex of STZ-induced diabetic rat was lower than that of control rats. Administration of NaHS, a H2S donor, did not change the decreased CSE mRNA level in diabetic rat. However, NaHS treatment for a week significantly decreased the CSE mRNA level in nondiabetic rats. Compared with control rats, the collagen IV mRNA and protein levels were increased in the renal cortex of STZ-induced diabetic rats (Figure 2A and B). This increase was reversed by NaHS treatment in diabetic condition. By contrast, NaHS treatment did not alter the renal cortex collagen IV mRNA level in non-diabetic rats.

Effect of H2S supplementation on TGF-β1 mRNA level in diabetic renal cortex

The TGF-β1 mRNA level in diabetic rat renal cortex was increased as compared with that of control rats. Administration of NaHS for 1 week reversed the elevation in TGF-β1 mRNA level in diabetic but not in control rats (Figure 3).

Effect of high glucose on CSE expression in cultured renal MCs

Incubation of rat renal MCs in high glucose media for 24 h resulted in a significant decrease of CSE mRNA and protein as compared with normal glucose group. NaHS treatment did not change the CSE mRNA level in both normal and high glucose groups. In addition, there was no significant change in CSE mRNA and protein levels in the osmotic control group (Figure 4A and B).

Effect of H2S on MCs proliferation induced by high glucose stimulation

BrdU incorporation assay showed that treatment of the cultured renal MCs with high glucose media for 48 h increased cell proliferation. Treatment with NaHS suppressed high glucose-induced MC proliferation in a concentration-dependent manner. NaHS, as low as 30 μM, completely reversed high glucose-induced MCs proliferation. This concentration was, therefore, selected for all subsequent experiments. Thirty micromolars of NaHS had no effect on proliferation in normal glucose-treated cells. Treatment of MCs with CSE inhibitor PPG resulted in a significant increase in cell proliferation and this effect was similar to that induced by high glucose (Figure 5).

Effect of H2S on collagen IV production by cultured MCs

Changes in collagen IV synthesis were shown in Figure 6. Collagen IV mRNA and protein expression levels were increased upon high glucose stimulation but unaffected by osmotic control media. Application of 30 μM NaHS reversed high glucose-induced elevations in both collagen IV mRNA and protein levels. By contrast, 30 μM NaHS did not change the collagen IV mRNA level in normal glucose-treated cells. On the other hand, PPG, a CSE inhibi-

Fig. 1. Levels of H2S in plasma and renal cortex, CSE mRNA and protein levels in renal cortex from control (C), diabetic (D), diabetic treated with NaHS (D + NaHS) and control treated with NaHS (C + NaHS) rats. (A) Plasma H2S concentrations, (B) renal cortex H2S levels, (C) real-time PCR assay for renal cortex CSE mRNA levels, (D) western blot analysis of renal cortex CSE protein levels (normalized by β-actin). n = 6 per group. Data are mean ± standard error of the mean. *P < 0.05 versus control rats.
tor, increased the expression of both collagen IV mRNA and protein.

Effect of H$_2$S on TGF-β_1 mRNA level in cultured MCs

A significant elevation in TGF-β_1 mRNA levels was detected in the MCs exposed to high glucose for 24 h but not to osmotic control media. Applications of 30 μM NaHS reversed high glucose-induced elevations in TGF-β_1 mRNA levels. Again, PPG treatment resulted in a significant elevation in the TGF-β_1 mRNA level (Figure 7).

Effect of H$_2$S on ROS generation in cultured MCs

The production of ROS in cultured MCs was enhanced after 24-h exposure to high glucose but not to osmotic control media. Application of 30 μM NaHS reversed high glucose-induced increase in ROS generation. PPG produced a similar effect to high glucose exposure on ROS generation by MCs (Figure 8).

Discussion

H$_2$S has long been known as a colorless, flammable and toxic gas [5]. In recent years, H$_2$S is increasingly recognized as a gasotransmitter that exerts a wide spectrum of biological and physiological effects [22,23]. The role of H$_2$S in the regulation of renal function has also been recently reported [24]. H$_2$S participates in the control of renal function and increases urinary sodium excretion via both vascular and tubular actions in the kidney [25]. The synthesis of endogenous H$_2$S catalyzed by CSE is essential to protect the kidney against ischemia/reperfusion injury and facilitate the recovery [26]. A recent study shows that NaHS treatment inhibits renin activity elevation and blunted blood pressure elevation in 2-kidney 1-clip hypertensive rats [27].

DN, a long-term complication of diabetes associated with the highest mortality, is the leading cause of end-stage renal disease [28]. Although advanced glycation end products and dyslipidemia are all known to be associated with diabetic organ damages, hyperglycemia is likely to be the
primary pathological contributor to the development of DN [29]. The present result showed that both H2S level and CSE expression in renal cortex decreased significantly in diabetic rats, which is consistent with a recent observation that blood H2S levels are significantly lower in patients with type 2 diabetes compared with age-matched healthy subjects and in STZ-treated diabetic rats compared with control SD rats [30]. Besides, we showed that the reduced H2S level and CSE expression were accompanied by up-regulation of TGF-β1 and collagen IV in the renal cortex. Administration of NaHS reversed the increased production of TGF-β1 and collagen IV. TGF-β1 is a key regulator of extracellular matrix synthesis and cell proliferation and considered to be a marker of renal fibrogenesis, while collagen IV is one of the major extracellular matrix synthesized and secreted by MCs, and overproduction of collagen IV is related to glomerular hypertrophy and sclerosis [31,32]. The present results suggest that the decreased generation of endogenous H2S in diabetic rats might involve the development of DN and H2S restoration could be a target in curtailing hyperglycemia-induced renal injury.

The present results suggest that the inhibitory effect of NaHS on TGF-β1 and collagen IV expression in diabetic rats is unlikely to be mediated by modulating plasma glucose level because the latter was not changed. Instead, H2S might act directly on the renal cells. It is noted that these changes in CSE expression and H2S production occurred at the very early stage of diabetes (3 weeks after STZ injection). It is thus possible that the altered H2S level might be one of the triggering factors in the initiation of DN.

To determine the role of CSE/H2S pathway, cultured MCs were used in the study. MCs are inherent vascular peripheral cells in renal glomeruli. Hyperglycemia-induced MCs over-proliferation and excessive synthesis and secretion of extracellular matrix have been considered as early...
pathological events in DN [33,34]. In vitro observations were consistent with the result from diabetic animals in the present study. Both PCR and western blot results demonstrated that the CSE expression in renal MCs was decreased, while proliferation and extracellular matrix secretion were increased under high glucose condition. NaHS treatment suppressed high glucose-induced cell proliferation and reversed the elevated collagen IV synthesis. CSE inhibitor PPG evoked similar changes as high glucose in cultured MCs. In the kidney, CSE is the key enzyme in the trans-sulfuration pathway, which cleaves L-cysteine to release H$_2$S [9,10]. So, all results suggest that decreased endogenous H$_2$S generation due to down-regulating CSE in high glucose condition may account for high glucose-induced MC proliferation and extracellular matrix production. However, the mechanisms by which high glucose decrease the production of endogenous H$_2$S remains unclear, which deserves further investigation.

The present study also confirmed that TGF-β1 mRNA level was significantly elevated by high glucose in MCs. In agreement with the in vitro results, the elevation of TGF-β1 was reversed by NaHS treatment. Blockade of endogenous H$_2$S formation by PPG significantly elevated the TGF-β1 mRNA level. Based on these observations, we speculate that the decreased endogenous H$_2$S production caused by high glucose might be related to nephrotic fibrosis through increasing TGF-β1, then stimulates MCs proliferation and collagen IV over-production.

Over-production of ROS is involved in the pathophysiological process of DN. Hyperglycemia induces ROS generation [35] and ROS initiates up-regulation of TGF-β1, leading to MC proliferation and excessive extracellular matrix production [36–38]. The present study confirmed that high glucose increased ROS generation in MCs and provided evidence that NaHS is able to reduce high glucose-induced ROS generation. The antioxidant effect of low level of H$_2$S was previously observed in cultured vascular smooth muscle cells [39]. Homocysteine treatment of cultured vascular smooth muscle cells increased cellular levels of superoxide anion, hydrogen peroxide and peroxynitrite; this prooxidative effect was antagonized by low levels of NaHS. NaHS also potentiated the protective effects of other known antioxidants, such as N-acetyl-L-cysteine and superoxide dismutase against the cellular damage induced by homocysteine [39]. The exact mechanism underlying H$_2$S-decreased ROS generation in MCs is yet to be detailed. Whether or not reduced endogenous H$_2$S level under high glucose condition could disturb the redox balance or affect the activity of ROS generating-enzymes needs additional examination.

In summary, hyperglycemia or high glucose suppresses the expression of CSE in both renal cortex and cultured MCs and decreases endogenous synthesis of H$_2$S. Decreased H$_2$S renders elevation of ROS level, leading to the up-regulation of TGF-β1 that may mediate MC proliferation, and excessive collagen IV production/secretion. All those changes may participate in renal glomerular hypertrophy, sclerosis and interstitial fibrosis. Restoring H$_2$S level under diabetic conditions might represent a novel strategy in the management of DN. Nevertheless, there is limitation in the present study. For example, the treatment duration with NaHS was relatively short, which may explain the lack of apparent effects on key morphological parameters of DN, such as interstitial fibrosis and glomerular sclerosis, and functional parameters, such as glomerular filtration rate and proteinuria. The long-term impact of NaHS administration to diabetic rats on their renal function warrants careful examination.

Acknowledgements. This research was financially supported by the Shanghai Natural Science Foundation (No. 09ZR1404200), the Scientific Research Foundation of the State Human Resource Ministry and the Education Ministry for Returned Chinese Scholars, China (No. C003362), to L.L. and an operating grant from Canadian Diabetes Association to R.W.

Conflict of interest statement. None declared.

References

5. Wang R, Too's company, three's a crowd—can H$_2$S be the third endogenous gaseous transmitter? FASEB J 2002; 16: 1792–1798

Received for publication: 28.4.10; Accepted in revised form: 16.11.10