Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide

Ping Yuan1,2,*, Hong Xue1,*, Li Zhou1, Linping Qu1, Cheng Li3, Zhen Wang1, Jun Ni1, Chen Yu3, Tai Yao1, Yu Huang4, Rui Wang1,2 and Limin Lu1

1Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University Shanghai 200032, China, 2Department of Pulmonary Circulation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China, 3Department of Nephrology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China, 4Li Ka Shing Institute of Health Sciences, Institute of Vascular Medicine and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China and 5Department of Biology, Lakehead University, Thunder Bay, Canada P7B 5E1

Correspondence and offprint requests to: Limin Lu; E-mail: lulimin@shmu.edu.cn

*Ping Yuan and Hong Xue contributed equally.

Abstract

Background. Hydrogen sulfide (H2S) is considered as the third gasotransmitter after nitric oxide and carbon monoxide. This gas molecule participates in the regulation of renal function. Diabetic nephropathy (DN) is one of the major chronic complications of diabetes. The present study aimed to explore the changes in H2S metabolism in the early stage of DN and the effects of H2S on cultured rat renal glomerular mesangial cells (MCs).

Methods. Cultured rat MCs and streptozotocin (STZ)-induced diabetic rats were used in this study. Expression levels of cystathionine γ-lyase (CSE), transforming growth factor-β1 (TGF-β1) and collagen IV in rat renal cortex and in cultured MCs were determined by quantitative real-time PCR and western blot. Reactive oxygen species (ROS) released from rat MCs was assessed by fluorescent probe assays. MCs proliferation was analyzed by 5′-bromo-2′-deoxyuridine incorporation assay.

Results. H2S levels in the plasma and renal cortex and the levels of CSE messenger RNA (mRNA) and protein in renal cortex were significantly reduced, while the levels of TGF-β1 and collagen IV increased 3 weeks after STZ injection. Administration of NaHS, a H2S donor, reversed the increases in TGF-β1 and collagen IV in diabetic rats. By contrast, NaHS did not alter the TGF-β1 and collagen IV levels in non-diabetic rats. But NaHS lowered the CSE mRNA level in renal cortex. Exposure to high glucose promoted ROS generation and cell proliferation, up-regulated the expression of TGF-β1 and collagen IV but decreased the CSE expression in cultured MCs. Treatment of cultured MCs with NaHS reversed the effect of high glucose. NaHS did not change ROS generation, cell proliferation, TGF-β1 and collagen IV expression in the cells cultured with normal glucose. Reduction of endogenous H2S generation by DL-propargylglycine, a CSE inhibitor, produced similar cellular effects as high glucose, including increases in cell proliferation, TGF-β1 and collagen IV expressions and ROS generation.

Conclusion. Suppressed CSE-catalyzed endogenous H2S production in the kidney by hyperglycemia may play an important role in the pathogenesis of DN.

Keywords: cystathionine γ-lyase; diabetic nephropathy; hydrogen sulfide; mesangial cell

Introduction

Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and a major pathological cause of chronic renal dysfunction. DN is characterized by a progressive loss of glomerular filtration surface areas and capillary volume. The latter is largely due to an aberrant expansion of the mesangial matrix derived from excessive production and deposition of extracellular matrix [1,2]. Previous studies confirmed that high glucose induces excessive production of reactive oxygen species (ROS) and up-regulates the expression of transforming growth factor-β1 (TGF-β1) in renal mesangial cells (MCs) and tubular epithelial cells. Consequently, extracellular matrix accumulates excessively in the kidney, results in glomerular sclerosis and tubulointerstitial fibrosis [3,4]. However, the molecular mechanisms for the hyperglycaemia-induced DN have not been clear.

Hydrogen sulfide (H2S), the third gasotransmitter after nitric oxide and carbon monoxide [5], is produced in significant amounts in almost all tissues or organs, including brain, cardiovascular system, pancreas [6], liver and kidney [7]. In Sprague–Dawley (SD) rats, the concentrations of H2S in the brain and plasma have been reported to be 50–160 μM [5,8]. H2S generation is mainly catalyzed by two pyridoxal...
Materials and reagents
Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum, streptozotocin (STZ), d-glucose, mannitol, DL-proparglyglycine (PPG) and NaHS were purchased from Sigma (St Louis, MO). NaHS was used as a H2S donor as widely used in previous studies [9,13,14]. Antibodies against β-actin or collagen IV were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). CSE antibody was from Abnova Corp. (Taipei, Taiwan). M-MLV reverse transcriptase was from Promega Co. (Madison, WI). SYBR Green qRT-PCR MasterMixture was from Applied Biosystems (Tokyo, Japan). RNA extraction kit was from Sangon Co. (Shanghai, China). Polyvinylidene difluoride (PVDF) membrane was from Amersham (Piscataway, NJ). Kodak X-Omat K film was from Kodak Co. (Xiamen, China). Enhanced chemiluminescent detection kit (ECL detection kit) was from Pierce Biotechnology Inc. (Rockford, IL). 5′-Bromo-2′-deoxyuridine (BrdU) incorporation kit was from Roche (Mannheim, Germany). ROS assay kit was from Beyotime (Jiangsu, China). β-actin or collagen IV were purchased from Santa Cruz Biotechnology Inc. (Rockford, IL). 5′-phosphate-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) [9]. CBS is the predominant H2S-synthesizing enzyme in the central nervous system, while CSE is present in the cardiovascular system. In liver and kidney, both enzymes are distributed [9,10]. H2S plays an important role in the regulation of both physiological and pathological functions of multiple organs. In the nervous system, H2S is involved in regulating the learning and memory processes. In the cardiovascular system, H2S relaxes blood vessels, inhibits smooth muscle cell proliferation and reduces oxidative damage [9]. In addition, H2S participates in the functional regulation of the digestive system, urogenital system and metabolism [9,11]. Few previous studies focused on the role of H2S in regulating renal function under both physiological and pathological conditions [12]. The present study was designed to determine the metabolism profile of H2S in earlier stage of diabetes and the effect of H2S in cultured renal MCs that are important cellular component of DN.

Materials and methods

Animal model
Age-matched male SD rats, weighing 180–210 g, were provided by the Shanghai SLAC Laboratory Animal Center. All procedures followed the Criteria of the Medical Laboratory Animal administrative Committee of Shanghai and the Guide for Care and Use of Laboratory Animals of Fudan University. The rats were held for 5-day acclimatization in the animal care facility before use and had free access to water and standard chow. Diabetes was induced by a single intraperitoneal (i.p.) injection of STZ (65 mg/kg) dissolved in 0.1 M sodium citrate buffer (pH 4.0). Only those rats with plasma glucose concentrations >16.7 mM 1 week after STZ injection were recruited in the study [15]. The rats were randomly divided into four groups (n = 6 for each group): (i) control (C) rats, injected with vehicle (0.1 M sodium citrate buffer, pH 4.0); (ii) diabetic (D) rat; (iii) diabetic rats with injection of NaHS (D + NaHS) and (iv) non-diabetic rats with injection of NaHS (C + NaHS) (50 μmol/kg/day, i.p.) during the third week [16]. At the end of the third week, rats were sacrificed and the plasma and renal tissues were harvested and stored at –80 °C until use.

Plasma glucose, creatinine, urea nitrogen and urea protein determination
Glucose, creatinine and urea nitrogen concentrations in plasma were determined by glucose detection kit, creatinine detection kit and urea nitrogen detection kit, respectively (Shanghai Rongsheng Biotech Co., Ltd., Shanghai, China) and urea protein was detected by urea protein detection kit (Jiancheng Biotech Co., Ltd., Nanjing, China) according to the manufacturer’s instructions.

Cell culture
The rat glomerular MC line (HBZY-1) was purchased from China Center for Type Culture Collection (Wuhan, China) and cultured in normal DMEM media (5.5 mM d-glucose) supplemented with 10% neonatal bovine serum in an atmosphere of 95% O2 and 5% CO2 at 37 °C. High glucose culture media was made by supplementing normal DMEM media with additional d-glucose for a final d-glucose concentration at 30 mM. The osmotic control media was made by supplementing normal media with 24.5 mM mannitol [17,18].

Cell proliferation assay
A total of 103 cells per well were cultured in 96-well plates. When the cells reached 60–70% confluence, they were serum starved for 24 h and then treated with high glucose media, NaHS or PPG. After 48 h, cell proliferation was assessed by BrdU incorporation assay as described previously [19]. Briefly, 10 μM BrdU labeling solution was added into the media and incubated at 37 °C for 4 h and then the cells were fixed, de-natured and incubated in anti-BrdU-POD (peroxidase) antibody for another 90 min at room temperature. At the end of incubation, the cells were rinsed with phosphate-buffered solution (PBS), pH 7.0, three times to remove excessive antibody and then 100 μL of substrate solution was added into each well. After 30 min incubation at room temperature, the absorbance of the samples was measured on a TECAN Infinite M200 microplate reader (Salzburg Umgebung, Salzburg, Austria) at 570 nm, while the absorbance obtained at 492 nm served as a reference value.

Western blot analysis
Renal cortex or cultured renal MCs were lysed in 1× sodium dodecyl sulfate (SDS) supplemented with proteinase inhibitor at a dilution of 1:2.5. Protein concentrations were determined by bicinchoninic acid protein assay kit (Shenyang Biocol BioScience and Technology, Shanghai, China). Thirty micrograms of protein lysate was electrophoresed on a 12% polyacrylamide SDS gel and transblotted onto a PVDF membrane at 270 mA for 90 min. The membranes were blocked with 5% skim milk in Tris-buffered saline (TBS) and 0.1% Tween (TBS/Tween) for 1 h at room temperature with gentle rocking and then incubated in mouse anti-rat CSE antibodies (1:150) or goat anti-rat collagen IV antibodies (1:2000) at 4 °C overnight. After three washes with TBS/Tween, the membranes were incubated with secondary anti-mouse/goat antibody (1:2000) for 1 h at room temperature. The hybridizing signals were developed using the ECL detection kit according to the manufacturer’s instructions and exposed to X-ray film. Then the membranes were stripped and re-probed with mouse anti-β-actin antibody (1:10000) and developed as described above. The relative intensity of the bands exposed on the films was quantified using Smart viewer software (Furi Technology Co, Shanghai, China). The relative protein level was normalized by intensity of β-actin and the averaged relative protein level in control group is defined as 1.0.

Isolation of total RNA and synthesis of cDNA
Cultured rat MCs or renal cortex was lysed in TRIZOL reagent and total RNA was isolated. The amount of RNA isolated was determined by measuring the specific absorbance at 260 nm. One microgram of total RNA was used for cDNA synthesis in a 20 μL reaction mixture that contained 1 μg oligo dt, 10 mM dNTP, 20 U RNase inhibitor and 200 U M-MLV reverse transcriptase. A 1-μL aliquot of the resulting single-strand cDNA was used for polymerase chain reaction (PCR).

Quantitative real-time PCR
SYBR Green qRT-PCR was used to quantify the relative abundance of target messenger RNA (mRNA) in the samples. The accumulated fluorescence was detected using the iCycler qPCR detection system (Bio-Rad, Hercules, CA). The PCR amplification conditions were as follows: pre-denaturing at 95 °C for 3 min, followed by 40 cycles of amplification by denaturing at 95 °C for 30 s, annealing at 62 °C (for TGF-β1), 60 °C [for collagen IV and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] or 58 °C (for CSE) for 1 min, extension at 72 °C for 1 min. After a final extension at 72 °C for 10 min, the amplified products were subjected to a stepwise increase in temperature from 55 to 95 °C to construct dissoci-
H$_2$S easess DN

Measurement of H$_2$S in renal cortex homogenates and plasma

H$_2$S in renal cortex homogenates was measured by a method used before [20]. Briefly, renal cortex (~50 mg) was homogenized in 500 µL lysis buffer (100 mM potassium phosphate buffer, pH 7.4) containing 10 mM sodium orthovanadate. Protein concentration of homogenate was measured by a protein quantitative analysis kit (Shenergy Biocolor BioScience and Technology). One hundred and thirty micrograms of homogenate was added in a reaction mixture containing piridoxal-5'-phosphate (2 mM, 20 µL), L-cysteine (10 mM, 20 µL), and adjusted the final volume to 500 µL with ddH$_2$O. The reaction was initiated by transferring tube from ice to a water bath at 37 °C. After incubation for 30 min, 250 µL of 1% (w/v) zinc acetate (ZnAC) was mixed into the reaction. Then, 250 µL of 10% (w/v) trichloroacetic acid (TCA), 133 µL of 20 mM N,N-diethyl-p-phenylene-diamine dihydrochloride in 7.2 M HCl and 133 µL of 30 mM FeCl$_3$ in 1.2 M HCl were added in sequence. After reactions were terminated, the absorbance at 670 nm was measured on a spectrophotometer (TECAN Infinite M200 Systems Inc., Salzburg Umgebung, Salzburg, Austria). All samples were assayed in duplicate. The optimal density value obtained at 670 nm was normalized by protein concentration and extrapolated from the standard curve obtained from the same plate [21].

Table 1. The primer sets and PCR product characteristics

<table>
<thead>
<tr>
<th>Target</th>
<th>Oligonucleotide sequence</th>
<th>Tm</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β1</td>
<td>F: 5'-TGGGCTACCTTGTTAACC-3'</td>
<td>62</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>R: 5'-GTTGTTGACCCCTTTCCAG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen IV</td>
<td>F: 5'-ATTCTTTGTGTAGCACACCCAG-3'</td>
<td>60</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>R: 5'-AACCTGTAAGCATCGGTGAAT-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE</td>
<td>F: 5'-GAAGCCAAGCTGCTGAAATGTA-3'</td>
<td>58</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>R: 5'-GATGCCACCTCTGGAAGTA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>F: 5'-CTCTCATTGACCTCAACTACATG-3'</td>
<td>60</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>R: 5'-CTCTTCCATGTTGGAAGAC-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*F, forward; R, reverse.

Table 2. Characterization of the experimental groups of rat

<table>
<thead>
<tr>
<th></th>
<th>Control (0–21 days)</th>
<th>Diabetes (1-21 days)</th>
<th>Diabetes + NaHS (15-21 days)</th>
<th>Control + NaHS (15–21 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 days</td>
<td>207.50 ± 4.23</td>
<td>209.29 ± 2.30</td>
<td>210.50 ± 3.83</td>
<td>205.00 ± 2.83</td>
</tr>
<tr>
<td>7 days</td>
<td>244.17 ± 5.23</td>
<td>218.57 ± 6.14**</td>
<td>220.50 ± 3.96</td>
<td>244.38 ± 3.95</td>
</tr>
<tr>
<td>14 days</td>
<td>296.67 ± 2.79</td>
<td>232.14 ± 6.80**</td>
<td>233.00 ± 5.12</td>
<td>295.00 ± 2.99</td>
</tr>
<tr>
<td>21 days</td>
<td>310.83 ± 9.87</td>
<td>242.36 ± 9.12**</td>
<td>250.50 ± 5.75</td>
<td>303.16 ± 4.72</td>
</tr>
<tr>
<td>Urea protein (mg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 days</td>
<td>41.29 ± 2.59</td>
<td>42.14 ± 4.35</td>
<td>43.60 ± 3.61</td>
<td>40.95 ± 3.73</td>
</tr>
<tr>
<td>7 days</td>
<td>36.81 ± 3.35</td>
<td>52.70 ± 8.61</td>
<td>51.75 ± 3.99</td>
<td>37.42 ± 2.80</td>
</tr>
<tr>
<td>14 days</td>
<td>34.48 ± 3.96</td>
<td>58.62 ± 3.82**</td>
<td>56.52 ± 4.34</td>
<td>37.52 ± 4.03</td>
</tr>
<tr>
<td>21 days</td>
<td>35.71 ± 4.98</td>
<td>61.74 ± 4.12**</td>
<td>48.46 ± 5.30#</td>
<td>40.00 ± 5.28</td>
</tr>
<tr>
<td>Blood glucose (mmol/L) 21d</td>
<td>4.83 ± 0.43</td>
<td>19.56 ± 2.15***</td>
<td>22.66 ± 0.74</td>
<td>5.82 ± 0.67</td>
</tr>
<tr>
<td>Blood creatinine (µmol/L) 21 days</td>
<td>46.04 ± 2.12</td>
<td>70.89 ± 0.96**</td>
<td>69.18 ± 3.67</td>
<td>49.35 ± 1.64</td>
</tr>
<tr>
<td>Blood urea nitrogen (µmol/L) 21 days</td>
<td>8.87 ± 0.74</td>
<td>14.87 ± 1.32**</td>
<td>11.01 ± 0.59#</td>
<td>9.03 ± 1.12</td>
</tr>
</tbody>
</table>

*p < 0.01, **p < 0.001 versus control; #p < 0.05; ##p < 0.01 versus diabetes.
in diabetic rats, but this treatment lowered blood urea nitrogen and urea protein in diabetic rats but not in non-diabetic control rats.

As shown in Figure 1A and B, H2S in both plasma and renal cortex was decreased 3 weeks after STZ injection. Quantitative real-time-PCR data showed that the levels of both CSE mRNA (Figure 1C) and CSE protein (Figure 1D) in the renal cortex of STZ-induced diabetic rat was lower than that of control rats. Administration of NaHS, a H2S donor, did not change the decreased CSE mRNA level in diabetic rat. However, NaHS treatment for a week significantly decreased the CSE mRNA level in nondiabetic rats. Compared with control rats, the collagen IV mRNA and protein levels were increased in the renal cortex of STZ-induced diabetic rats (Figure 2A and B). This increase was reversed by NaHS treatment in diabetic condition. By contrast, NaHS treatment did not alter the renal cortex collagen IV mRNA level in non-diabetic rats.

Effect of H2S supplementation on TGF-β1 mRNA level in diabetic renal cortex

The TGF-β1 mRNA level in diabetic rat renal cortex was increased as compared with that of control rats. Administration of NaHS for 1 week reversed the elevation in TGF-β1 mRNA level in diabetic but not in control rats (Figure 3).

Effect of high glucose on CSE expression in cultured renal MCs

Incubation of rat renal MCs in high glucose media for 24 h resulted in a significant decrease of CSE mRNA and protein as compared with normal glucose group. NaHS treatment did not change the CSE mRNA level in both normal and high glucose groups. In addition, there was no significant change in CSE mRNA and protein levels in the osmotic control group (Figure 4A and B).

Effect of H2S on MCs proliferation induced by high glucose stimulation

BrdU incorporation assay showed that treatment of the cultured renal MCs with high glucose media for 48 h increased cell proliferation. Treatment with NaHS suppressed high glucose-induced MC proliferation in a concentration-dependent manner. NaHS, as low as 30 μM, completely reversed high glucose-induced MCs proliferation. This concentration was, therefore, selected for all subsequent experiments. Thirty micromolars of NaHS had no effect on proliferation in normal glucose-treated cells. Treatment of MCs with CSE inhibitor PPG resulted in a significant increase in cell proliferation and this effect was similar to that induced by high glucose (Figure 5).

Effect of H2S on collagen IV production by cultured MCs

Changes in collagen IV synthesis were shown in Figure 6. Collagen IV mRNA and protein expression levels were increased upon high glucose stimulation but unaffected by osmotic control media. Application of 30 μM NaHS reversed high glucose-induced elevations in both collagen IV mRNA and protein levels. By contrast, 30 μM NaHS did not change the collagen IV mRNA level in normal glucose-treated cells. On the other hand, PPG, a CSE inhibi-
tor, increased the expression of both collagen IV mRNA and protein.

Effect of H2S on TGF-β1 mRNA level in cultured MCs

A significant elevation in TGF-β1 mRNA levels was detected in the MCs exposed to high glucose for 24 h but not to osmotic control media. Applications of 30 μM NaHS reversed high glucose-induced elevations in TGF-β1 mRNA levels. Again, PPG treatment resulted in a significant elevation in the TGF-β1 mRNA level (Figure 7).

Effect of H2S on ROS generation in cultured MCs

The production of ROS in cultured MCs was enhanced after 24-h exposure to high glucose but not to osmotic control media. Application of 30 μM NaHS reversed high glucose-induced increase in ROS generation. PPG produced a similar effect to high glucose exposure on ROS generation by MCs (Figure 8).

Discussion

H2S has long been known as a colorless, flammable and toxic gas [5]. In recent years, H2S is increasingly recognized as a gasotransmitter that exerts a wide spectrum of biological and physiological effects [22,23]. The role of H2S in the regulation of renal function has also been recently reported [24]. H2S participates in the control of renal function and increases urinary sodium excretion via both vascular and tubular actions in the kidney [25]. The synthesis of endogenous H2S catalyzed by CSE is essential to protect the kidney against ischemia/reperfusion injury and facilitate the recovery [26]. A recent study shows that NaHS treatment inhibits renin activity elevation and blunted blood pressure elevation in 2-kidney 1-clip hypertensive rats [27].

DN, a long-term complication of diabetes associated with the highest mortality, is the leading cause of end-stage renal disease [28]. Although advanced glycation end products and dyslipidemia are all known to be associated with diabetic organ damages, hyperglycemia is likely to be the...
primary pathological contributor to the development of DN [29]. The present result showed that both H2S level and CSE expression in renal cortex decreased significantly in diabetic rats, which is consistent with a recent observation that blood H2S levels are significantly lower in patients with type 2 diabetes compared with age-matched healthy subjects and in STZ-treated diabetic rats compared with control SD rats [30]. Besides, we showed that the reduced H2S level and CSE expression were accompanied by up-regulation of TGF-β1 and collagen IV in the renal cortex. Administration of NaHS reversed the increased production of TGF-β1 and collagen IV. TGF-β1 is a key regulator of extracellular matrix synthesis and cell proliferation and considered to be a marker of renal fibrogenesis, while collagen IV is one of the major extracellular matrix synthesized and secreted by MCs, and overproduction of collagen IV is related to glomerular hypertrophy and sclerosis [31,32]. The present results suggest that the decreased generation of endogenous H2S in diabetic rats might involve the development of DN and H2S restoration could be a target in curtailting hyperglycemia-induced renal injury.

The present results suggest that the inhibitory effect of NaHS on TGF-β1 and collagen IV expression in diabetic rats is unlikely to be mediated by modulating plasma glucose level because the latter was not changed. Instead, H2S might act directly on the renal cells. It is noted that these changes in CSE expression and H2S production occurred at the very early stage of diabetes (3 weeks after STZ injection). It is thus possible that the altered H2S level might be one of the triggering factors in the initiation of DN.

To determine the role of CSE/H2S pathway, cultured MCs were used in the study. MCs are inherent vascular peripheral cells in renal glomeruli. Hyperglycemia-induced MCs over-proliferation and excessive synthesis and secretion of extracellular matrix have been considered as early
pathological events in DN [33,34]. In vitro observations were consistent with the result from diabetic animals in the present study. Both PCR and western blot results demonstrated that the CSE expression in renal MCs was decreased, while proliferation and extracellular matrix secretion were increased under high glucose condition. NaHS treatment suppressed high glucose-induced cell proliferation and reversed the elevated collagen IV synthesis. CSE inhibitor PPG evoked similar changes as high glucose in cultured MCs. In the kidney, CSE is the key enzyme in the trans-sulfuration pathway, which cleaves l-cysteine to release H2S [9,10]. So, all results suggest that decreased endogenous H2S generation due to down-regulating CSE in high glucose condition may account for high glucose-induced MC proliferation and extracellular matrix production. However, the mechanisms by which high glucose decrease the production of endogenous H2S remains unclear, which deserves further investigation.

The present study also confirmed that TGF-β1 mRNA level was significantly elevated by high glucose in MCs. In agreement with the in vivo results, the elevation of TGF-β1 was reversed by NaHS treatment. Blockade of endogenous H2S formation by PPG significantly elevated the TGF-β1 mRNA level. Based on these observations, we speculate that the decreased endogenous H2S production caused by high glucose might be related to nephrotic fibrosis through increasing TGF-β1, then stimulates MCs proliferation and collagen IV over-production.

Over-production of ROS is involved in the pathophysiological process of DN. Hyperglycemia induces ROS generation [35] and ROS initiates up-regulation of TGF-β1, leading to MC proliferation and excessive extracellular matrix production [36–38]. The present study confirmed that high glucose increased ROS generation in MCs and provided evidence that NaHS is able to reduce high glucose-induced ROS generation. The antioxidant effect of low level of H2S was previously observed in cultured vascular smooth muscle cells [39]. Homocysteine treatment of cultured vascular smooth muscle cells increased cellular levels of superoxide anion, hydrogen peroxide and peroxynitrite; this prooxidative effect was antagonized by low levels of NaHS. NaHS also potentiated the protective effects of other known antioxidants, such as N-acetyl-l-cysteine and superoxide dismutase against the cellular damage induced by homocysteine [39]. The exact mechanism underlying H2S-decreased ROS generation in MCs is yet to be detailed. Whether or not reduced endogenous H2S level under high glucose condition could disturb the redox balance or affect the activity of ROS generating-enzymes needs additional examination.

In summary, hyperglycemia or high glucose suppresses the expression of CSE in both renal cortex and cultured MCs and decreases endogenous synthesis of H2S. Decreased H2S renders elevation of ROS level, leading to the up-regulation of TGF-β1 that may mediate MC proliferation, and excessive collagen IV production/secretion. All those changes may participate in renal glomerular hypertrophy, sclerosis and interstitial fibrosis. Restoring H2S level under diabetic conditions might represent a novel strategy in the management of DN. Nevertheless, there is limitation in the present study. For example, the treatment duration with NaHS was relatively short, which may explain the lack of apparent effects on key morphological parameters of DN, such as interstitial fibrosis and glomerular sclerosis, and functional parameters, such as glomerular filtration rate and proteinuria. The long-term impact of NaHS administration to diabetic rats on their renal function warrants careful examination.

Acknowledgements. This research was financially supported by the Shanghai Natural Science Foundation (No. 09ZR1404200), the Scientific Research Foundation of the State Human Resource Ministry and the Education Ministry for Returned Chinese Scholars, China (No. C003362), to L.L. and an operating grant from Canadian Diabetes Association to R.W.

Conflict of interest statement. None declared.

References

5. Wang R, Two's company, three's a crowd—can H2S be the third endogenous gaseous transmitter? FASEB J 2002; 16: 1792–1798