Impact of CMV infection on acute rejection and long-term renal allograft function: a systematic analysis in patients with protocol biopsies and indicated biopsies

Uta Erdbruegger¹, Irina Scheffner², Michael Mengel¹, Anke Schwarz², Willem Verhagen⁴, Hermann Haller² and Wilfried Gwinner²

¹Division of Nephrology and Hypertension, University of Virginia, Charlottesville, VA, USA, ²Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany, ³Department of Laboratory Medicine and Pathology, University of Edmonton, Edmonton, Canada and ⁴Department of Microbiology and Virology, Hannover Medical School, Hannover, Germany

Correspondence and offprint requests to: Uta Erdbruegger; E-mail: ue2u@virginia.edu

Abstract

Background. Higher rates of acute rejection (AR) and reduced graft survival have been reported in patients with cytomegalovirus (CMV) infection, but an association between these factors remains controversial.

Methods. In this study, serial protocol biopsies (PBs) and clinically indicated biopsies (IBs) from a large cohort of renal allograft recipients (n=594) were analyzed to examine the relation between CMV and AR.

Results. Patients with CMV were more likely to receive IB (85 of the 153 patients; 56%) compared to patients without CMV (138 of 441 patients; 32%; P=0.003). However, this did not translate into a greater number of patients with episodes of acute cellular rejection on histopathology in IBs. Analysis of PBs revealed a significantly higher number of episodes of rejection per patient with CMV infection (P=0.04), but only in a subgroup of patients with triple immunosuppression. Long-term graft function post-transplantation was analyzed in four different subgroups according to CMV infection and/or AR. Differences in renal function were apparent within the first 6 weeks after transplantation and persisted during follow-up, with the best renal function in patients without AR or CMV, whereas patients with both AR and CMV had the worst (P<0.012 at 1 year; P<0.001 at 2 years). On average, the latter group had significantly older donors and more often delayed graft function.

Conclusions. Our data suggests that the link between CMV and AR is far less significant than previously thought. Outcome in patients with CMV may be more determined by coexisting conditions like high donor age and delayed graft function.

Keywords: acute rejection; CMV; long-term allograft function; protocol biopsies

Introduction

Cytomegalovirus (CMV) infection is a frequent complication in the early post-transplant period [1, 2]. It has been associated with increased morbidity [3] and reduced graft survival [4]. Reduced graft survival could be related to an increased rate of acute rejections (ARs) in patients with CMV as suggested by experimental [5, 6] and clinical studies [7–10]. However, the association between CMV and AR remains controversial since some investigators could not confirm this finding [11–13]. Also, it is uncertain whether CMV infection promotes AR [5] or if augmented immunosuppressive therapy in the setting of AR causes CMV infection [12, 14]. In addition, treatment of CMV disease often includes reduction of immunosuppression, which may increase the risk of graft rejection.

The aim of this study is to examine the relation between CMV and AR in a large cohort of patients after renal transplantation. The study focuses on a systematic analysis of serial protocol biopsies (PBs) and biopsies clinically indicated. In addition, this study analyses the association between clinical variables and the long-term allograft outcome in CMV infection after renal transplantation.

Materials and methods

Subjects

A total of 594 patients with a kidney or a combined kidney/pancreas transplantation between 2001 and 2004 were included in this retrospective analysis. All patients were enrolled in the renal transplant PB program as described below. Patients demographics and characteristics are summarized in Table 1.

Induction therapy was given in 88% of all patients (antithymocyte globulin in 6% and interleukin-2 antibodies in 82%). Maintenance therapy with dual immunosuppression consisted of cyclosporine A (CyA) and prednisolone in 200 of 594 patients (33.7%); 227 patients (38.2%) received triple immunosuppression with additional mycophenolate mofetil (MMF). In 167 patients (28.1%), alternative regimens including sirolimus or azathioprine and tacrolimus instead of cyclosporine A were used. A subgroup of patients (340 patients) was created to focus the analysis on patients with triple immunosuppression, which reflects current standards for immunosuppressive therapy [15] (see Table 2).

Standard therapy for first-time acute tubulointerstitial rejection with and without a rise in serum creatinine consisted of pulse methylprednisolone 250–500 mg intravenously given for 3 days. Additionally, in patients...
receiving dual immunosuppression with CyA and prednisolone, MMF was added. Patients with cyclosporine A-containing regimens who experienced a second acute tubulointerstitial rejection episode (ARE) or who had the rejection later than 3 months post-transplant were switched to tacrolimus. Patients with a borderline rejection were treated like patients with acute tubulointerstitial rejection if baseline creatinine had increased >25%. Acute vascular rejections were treated with steroid bolus (500 mg prednisolone) and a switch from cyclosporine A to tacrolimus. All patients received prophylaxis for Pneumocystis jirovecii with trimethoprim/sulfamethoxazole three times a week for 6 months. Prophylactic antiviral treatment to prevent CMV infection is described below.

PB program

Renal PBs are regularly performed at our transplant center at 6 weeks, 3 and 6 months after kidney or combined kidney/pancreas transplantation [16]. About 45% of patients have additional biopsies to evaluate unexplained allograft dysfunction (clinically indicated biopsy (IB)). Demographic and characteristics of patients with triple immunosuppression are listed in Table 1. Patients with PRA > 0% were compared with and without CMV and AR. Differences with \(P < 0.05 \) were considered statistically significant. Values are given as median or mean ± SD, unless otherwise stated. All statistics were done with SPSS version 16.0 (SPSS, Inc., Chicago, IL).

Statistical analysis

Categorical variables between the groups and different biopsy time points were compared using chi-square test for two or more samples or Fisher’s test for two samples. Long-term allograft function was examined by two-way analysis of variance. All other numerical data were compared with the Kruskal–Wallis test and the Mann–Whitney test. A stepwise negative binomial regression analysis was used to examine associations of clinical variables with the patient outcome. Nominal regression analysis was used to examine associations of clinical variables with the patient groups with and without CMV and AR. Differences with \(P < 0.05 \) were considered statistically significant.

Results

Incidence of CMV infection and clinical presentation

A proportion of 153 of the 594 patients (26%) developed a CMV infection within 12 months post-transplantation. The majority of CMV infections occurred within the first...
3 months post-transplantation, with a median onset of 63 days and an average duration of 18 days. The incidence of CMV infection varied depending on CMV-IgG serostatus, with seropositive recipients of seropositive organs being the most common group (P < 0.0001). This is summarized in Figures 1 and 2.

In 137 patients with CMV infection, the data set regarding CMV antigenemia testing (CMV pp65) was sufficient to analyze the issue of recurrence of CMV infection. Thirty-seven of these 137 patients (27%) had more than one episode of CMV infection in the first year post-transplantation. The fraction of patients with recurrent CMV infection was only numerically higher in the high-risk serogroup D+/R− (14 of 40 patients; 35%) compared to D+/R+ (16 of 67 patients; 24%) and the other two serogroups (D−/R+: 5 of 20; 25%; D−/R−: 2 of 8; 25%; all P > 0.05).

All 153 patients with CMV infection had a total of 193 episodes of CMV infection in the first year post-transplantation. CMV disease was observed in 54 of these 193 (28%) episodes. In 14 cases, CMV disease was characterized by more than one manifestation of CMV (flu-like symptoms and/or organ involvement). Patients in the high-risk serogroup D+/R− were more often symptomatic (18 of 41 patients: 44%) than patients with D+/R+ (16 of 71 patients: 23%; P = 0.02).

To assess the severity of CMV infection, all results of CMV pp65 antigen testing during the CMV episode were used to calculate the mean and median numbers of positive cells and to determine the highest number of positive cells for each patient (Table 3). Significantly higher CMVpp65 values could be observed in patients with CMV disease compared to those with viremia only. Single versus...

Fig. 1. CMV serostatus and incidence of CMV infection. The total height of the bars illustrates the distribution of patients into the different risk groups according to the serum CMV IgG status of donor (D) and recipient (R). Percentages provided in the bars are indicating the percentages of patients with CMV infection (viremia only or CMV disease) in each risk group.

Fig. 2. Time points of CMV infection. Numbers in the bars indicate how many patients had CMV infection within the first 6 weeks (wks), between 6 wks and 3 months (ms), between 3 and 6 ms and between 6 and 12 ms post transplantation according to the serum CMV IgG risk status of donor (D) and recipient (R).
Clinical factors associated with CMV infection

Several clinical factors including pre-transplant data, donor factors and recipient’s comorbidities were compared between CMV-positive and -negative patients. Significant differences were found for patients with CMV infection within the first year post-transplantation and the duration of CMV infection. Several clinical factors including pre-transplant data, donor factors and recipient’s comorbidities were compared between the patient groups with and without CMV infection in univariate analyses to identify potential risk factors for CMV infection (for a complete list of examined factors, see Supplementary Table). Significant differences for patients with CMV infection were further analyzed in a stepwise negative logistic regression analysis, which revealed that the CMV serostatus is the strongest factor (Table 4).

Clinical variables that changed during the first year post-transplantation like immunosuppression, antibiotic therapies, bacterial infections, etc. were separately analyzed. In patients with CMV infection between 6 weeks and 3 months, antibiotic therapy (given for different indications) was more frequent (30%) compared to patients without CMV (17%), P = 0.054. Notably, different immunosuppressive drug regimens did not show any relation with CMV infection.

Table 3. Severity of CMV infection∧

<table>
<thead>
<tr>
<th>CMV pp65 parameters</th>
<th>CMV disease</th>
<th>CMV viremia</th>
<th>Single CMV episode</th>
<th>Recurrent CMV episodes</th>
<th>CMV Ig D+/R+</th>
<th>CMV Ig D+/R−</th>
<th>CMV Ig D−/R+</th>
<th>CMV Ig D−/R−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>26.2*</td>
<td>6.6</td>
<td>9.3</td>
<td>7.3</td>
<td>6.9**</td>
<td>27.4$</td>
<td>3.4***</td>
<td>42.4</td>
</tr>
<tr>
<td>Median</td>
<td>7.8*</td>
<td>4.5</td>
<td>5.7</td>
<td>5.2</td>
<td>4.6*</td>
<td>7.5$</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Maximum</td>
<td>66.0*</td>
<td>9.3</td>
<td>14.0</td>
<td>11.0</td>
<td>8.5**</td>
<td>52.0$</td>
<td>4.6***</td>
<td>183.0</td>
</tr>
<tr>
<td>Duration of CMV</td>
<td>12.3</td>
<td>11.5</td>
<td>9.0</td>
<td>15.2</td>
<td>9.2**</td>
<td>19.3$</td>
<td>7.0</td>
<td>17.0</td>
</tr>
</tbody>
</table>

∧The severity of CMV infection is described by the number of CMV pp65 antigen-positive cells/400 000 cells. For each patient, all results of CMV pp65 antigen testing during the CMV episode were used to calculate the mean and median number of positive cells. In addition, the highest value of positive cells reached during the CMV episode and the duration of CMV antigenemia is given. These results are summarized for different subgroups, such as patients with CMV disease versus viremia only, patients with single compared to recurrent CMV episodes (for definitions see Materials and Methods) and for the four different combinations of CMV IgG-positive and -negative donors and recipients.

∧P < 0.05 compared to CMV viremia; **P < 0.02 and $P < 0.05 compared to D+/R−; $P < 0.05 compared to D−/R+; ***P < 0.05 compared to D−/R−.

Table 4. Associations between CMV and clinical variables∧

<table>
<thead>
<tr>
<th>Clinical variable</th>
<th>Patients without CMV</th>
<th>Patients with CMV</th>
<th>Univariate analysis; P value</th>
<th>Logistic regression; P value</th>
<th>Odds ratio</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient’s age (years)</td>
<td>49 ± 13</td>
<td>52 ± 14</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancies before Tx (%)</td>
<td>23</td>
<td>33</td>
<td>0.025</td>
<td>0.053</td>
<td>1.6</td>
<td>0.99−2.47</td>
</tr>
<tr>
<td>Coronary heart disease (%)</td>
<td>14</td>
<td>23</td>
<td>0.016</td>
<td>0.008</td>
<td>2.0</td>
<td>1.21−3.52</td>
</tr>
<tr>
<td>History of myocardial infarction (%)</td>
<td>4.1</td>
<td>9.2</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV Ig D+/R− (%)</td>
<td>21</td>
<td>29</td>
<td>0.044</td>
<td>0.000</td>
<td>7.0</td>
<td>3.06−16.1</td>
</tr>
<tr>
<td>CMV Ig D+/R+ (%)</td>
<td>29</td>
<td>47</td>
<td>0.000</td>
<td>0.000</td>
<td>6.9</td>
<td>3.12−15.3</td>
</tr>
<tr>
<td>CMV Ig D−/R− (%)</td>
<td>24</td>
<td>16</td>
<td>0.031</td>
<td>0.029</td>
<td>2.6</td>
<td>1.10−6.31</td>
</tr>
<tr>
<td>Dialysis post-transplantation (%)</td>
<td>30</td>
<td>41</td>
<td>0.012</td>
<td>0.033</td>
<td>1.6</td>
<td>1.04−2.45</td>
</tr>
</tbody>
</table>

∧Pre-transplant data, donor factors and recipient’s co-morbidities were compared between the patient groups with and without CMV infection in univariate analyses to identify potential risk factors for CMV infection (for a complete list of examined factors, see Supplementary table). Significant factors of these univariate analyses are shown in the table and were further analyzed in a stepwise negative logistic regression analysis, which revealed that the CMV serostatus is the strongest factor for CMV infection. Tx, transplantation; D/R, donor/recipient.
looked at the average number of rejection per patient (Figure 3B). There was only a numerical trend that patients with CMV had slightly more episodes of rejection per patient (AR in PBs: 0.22 episodes per patient without CMV versus 0.28 episodes per patient with CMV; in clinically IBs: 0.18 episodes per patient versus 0.22 episodes per patient).

Our large cohort of 594 patients received different immunosuppressive regimens reflecting variability in immunosuppressive regimens in different centers across the world. We therefore looked at a subgroup of patients receiving only triple immunosuppression according to current standards for immunosuppressive therapy [15]. Interestingly, the percentage of patients having a CMV infection remained the same (25.6% in subgroup versus 25.8% in ‘all patients’). There were four characteristics, which distinguished these two groups. The subgroup included more living donors (22 versus 14%, P < 0.01), more combined pancreas/kidney transplantations (14 versus 8%, P < 0.01), had shorter cold ischemia time (13 versus 15 h, P < 0.01) and was slightly younger (mean age 48 versus 50 years old, P = 0.03).

We performed the same statistical analysis we applied to the entire group of 594 patients. Figure 4 summarizes the findings of this subgroup analysis. Analyzing PBs, an insignificantly higher proportion of patients in the CMV group had borderline rejection (BL) and AR and less patients had only BL (P = 0.063). This trend translated into more episodes of rejections (Banff type Ia-IIb) per patient with CMV infection in PBs (P = 0.04).

We could not find a significant difference regarding the number of rejection episodes per patient in patients with and without CMV infection who received clinically IBs. Since previous studies have analyzed data from clinically IBs and not from PBs, we believe that this particular analysis of clinically IBs is directly comparable with analyses reported so far in the literature.

Further subgroup analysis showed that patients with recurrent CMV infection were no more likely to develop AR than those with a single CMV episode. Also, patients with clinical CMV disease were no more likely to develop AR than patients with viremia only (data not shown). Both analyses were performed looking at two separate groups of PBs and clinically IBs.

In order to analyze the timely relationship between CMV and acute tubulointerstitial rejection, we again looked separately at PBs and clinically IBs. We found both scenarios, i.e. CMV infection preceding AR and CMV infection after treatment of rejection episodes, almost equally present. This is illustrated in Figure 5, which shows a Gaussian distribution of the rejection episodes with regards to the timely relationship to the occurrence of CMV infection. The small shift of the angular point of the Gaussian distribution suggests that slightly more CMV infection episodes may occur before an AR compared to CMV infections occurring after AR in patients with PBs.

![Figure 3](https://example.com/fig3.png)

Fig. 3. Borderline rejection (BL) and acute cellular rejection in PBs and IBs from patients with and without CMV. (A) Proportion of patients with rejection episodes. (B) Average number of rejection episodes per patient.
and vice versa in patients receiving clinically indicated biopsies.

Long-term outcome in patients with and without CMV and AR

Long-term allograft function was assessed by the creatinine clearance applying the Cockroft–Gault formula. In addition, individual changes of clearance over time were calculated as percentage change for each patient relating the best creatinine clearance within the first 6 weeks post-transplantation to the following time points (‘delta creatinine clearance’). The creatinine clearance was significantly higher after 1 and 2 years in patients without CMV (median values: 55.5 and 53.4 mL/min), compared to patients with CMV infection (median values: 49.4 and 43.2 mL/min; \(P < 0.01 \) for both time points). The delta creatinine clearance between those two groups was not significantly different after 1 and 2 years.

![Graph showing timely relationship between acute rejection episodes and CMV infection.](https://academic.oup.com/ndt/article-abstract/27/1/435/1929648)

Fig. 5. Timely relationship between acute rejection episodes and CMV infection. The interval between onset of CMV infection and the biopsy with AR was calculated (days). Positive values represent CMV infections occurring before AR and negative values indicate cases with CMV infection occurring after the rejection.
Fig. 6. Long-term allograft function in patients with and without CMV infection and AR. Four groups were created depending on a positive (+) or negative (-) history of CMV infection and AR during the first post-transplant year. Creatinine clearance was calculated by the Cockcroft–Gault formula at 6 weeks, 1 and 2 years after transplantation. Groups were significantly different (two-way analysis of variance: $P < 0.0001$), whereas no time-dependent changes were found ($P = 0.08$). Post testing by the Mann–Whitney U-test revealed significant differences at all three time points between CMV−/AR− and the other three groups. No significant differences were detected among the other three groups by the post test. Values represent means ± SEMs.

CMV infection is a frequent complication in the early post-replant period [1]. In addition to CMV-related morbidity and mortality, CMV has been associated with a negative impact on the graft function and with increased rates of AR, but data from previous clinical observations have been inconsistent and are considered controversial [3, 4]. We have utilized our large cohort of patients with clinically IBs/PBs and functional data to explore the association between CMV and AR in renal transplantation.

We have been able to confirm previous observations that most CMV infections occur in the first 6 months post-transplant [22], and that disease onset is delayed in patients receiving CMV prophylaxis in the early post-transplant period (Figure 1). Additionally, we confirm previous observations that patients with the serostatus D+/R− or D+/R+ have more often CMV infection [22], with higher rates of recurrent and symptomatic CMV episodes in the D+/R+ group. This could indicate a benefit of extended CMV prophylaxis in patients with D+/R− serostatus and possibly efficacious CMV prophylaxis in patients with D+/R+ serostatus to avoid CMV-related morbidity [23].

With the inclusion of $>$40 clinical variables in our analyses, we have been able to identify additional potential risk factors for CMV infection that have not been previously described. The need of dialysis post-transplantation, higher donor’s and recipient’s pregnancies prior to transplantation were factors associated with a higher incidence of CMV infection. Nonetheless, regression analysis identified CMV serostatus as the most important risk factor for CMV infection.

Table 5. Analysis of factors with potential effect on long-term allograft function in the different patients groups formed depending on a history of CMV and AR

<table>
<thead>
<tr>
<th>Donor age (years)</th>
<th>Rate of delayed graft function (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male recipients)</td>
<td>(Female recipients)</td>
</tr>
<tr>
<td>CMV−/AR−</td>
<td>44.4 ± 16.9</td>
</tr>
<tr>
<td>CMV−/AR+</td>
<td>45.1 ± 15.9</td>
</tr>
<tr>
<td>CMV+/AR−</td>
<td>51.5 ± 14.1</td>
</tr>
<tr>
<td>CMV+/AR+</td>
<td>55.9 ± 14.6</td>
</tr>
<tr>
<td>(Male recipients)</td>
<td>(Female recipients)</td>
</tr>
<tr>
<td></td>
<td>47.2 ± 14.2</td>
</tr>
<tr>
<td></td>
<td>49.4 ± 15.7</td>
</tr>
<tr>
<td></td>
<td>53.0 ± 16.8</td>
</tr>
<tr>
<td></td>
<td>52.7 ± 16.7</td>
</tr>
<tr>
<td></td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>30.8</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>38.0</td>
</tr>
<tr>
<td></td>
<td>44.4</td>
</tr>
</tbody>
</table>

*aNominal regression analysis was separately performed in male and female patients because of the inclusion of the factor pregnancy in females. Donor age differed significantly between the four patient groups ($P < 0.01$ in male patients; $P = 0.037$ in female patients). Delayed graft function was significantly different in females only ($P = 0.05$).

Discussion

CMV infection is a frequent complication in the early post-replant period [1]. In addition to CMV-related morbidity and mortality, CMV has been associated with a negative impact on the graft function and with increased rates of AR, but data from previous clinical observations have been inconsistent and are considered controversial [3, 4]. We have utilized our large cohort of patients with clinically IBs/PBs and functional data to explore the association between CMV and AR in renal transplantation.

We have been able to confirm previous observations that most CMV infections occur in the first 6 months post-transplant [22], and that disease onset is delayed in patients receiving CMV prophylaxis in the early post-transplant period (Figure 1). Additionally, we confirm previous observations that patients with the serostatus D+/R− or D+/R+ have more often CMV infection [22], with higher rates of recurrent and symptomatic CMV episodes in the D+/R+ group. This could indicate a benefit of extended CMV prophylaxis in patients with D+/R− serostatus and possibly efficacious CMV prophylaxis in patients with D+/R+ serostatus to avoid CMV-related morbidity [23].

With the inclusion of $>$40 clinical variables in our analyses, we have been able to identify additional potential risk factors for CMV infection that have not been previously described. The need of dialysis post-transplantation, higher donor’s and recipient’s pregnancies prior to transplantation were factors associated with a higher incidence of CMV infection. Nonetheless, regression analysis identified CMV serostatus as the most important risk factor for CMV infection.

Former studies reported MMF and anti-lymphocyte induction therapy as significant risk factors for CMV infection [24–26]. Interestingly, more recent studies have suggested a protective effect of MMF in this setting [27, 28]. In our patient cohort, the choice of immunosuppressive regimen including induction therapy was not related to the incidence of CMV infection.

Several previous studies have postulated an association between CMV infections and AR, but the results are inconsistent [7–9, 10–13, 29]. These inconsistencies may derive
from the fact that ARE were not always confirmed by biopsy [7] and that small patient cohorts were analyzed in some of the studies. In our reasonably large cohort of patients, we did not find a significant association between CMV and AR in clinically IBs. Even more, the analysis of PBs that may pick up clinically silent AR did only reveal a relation to CMV in a subgroup of patients with triple immunosuppression.

Studies have suggested that patients with clinically symptomatic or recurrent CMV infection are especially vulnerable having a higher frequency of AR. However, detailed analysis of our clinical data did not confirm this link as the same frequency of AR was observed in patients with asymptomatic CMV viremia or a single episode of CMV infection.

Another matter of controversy is the time course of CMV infection and AR. It is unclear whether CMV infection precedes AR or vice versa [4, 12, 14]. A case can be made for both scenarios. Immunosuppressive therapy is often reduced when the diagnosis of CMV infection is established, which may subsequently promote AR [5]. Also, CMV infection has been associated with upregulation of cytokines, adhesion molecules and increased expression of MHC class II surface markers that may result in AR [5]. On the other hand, acute rejection episodes require escalation of immunosuppressive therapy, which may promote CMV infection. We found that both scenarios—AR preceding CMV infection and CMV infection occurring before AR—occurred with almost identical frequencies in our patient cohort. One possible explanation for this observation is that both pathophysiologic entities are similarly relevant. Alternatively, one could postulate that there is no causal link between CMV infection and AR.

Finally, it is important to know whether CMV is related to worse long-term outcome. Similar to others [4, 23, 30, 31], overall outcome was inferior in patients with CMV infection. However, we and others inferior that a more detailed examination is necessary. Boratyńska et al. [30] reported that patients with both CMV infection and AR had the worst renal function. The potentiation of deleterious effects of AR and CMV disease was also suggested by Humar et al. [31] and similarly, by Nett et al. [4]. In the report of McLaughlin [32] patients with the CMV serostatus D+/R− had an increased risk of allograft loss; yet, multivariate analysis identified only delayed graft function and AR but not CMV as independent factors. In our analysis, the four groups with and without CMV/AR were clearly different in the long-term outcome and with regards to donor age and rates of delayed graft function. The worst renal function at 1 and 2 years occurred in the subgroup of 21 patients who encountered both CMV infection and AR. Yet, we propose that the strong differences in donor age and rate of delayed graft function between patient groups with and without CMV/AR can explain the observed outcomes adequately. In favor of this hypothesis is the fact that the worse graft function in patients with CMV and AR was observed early on after transplantation.

There are possible limitations to this study. The study design is retrospective. Nevertheless, we utilize a large cohort of patients that can outweigh the deficits a retrospective study carries. Less than half of the patients received a more ‘traditional’ immunosuppressive regimen with two immunosuppressive drugs. This might better reflect the variability in immunosuppressive regimens in different centers across the world. More than 50% of the patient receive immunosuppressive protocols according to current standards.

In conclusion, our data suggest that the link between CMV infection and ARs is far less significant than previously thought. Also, outcome in patients with CMV infection may be more determined by coexisting conditions like high donor age and delayed graft function, which are more prevalent in cases with CMV. Nonetheless, antiviral prophylaxis may be beneficial in patients with D+/R− and D+/R+ serostatus to minimize CMV–related morbidity in the early post-transplant period.

Supplementary data

Supplementary data is available online at http://ndt.oxfordjournals.org.

Acknowledgements. The help of A. Wohlgenuth and H. Doehring in the collection of the data is greatly appreciated.

Supported by intramural funding of the Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.

Conflict of interest statement. None declared.

References

 Kidney Int 1993; 44: 221–236
3. Sagedal S, Nvardal KP, Hartmann A et al. A prospective study of the
 natural course of cytomegalovirus infection and disease in renal allograft recipients.
 Transplantation 2000; 70: 1166–1174
 disease and acute rejection with graft loss in kidney transplantation.
 Transplantation 2004; 78: 1036–1041
5. Borchers AT, Perez R, Kayser G et al. Role of cytomegalovirus infection
 in allograft rejection: a review of possible mechanisms.
 Transpl Immunol 1999; 7: 75–82
 reactivation and its impact on organ transplant patients.
 Transpl Infect Dis 1999; 1: 157–164
7. Sagedal S, Nvardal KP, Hartmann A et al. The impact of cytomegalovirus
 infection and disease on rejection episodes in renal allograft recipients.
 Am J Transplant 2002; 2: 850–856
 242 renal transplant patients.
 Transplantation 1993; 55: 851–857
9. Lowance D, Neumayer HH, Legendre CM et al. Valacyclovir for the
 prevention of cytomegalovirus disease after renal transplantation.
 International Valacyclovir Cytomegalovirus Prophylaxis Transplantation
 Study Group.
 Transpl Int. 2000; 13: 413–419

Received for publication: 28.11.10. Accepted in revised form: 29.4.11