High cardiovascular risk in patients with Type 2 diabetic nephropathy: the predictive role of albuminuric and glomerular filtration rate. The NID-2 Prospective Cohort Study

Ferdinando C. Sasso1,2, Paolo Chiodini3, Ornella Carbonara1,2, Luca De Nicola4, Giuseppe Conte4, Teresa Salvatore1,2, Rodolfò Nasti1,2, Raffaele Marfella2, Ciro Gallo3, Simona Signorillo3, Roberto Torella1,2 and Roberto Minutolo4; on behalf of the NID-2 (Nephropathy In Type 2 Diabetes) Study Group

1Department of Internal and Experimental Medicine, Second University of Naples, Naples, Italy, 2Excellence Centre for Cardiovascular Disease, Second University of Naples, Naples, Italy, 3Department of Biostatistics, Second University of Naples, Naples, Italy and 4Department of Nephrology, Second University of Naples, Naples, Italy

Correspondence and offprint requests to: Ferdinando C. Sasso; E-mail: ferdinando.sasso@unina2.it

Abstract
Background. In Type 2 diabetic patients, clinical diagnosis of diabetic nephropathy (DN) is generally based on the concomitant presence of abnormal albuminuria and severe retinopathy. In this high-risk population, cardiovascular (CV) outcome has never been evaluated.

Methods. A cohort of 742 Type 2 diabetic patients with DN from 17 national centres was selected by the presence of persistent albuminuria ≥30 mg/day and severe diabetic retinopathy and was followed prospectively. Time to CV event (CV death, non-fatal myocardial infarction, non-fatal stroke, revascularization, major amputation) was the primary composite end point and it was analysed by multivariable Cox’s proportional hazards model. The interaction between albuminuria and glomerular filtration rate (GFR) was specifically investigated.

Results. Median follow-up was 4.6 years. Overall 242 events (26% of which fatal) were observed in 202 patients. The proportion of CV events increased from 19 to 40% as GFR declined from the highest (≥90 mL/min/1.73m²) to the lowest (<45 mL/min/1.73m²) category and was equal to 25 and 33% in microalbuminuria and macroalbuminuria, respectively. In multivariable analysis, the interaction between albuminuria and GFR was statistically significant (P = 0.012). Albuminuria, indeed, had a remarkable prognostic effect in subjects with high GFR that virtually disappeared as GFR became <30 mL/min/1.73m². Age, smoking habit, previous occurrence of myocardial infarction or stroke and proliferative retinopathy were all found to have a statistically significant prognostic effect on CV outcome.

Conclusions. A clinically based diagnosis of DN in Type 2 diabetes allows the identification of subjects with high CV risk. Albuminuria has a relevant prognostic effect on CV morbidity and mortality; its effect is especially pronounced when GFR is normal or near normal.
Keywords: albuminuria; cardiovascular; diabetic nephropathy; GFR; proliferative retinopathy

Introduction

Diabetic nephropathy (DN) is defined by severe retinopathy and albuminuria ≥ 30 mg/day and occurs in a minority of Type 2 diabetic patients [1]. DN is different from renal disease occurring in diabetic patients and shows a more rapid decline of renal function than nephropathy due to other causes [2]. However, studies on cardiovascular (CV) outcome in Type 2 DN are still lacking.

Although both albuminuria and glomerular filtration rate (GFR) are believed to be risk factors for CV events, there are limited data as to whether these two factors are associated with adverse outcomes independent not only of other known CV risk factors but also of each other in patients with Type 2 diabetes. Recently, the ADVANCE study [3] showed that high albuminuria and low GFR are independent risk factors for CV events among patients with Type 2 diabetes. However, the two main clinical features defining DN, that is diabetic retinopathy and albuminuria, were detected in only 7.1 and 29.3% of patients, respectively [4]. More important, 62% of patients with a GFR < 60 mL/min did not have concurrent albuminuria [3]. Overall, these data suggest that the ADVANCE study does not provide information on the outcome of ‘true’ DN.

The Nephropathy In Diabetes-Type 2 (NID-2) study [5] was originally designed to investigate the prevalence of CV risk factors, their management and the achievement of international guideline targets in a large population of Type 2 diabetic patients with a clinical diagnosis of DN (concomitance of albuminuria and severe diabetic retinopathy), followed up in the tertiary care setting. The cross-sectional phase of the NID-2 study pointed out that patients with DN are characterized by clusters of risk factors, not at target, compatible with a high CV risk profile [5]. Moreover, the NID-2 study showed that frank chronic kidney disease (CKD) (GFR < 60 mL/min) was present in 38 and 62% of micro- and macroalbuminuric DN patients, respectively.

The aim of this prospective study was to evaluate CV progression and determinants in the NID-2 cohort of 742 Type 2 diabetic patients, selected by the presence of abnormal albuminuria and severe diabetic retinopathy. In particular, we investigated how renal risk factors, albuminuria and GFR affected CV outcome in this sub-group of diabetic patients.

Materials and methods

The cross-sectional phase of the NID-2 study evaluated diabetic patients at 17 national centres during a 6-month period from November 2002 to May 2003. Inclusion criteria were: Type 2 diabetes mellitus, age ≥ 40 years, therapy with diet and/or oral hypoglycaemic agents during the first year of the diagnosis of diabetes, persistent albuminuria ≥ 30 mg/day in at least two of three recordings in the last 6 months, a severe diabetic retinopathy as judged by means of fundus oculi and fluorangiography when necessary. Severe DR was defined as a proliferative diabetic retinopathy or a severe non-proliferative diabetic retinopathy, with vascular closure. This last criterion was chosen as the clinical hallmark of DN [1, 2, 6], thus excluding other possible causes for increased albuminuria since renal biopsies are not indicated for diagnostic purposes in microalbuminuric diabetic patients. Exclusion criteria were prior dialysis or renal transplant, diagnosis of diabetes at < 30 years of age, insulin therapy during the first year of diagnosis of the disease (in order to exclude unknown autoimmune diabetes of adults), severe liver or heart failure and known neoplastic or psychiatric disease. All the participating physicians declared that they adhered to recommendations of the clinical practice guidelines issued by the American Diabetes Association [7]. Ethical committees approved the prospective phase of the study and all the patients signed informed consent.

Active follow-up, with control visits planned every 6 months, was completed on 30 November 2009. Baseline information included past medical history, with particular reference to major CV events (myocardial infarction and stroke), blood pressure (BP) measurement (calculated as a mean of three measurements taken in a sitting position after 10 min of rest), height and body weight as well as laboratory and therapeutic features. Laboratory tests were performed locally and included glycaemic, lipidic and renal function assessment. GFR was calculated by the four-variable Modification of Diet in Renal Disease equation and albuminuria was measured on 24-h urine collection; microalbuminuria and macroalbuminuria were defined by values of $30–300$ and > 300 mg/day, respectively. The primary composite end point was time to CV events, defined as time from basal visit to CV death, non-fatal myocardial infarction, non-fatal stroke, revascularization or major amputation, whichever occurred first. When a CV event was suspected, hospital records were collected to make the diagnosis according to European Society of Cardiology and American College of Cardiology criteria [8, 9]. Death certificates and autopsy reports were used to establish the underlying cause of death and to adjudicate CV deaths, through the ninth revision of the International Classification of Diseases.

Statistical analysis

For descriptive purpose, patients were categorized into four groups according to GFR (GFR ≥ 60 and < 60 mL/min/1.73 m2) and the presence of micro- or macroalbuminuria. A regression model was used to assess the main effects of the two factors (GFR categories and micro- and macroalbuminuria) and their interaction effect. A multiple linear regression model was used for continuous dependent variables, while a logistic regression model was used for categorical ones. Median follow-up was estimated by inverse Kaplan–Meier curve. Multivariable Cox proportional hazards model, stratified by centre, was used to estimate hazard ratio (HR) and corresponding 95% confidence intervals (CIs). Covariates included predefined baseline risk factors [age, gender, body mass index (BMI), smoking, previous cardiovascular disease, Hba1c, cholesterol, systolic BP and proliferative retinopathy] and interaction between albuminuria and GFR. Interaction between either albuminuria or GFR and covariates included in the model was also tested. For each variable, restricted cubic splines were used to take into account the non-linear association with endpoint and were tested by means of likelihood ratio test. All statistical tests were two tailed and $P < 0.05$ was considered significant. Statistical analyses were performed using SPSS version 12.0 (SPSS Inc, Chicago, IL) and R version 2.9.2 (R Foundation for Statistical Computing, Vienna, Austria) software packages.

Results

From the original cohort of 847 patients, previously described [5], three centres following 72 patients refused to participate in the follow-up study and 33 patients were lost to follow-up. Therefore, 742 (95.7%) patients were included in the present study. Demographic and clinical characteristics of patients lost to follow-up did not differ from the study subjects. Baseline characteristics are reported in Table 1. One-third of the patients ($n = 247$) was aged > 70 years, 287 (38.7%) were obese (BMI ≥ 30 kg/m2) and 323 (43.5%) were overweight (BMI 25–30 kg/m2). Diagnosis of diabetic nephropathy was reported in 309/660 (46.8%) patients and autonomic neuropathy was diagnosed in 128/634 (20.2%) patients. BP target ($< 130/80$ mmHg) was attained in 137 patients (18.5%) with a 2-fold greater prevalence of diastolic BP target (55.0%) than systolic target (28.0%). Oral hypoglycaemic agents alone and in-sulin alone were used by 57.8 and 19.3% of patients,
Demographic and clinical characteristics of patients stratified for albuminuria and GFR (expressed as mL/min/1.73m²) –

<table>
<thead>
<tr>
<th>Microalbuminuria</th>
<th>Macroalbuminuria</th>
<th>P-valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (n = 742)</td>
<td>GFR ≥ 60 (n = 384)</td>
<td>GFR < 60 (n = 219)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65.8 ± 8.9</td>
<td>64.2 ± 9.0</td>
</tr>
<tr>
<td>Male gender (%)</td>
<td>46.6</td>
<td>52.1</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.3 ± 4.9</td>
<td>29.2 ± 4.6</td>
</tr>
<tr>
<td>Smokers (%)</td>
<td>23.3</td>
<td>27.9</td>
</tr>
<tr>
<td>CVD (%)</td>
<td>23.3</td>
<td>17.9</td>
</tr>
<tr>
<td>Proliferative DR (%)</td>
<td>70.1</td>
<td>75.5</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.5 ± 1.24</td>
<td>7.5 ± 1.26</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>197 ± 40</td>
<td>196 ± 37</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>48 ± 11</td>
<td>49 ± 11</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>119 ± 35</td>
<td>119 ± 33</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>152 ± 79</td>
<td>145 ± 75</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>13.2 ± 1.4</td>
<td>13.5 ± 1.2</td>
</tr>
<tr>
<td>PAF (mL/min/1.73m²)</td>
<td>66 ± 24</td>
<td>82 ± 16</td>
</tr>
<tr>
<td>AUC (mg/day)</td>
<td>100 (54–222)</td>
<td>71 (42–113)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>136 ± 13</td>
<td>135 ± 13</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>78 ± 7</td>
<td>78 ± 7</td>
</tr>
<tr>
<td>Anti-hypertensive drugs (%)</td>
<td>1.8 ± 1.1</td>
<td>1.5 ± 1.0</td>
</tr>
<tr>
<td>CEI and/or ARB (%)</td>
<td>73.5</td>
<td>68</td>
</tr>
<tr>
<td>OHA (%)</td>
<td>64.8</td>
<td>71.6</td>
</tr>
<tr>
<td>Insulin (%)</td>
<td>26.3</td>
<td>19.8</td>
</tr>
<tr>
<td>Statins (%)</td>
<td>32.9</td>
<td>27.9</td>
</tr>
<tr>
<td>Aspirin (%)</td>
<td>44.9</td>
<td>40.9</td>
</tr>
</tbody>
</table>

Values are mean ± SD, median (IQR) or percent. CVD, history of myocardial infarction or stroke; GFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; DR, diabetic retinopathy; UAlb, urinary albumin excretion; CEI, converting enzyme inhibitors; ARB, angiotensin II receptor blockers; OHA, oral hypoglycaemic agents.

P-values were calculated from multiple linear regression model and logistic regression model for continuous and categorical-dependent variables, respectively.

GFR < 60 versus GFR ≥ 60, macroalbuminuria versus microalbuminuria and their interaction were used as covariates in each model.

Nephrology consultation was requested in 137 patients (18.5%). This occurred more frequently in the sub-group with low GFR and in macroalbuminuric patients. Specifically, nephrology consultation rate was 9.5, 24.1, 19.2 and 45.2% in patients with microalbuminuria and GFR ≥ 60 mL/min/1.73m², microalbuminuria and GFR < 60 mL/min/1.73m², macroalbuminuria and GFR ≥ 60 mL/min/1.73m² and macroalbuminuria and GFR < 60 mL/min/1.73m², respectively.

Median follow-up was equal to 4.6 years (IQR 3.2–6.3). Overall, 242 CV events occurred in 202 (27.2%) patients (CV death n = 64, non-fatal myocardial infarction n = 80, non-fatal stroke n = 51, revascularization n = 43, amputation n = 4). Eight patients died of non-CV cause and seven patients progressed to end-stage renal disease. Incidence rate of CV events occurring during the study are reported in Table 2. At multivariable Cox regression analysis, taking microalbuminuria and normal GFR as the reference, HR was 1.43 (95% CI 1.00–2.04) for microalbuminuria and GFR < 60 mL/min/1.73m², 1.83 (95% CI 1.04–3.02) for macroalbuminuria and GFR ≥ 60 mL/min/1.73m² and 1.72 (95% CI 1.08–2.76) for macroalbuminuria and GFR < 60 mL/min/1.73m². The final multivariable Cox regression analysis was built replacing the four groups with GFR and albuminuria as continuous variables (Table 3 and Figure 1). Age, history of CV disease, smoking habit, proliferative retinopathy, independently increased the risk of CV events. As testified by restricted cubic spline analysis,
association of continuous variables with risk outcome was always linear (data not shown). Interaction between GFR and albuminuria was statistically significant (P = 0.012), suggesting that either effect varied as the other one was changing. Conversely, no interaction was detected between either GFR or albuminuria and other covariates included in the model. The combined HRs from Cox regression model and for specific values of albuminuria and GFR are reported in Figure 1; reference values are 90 mL/min/1.73m² for GFR and 30 mg/day for albuminuria. Albuminuria had a remarkable prognostic effect in subjects with high GFR that virtually disappeared as GFR became very low. At the same time, a predictive role for GFR can be detected only in microalbuminuric patients.

Discussion

This study originally evaluated the impact of risk factors on CV outcome in a prospective cohort of 742 Type 2 diabetic patients with persistent albuminuria and severe retinopathy. In particular, we investigated the prognostic role of the two main renal risk factors (albuminuria and GFR).

It is well established that diabetic subjects with associated nephropathy present an increased CV risk and that most of them do not develop end-stage renal disease because of prior fatal CV events [10]. All the previous investigations, however, examined patients with ‘unspecific’ microalbuminuria or macroalbuminuria [3, 10, 11]. This is a critical point of difference with our study because the absence of retinopathy constitutes the strongest clinical evidence to consider albuminuria as a non-diabetic lesion by renal histological analysis, with very high sensitivity (87%) and specificity (93%) [12]. On the other hand, in clinical practice, kidney biopsy, which is the ideal diagnostic tool to discern between true and false DN, is hardly feasible for ethical reasons in patients without significant proteinuria. Therefore, the NID-2 study investigated a specific sub-group of diabetic patients never studied before, but easily identifiable.

The first result to be underlined is the high CV risk of the population studied. Overall, 27.2% of the patients, during the follow-up (4.6 years on median), experienced at least one CV event, fatal in about one-third of cases. The incidence rates are definitely higher than those observed in studies with similar duration of follow-up conducted in ‘generic’ Type 2 diabetic populations [13]. Notably, CV event rate is even greater than that observed in the diabetic microalbuminuric group of HOPE Study and MICROHOPE sub-study [14].

Age, history of CV disease, smoking habit, proliferative retinopathy, albuminuria and GFR independently increased the risk of CV events. Among the non-renal risk factors, the significant prognostic role of type of diabetic retinopathy is of great interest, confirming recent observations [15, 16]. Indeed, in an 18-year follow-up study [15], proliferative retinopathy predicted all-cause, CV and coronary death in Type 2 diabetic subjects. These associations were independent of current smoking, hypertension, total cholesterol, high-density lipoprotein cholesterol, glycaemic control, duration of diabetes and proteinuria. In a sub-analysis of the VADT study [16], a relevant relationship was observed between retinopathy and coronary atherosclerosis quantified by means of computed tomography-detectable coronary artery calcium. Individuals with proliferative retinopathy were ~6-fold more likely to have high coronary artery

| Table 2. Incidence rate of CV events occurring during the study overall and in sub-groups |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Overall (n = 742) | GFR ≥ 60 (n = 384) | GFR < 60 (n = 219) | GFR ≥ 60 (n = 59) | GFR < 60 (n = 80) |
| CV death | | | | | |
| Number of events | 202 | 64 | 26 | 7 | 4 |
| Event rate (100 patient-years) | 1.98 | 1.28 | 2.69 | 1.71 | 3.84 |
| Non-fatal CV event | | | | | |
| Number of events | 150 | 71 | 46 | 12 | 21 |
| Event rate (100 patient-years) | 5.13 | 4.51 | 5.26 | 6.00 | 7.61 |
| Fatal/non-fatal events | | | | | |
| Number of events | 202 | 64 | 26 | 7 | 4 |
| Event rate (100 patient-years) | 6.90 | 5.59 | 7.77 | 7.50 | 11.23 |

| Table 3. HR and 95% CI for fatal and non-fatal CV events by Cox regression analysis |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | β-Coefficient | HR | 95% CI | P |
| Age (years) | 0.0291 | 1.03 | 1.01–1.05 | 0.003 |
| Male gender | 0.1469 | 1.16 | 1.08–1.21 | 0.352 |
| BMI (kg/m²) | −0.0005 | 1.00 | 0.97–1.03 | 0.976 |
| Smokers (yes versus no) | 0.4276 | 1.53 | 1.08–2.17 | 0.016 |
| History of MI or stroke (yes versus no) | 0.8455 | 2.33 | 1.70–3.19 | <0.0001 |
| Proliferative DR (yes versus no) | 0.4599 | 1.58 | 1.10–2.28 | 0.013 |
| HbA1c (%) | 0.0780 | 1.08 | 0.96–1.22 | 0.212 |
| Total cholesterol (mg/dL) | −0.0010 | 1.00 | 1.00–1.00 | 0.612 |
| Systolic BP (mmHg) | 0.0067 | 1.01 | 1.00–1.02 | 0.274 |
| GFR (5 mL/min/1.73m²) | −0.0688 | 1.00 | 1.00–1.02 | 0.002 |
| Albuminuria (g/day) | −1.0830 | 1.00 | 1.00–1.02 | 0.165 |
| Interaction eGFR × albuminuria | 0.1799 | 1.00 | 1.00–1.02 | 0.012 |

³DR, diabetic retinopathy.
⁴For HR, see Figure 1.
of the ADVANCE study [3], 10,640 Type 2 diabetic patients clash with the conclusions of another study. In a sub-analysis able prognostic effect in subjects with high GFR that vir-

jority of patients of ADVANCE was normoalbuminuric

tients at baseline and for duration of follow-up, but the ma-

studies were similar for age, HbA1c, BMI of diabetic pa-

ference between NID-2 and ADVANCE studies. The two

diabetes, but there was no evidence of any interaction be-

for both CV and kidney outcomes in patients with Type 2

independently and continuously associated with the risk

creased urinary albumin excretion and reduced GFR are

with levels of albuminuria and serum creatinine available at

CV outcome in DN 2273

Fig. 1. Combined effects of albuminuria and GFR levels at baseline on the

risk for fatal and non-fatal CV events. The estimates were calculated at

specific values of GFR and albuminuria and adjusted for the covariates

included in the Cox model (Table 2). Reference category GFR 90 mL/min/

1.73m² and albuminuria 30 mg/day.
calcium than those with no proliferative retinopathy, even

after adjustment for the other CV risk factors. Our and the

previous data, therefore, suggest the presence of common

background pathways for diabetic micro- and macrovascular
disease. In particular, abnormal albuminuria could be a link-

age between these diabetic vascular complications, being a

marker of an early inflammatory state in the atherosclerotic
disease process [17]. In this regard, a recent study has evi-
denced that the risk of developing retinopathy is greater in

the diabetic patients with GFR <60 and macroalbuminuria

respect to diabetics with GFR <60 without macro-

albuminuria [18].

The main measures of renal damage markedly influenced

the CV outcome of these patients. In particular, proportion

of CV events increased from 19 to 40% as GFR declined

from the highest (≥90 mL/min/1.73m²) to the lowest (<45

mL/min/1.73m²) category and was equal to 25 and 33% in

micro- and macroalbuminuria, respectively. In particular,

the most intriguing findings resulted from multivariable

analysis, showing an interaction between albuminuria and

GFR (Figure 1). Albuminuria, indeed, showed a remark-

able prognostic effect in subjects with high GFR that virtu-

ally disappeared in the lower strata of GFR. These results

clash with the conclusions of another study. In a sub-analysis

of the ADVANCE study [3], 10,640 Type 2 diabetic patients

with levels of albuminuria and serum creatinine available at

baseline were studied, and it was observed that both in-

creased urinary albumin excretion and reduced GFR are

independently and continuously associated with the risk

for both CV and kidney outcomes in patients with Type 2
diabetes, but there was no evidence of any interaction be-

tween these risk factors.

On this matter, it is interesting to underline the great dif-

terence between NID-2 and ADVANCE studies. The two

studies were similar for age, HbA1c, BMI of diabetic pa-

ents at baseline and for duration of follow-up, but the ma-

jority of patients of ADVANCE was nor-

albuminuric

(69%) and only 7% had retinopathy; therefore, it was a
generic diabetic population, with and without nephropathy.
Although patients with a previous CV event at baseline were
32% in ADVANCE versus 23% in NID study, and BP at
baseline was higher in ADVANCE versus NID (145/81
versus 136/78 mmHg) patients, thus suggesting a major
CV risk in ADVANCE group, the incidence rates of total
major CV events and of death from CV causes were, respec-
tively, 3 and 2.5-fold higher in NID group than in overall
ADVANCE diabetic population. Therefore, the different
role for GFR and albumin excretion rate (AER) on CV out-

come observed in the two studies could be the result of two
different diabetic populations.

The explanation for this interaction is not readily appar-

ent. We may speculate that in patients with normal or only

mildly reduced GFR, the prognostic role on CV outcome of

albuminuria is higher because under these conditions, al-

buminuria is a marker of endothelial dysfunction, therefore

heralding as such the increased CV risk [19]. On the other

hand, indirect evidence suggests that in the presence of

more impaired renal function, albuminuria is more related
to either glomerulosclerosis or advanced tubular damage

rather than endothelial dysfunction [20–23].

It is supposable that our results could offer a different,

less exacting, interpretation of the significant positive in-

teraction of GFR and AER. In fact, for the low prevalence

(<6%) of CKD at Stages 4 and 5, both measures could

simply provide significant prognostic information about

the risk of CV events, and their effects could be multipli-
cative. However, our intriguing interpretation of the find-

ings seems to be supported by the current knowledge of CV

risk in Type 2 diabetes.

The main limitation of this study is that the observational

nature precludes a proper cause-effect analysis; however,

results are hypothesis generating to design multifactorial

intervention trials aimed at verifying the possible improve-

ment of CV outcome in patients with true DN. In particular,

our findings suggest an intensive treatment in the early

phases of DN, when the increased albuminuria is coupled

normal (or slightly decreased) GFR. On the basis of

our findings, it is in fact intriguing to hypothesize that at this

stage of nephropathy, an intensive approach to abnormal

albuminuria may reduce CV risk. A potential area of im-

provement, to be verified by ad hoc randomized trials, may

be represented by the dual blockade of renin-angiotensin

system (RAS) in diabetics selected by abnormal albuminu-

ria [24]. This intervention was rare in the NID-2 patients

and in particular in the early phases of DN. In this regard,

a specific role of a dual RAS blockade on cardioenal risk in

diabetic patients in the early phases of renal damage and

without established CV diseases should be tested.

As above stated, another limitation of the study is the low

prevalence (<6%) of GFR <30 mL/min.

Finally, the strict criteria used to select the population are

also a limitation of the study because its results cannot be

generalized to all diabetic patients. Nevertheless, the very

high CV risk observed in the NID-2 cohort strengthens the

prognostic usefulness of these selection criteria, independ-

ently of histological confirmation of DN. In fact, even if the

coe-existence of albuminuria and retinopathy in Type 2 dia-

bates was recently reported to be not always histologically
matched in DN [25], the possibility to clinically identify a sub-group of patients at very high CV risk represents the highlight of this study.

In conclusion, patients with Type 2 DN show a CV risk independently related to age, history of CV disease, smoking habit, proliferative retinopathy, albuminuria and GFR. Albuminuria has a relevant prognostic effect on CV morbidity and mortality; its effect is especially pronounced when GFR is normal or near normal. These findings strongly suggest an intensive treatment since the early phases of DN, especially for albuminuria and smoking cessation, but it has to be confirmed by an interventional study.

Acknowledgements. This work was partially supported by an Italian Government grant from M.I.U.R. (Ministero della Istruzione, Università e Ricerca) Rome, Italy. The study sponsor had no role in the collection, analysis and interpretation of data in the writing of the report and in the decision to submit the paper for publication.

F.C.S. had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Contribution statement. F.C.S. and R.M.: conception and design, interpretation of data, drafting the article and final approval of the manuscript; P.C., O.C., L.D.N., G.C., S.S. and C.G.: analysis and interpretation of data, final approval of the version to be published; T.S., R.N., R.M., R.T.: revising the manuscript critically for important intellectual content, final approval of the version to be published.

Conflict of interest statement. None declared.

Appendix

References

Received for publication: 11.7.11; Accepted in revised form: 3.10.11