Atypical haemolytic uraemic syndrome with underlying glomerulopathies. A case series and a review of the literature

Lucio Manenti¹, Elisa Gnappi¹, Augusto Vaglio¹, Landino Allegri¹, Marina Noris², Elena Bresin², Francesco Paolo Pilato³, Elisabetta Valoti², Sonia Pasquali⁴ and Carlo Buzio¹

¹Nephrology Unit, University Hospital of Parma, Parma, Italy, ²Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Bergamo, Italy, ³Pathology Department, University Hospital of Parma, Parma, Italy and ⁴Nephrology Unit, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy

Correspondence and offprint requests to: Lucio Manenti; E-mail: lmanenti@hotmail.com

ABSTRACT

Background. Primary or secondary glomerulonephritis has been anecdotally reported in association with atypical haemolytic uraemic syndrome (aHUS). We here report a series of six patients who developed aHUS and glomerulopathy, and review the literature on aHUS and glomerulonephritis.

Methods. Out of all patients diagnosed at our unit with biopsy-proven glomerular diseases between March 2007 and October 2011, selected cases developing aHUS during the follow-up are presented. The following tests were performed in all six patients: serum C3 and C4 levels, ADAMTS13 activity, CFH levels and anti-CFH autoantibodies and genetic screening for CFH, MCP, CFI, C3 and CFHR1-3 mutations and risk haplotypes associated with aHUS.

Results. Two hundred and forty-eight patients received a biopsy-proven diagnosis of glomerulopathy and were followed for a median of 31 months (range 2–58). Of these, six developed aHUS, within a median of 15 months (range 1–36) of their initial diagnosis of glomerulopathy. One of these patients had focal segmental glomerulosclerosis (FSGS), two membranoproliferative glomerulonephritis (MPGN) type I, one C3 glomerulonephritis and two systemic small vessel vasculitis.

Conclusions. Different types of glomerulopathies can be complicated by aHUS. Several mechanisms can contribute to this association, such as nephrotic-range proteinuria, mutations or aHUS-risk haplotypes involving genes encoding alternative complement regulatory proteins in some patients and inflammatory triggers associated with systemic immune-mediated diseases.

INTRODUCTION

Atypical haemolytic uraemic syndrome (aHUS) is a thrombotic microangiopathy (TMA) that often produces irreversible renal damage. It represents 5–10% of paediatric cases of HUS and the majority of adult cases. The clinical onset of the disease is often insidious [1].

Keywords: atypical haemolytic uraemic syndrome, glomerulonephritis, nephrotic syndrome, thrombotic microangiopathy, vasculitis
In the last few years, complement alternative pathway (AP) abnormalities have been recognized to be the cause of most aHUS cases, and mutations involving AP regulatory genes were identified in ~50% of the patients. A link has also emerged between aHUS and complement-mediated nephropathies, particularly membranoproliferative glomerulonephritis (MPGN), whose genetic background is common to that of aHUS [2], while other proteinuric glomerulopathies (such as IgA nephropathy, focal segmental glomerulosclerosis, FSGS) and vasculitis do not (at least at the same level of evidence). Intriguingly, primary or secondary glomerulopathies have been described in patients with aHUS [3–5], but the clinical significance of this association still remains elusive [6–8].

We here present a series of six patients, seen at the Nephrology Unit of our University Hospital over 4 years, who were initially diagnosed as having different types of glomerulopathies and later developed aHUS; additionally, we review the English-language literature on cases of aHUS associated with glomerulopathy and discuss the potential pathophysiological mechanisms linking glomerulopathy to aHUS.

Results

During the study period, 248 patients were diagnosed at our unit as having a biopsy-proven glomerulopathy (either primary or secondary); they were followed for a median of 31 months (range 2–58 months). Of these patients, six developed aHUS during the follow-up, within a median time of 15 months (range 1–36) of their initial diagnosis of glomerulopathy. One of these six patients had initially been diagnosed with FSGS, two with MPGN type I, one with C3 glomerulopathy (C3GN), and two with systemic small vessel vasculitis, namely one with granulomatosis with polyangiitis (Wegener’s, GPA) and the other with Henoch–Schönlein purpura. The main clinical data at the initial presentation of glomerulopathy are reported in Table 1 [14–16].

Follow-up data and therapy for both glomerulopathy and aHUS, results of the genetic screening including complement mutations and presence of CFH-H3 (that identifies the CFH-H3 risk haplotype) associated in homo- or heterozygosity with aHUS [14–18], and of MCPggaac risk haplotype, predisposing to aHUS when present in homozygosity [18], are also detailed in Table 1. The MCPagaat risk haplotype, recently associated with GNC3 and MPGN I [15], was not evaluated in our patients.

Case 1 presented at the age of 57 years with nephrotic-range proteinuria (24-h proteinuria, 3.7 g) and a serum creatinine of 79 μmol/L; his renal biopsy documented FSGS. Steroid treatment was started but 1 week later Hb dropped to 6.8 g/dL, 24-h proteinuria was 40 g and acute renal failure (serum creatinine 502 μmol/L) developed. The appearance of thrombocytopenia (99 × 10^9/mm^3), increased LDH (950 UI/L), undetectable haptoglobin and the presence of schistocytes with increased circulating reticulocytes supported the diagnosis of aHUS. Direct Coomb’s test, antinuclear, antiphospholipid and antiplatelet antibodies, ANCA and anti-CFH antibodies were negative. The patient recovered after 15 consecutive plasma exchange (PE) sessions. A few days after the end of PE treatment, aHUS reappeared and we decided to use...
Table 1. Clinical data of the six patients at the initial presentation of glomerulopathy, of aHUS and outcome at the last follow-up after aHUS onset

| ID | Age (years) | Sex | Initial glomerulopathy | IF (C3) | IF (IgG) | Time to aHUS (months) | 24-h proteinuria before/after aHUS (g) | Serum C3 a (>90 mg/dL) | Serum C4 b (>10 mg/dL) | CFH and MCP Haplotypes | Complement mutation | Focused therapy | Outcome |
|----|------------|-----|------------------------|--------|----------|----------------------|---------------------------------------|------------------------|------------------------|----------------------|----------------------|------------------|-------------|---------|
| 1 | 57 | M | FSGS | − | − | 1 | 3.7/40 | 123 | 28 | H3/H3 (CFH) TC (MCP) | No mutation | PE, RTX, steroids | Slight proteinuria |
| 2 | 13 | M | MPGN I | +++ | + | 25 | 2.9 | 42 | 33 | H3/H3 (CFH) TT (MCP) | CFH p.I216T; SCR4 | PE, cyc, steroids | ESRD |
| 3 | 22 | F | MPGN I | +++ | + | 31 | 2.1/4.1 | 48 | 16 | H1/H3 (CFH) TT (MCP) | No mutation | PE, cyc, steroids | ESRD |
| 4 | 54 | M | GN-C3 | +++ | − | 55 | 0.2/0.5 | 26 | 25 | H4/H7 (CFH) CC (MCP) | No mutation | Steroids, cyc | CKD |
| 5 | 66 | M | GPA | ++ | + | 18 | 4.1/7.3 | 47 | 24 | H3/H3 (CFH) TT (MCP) | No mutation | PE, steroids | ESRD, Died |
| 6 | 32 | M | HSP | ++ | + | 7 | 10/12 | 131 | 30 | H3/H3 (CFH) TC (MCP) | No mutation | Steroids, cyc azathioprine, RTX | ESRD |

The CFH-H3 risk haplotype (that identifies the haplotype CFH-ggt) associated with aHUS was tagged by genotyping rs3753394 (c.1-332C>T) in the promoter, and rs800292 (c.184G>A; p.V62I), rs1061170 (c.1204T>C; p.Y402H), rs3753396 (c.2016A>G; p.Q672Q), rs1065489 (c.2808G>T; p.E936D) in the coding region [14, 15]. H1, H4 and H7 identify respectively the haplotypes CFHcgag, CFHgtag and CFHgttag [15, 16]. The patients were also analysed for the last SNP rs7144 (c.2232T>C) tagging the MCPggaac risk haplotype [16], also associated with aHUS when present on both alleles.

CKD, chronic kidney disease; ESRD, end stage renal disease; FSGS, focal and segmental glomerulosclerosis; GN-C3, C3 glomerulopathy; HSP, Schönlein–Henoch purpura; IF, immunofluorescence staining; GPA, granulomatosis with polyangiitis polyangiitis (Wegener); MPGN, membranoproliferative glomerulonephritis; PE, plasma exchange; Cyc, cyclophosphamide; RTX, rituximab.

a from initial glomerulopathy; b at the time of aHUS.
rituximab (RTX) (375 mg/m²/weekly for 4 weeks); the signs of haemolysis promptly subsided and nephrotic syndrome progressively ameliorated. At 3 years follow-up, 24-h proteinuria was 0.8 g. No mutations in the CFH, MCP and CFI genes were identified. A homozygous deletion of CFHR1-R3 was excluded. The patient was found to be homozygous for the aHUS-risk haplotype CFH-H3 (Table 1).

Three of the six patients (Cases 2, 3 and 4) had MPGN/C3GN. Serum C3 was consistently reduced in all three patients. A marked C3 deposition was also detected by immunofluorescence analysis of the kidney biopsy in all of them (Figure 1b and d).

Case 2 was diagnosed as having type I MPGN at the age of 13 years, and 3 years later developed aHUS (Figure 1a and b). Reduced CFH levels and a novel heterozygous CFH gene mutation in the short consensus repeat (SCR) 4 were documented (detailed description of this case is reported in [19]). The patient was also found to be homozygous for the aHUS-risk haplotype CFH-H3 (Table 1).

Case 3 received a biopsy-proven diagnosis of type I MPGN at the age of 22 years. Renal function remained substantially stable during the 2 years following renal biopsy. At the age of 24 years, she was hospitalized for acute renal failure due to aHUS. She was treated with PE until haemolysis disappeared;

FIGURE 1: Light microscopy findings in patients who developed glomerulopathy associated with aHUS. (a) (acid fuchsin orange G staining ×400) Case 2 showing an accentuated lobular architecture, mesangial expansion, thickened capillary walls with double contours, intracapillary thrombi and arteriolar thrombosis and by immunofluorescence (b) (with anti-C3c antibody ×400) diffuse granular deposition. (c) (acid fuchsin orange G staining ×200) Case 4 demonstrating organized arterial TMA with multiple segments with narrowing to near-complete obliteration of lumen and by immunofluorescence (d) (with anti-C3c antibody ×400) diffuse granular deposition. (e) Case 5 (Masson thricrome stain ×400) and (f) Case 6 (silver staining ×400) illustrating extracapillary proliferation, fibrinoid necrosis and intracapillary thrombi and mesangial, extracapillary proliferation, intracapillary thrombi and arteriolar thrombosis respectively.
no renal function improvement was observed and the patient became haemodialysis-dependent. ADAMTS13 activity was normal. No mutations in CFH, MCP, CFI and C3 genes were identified. Homozygous deletions of CFHRI-R3 and anti-CFH antibodies were excluded. The C3 nephritic factor was negative. The patient was found to be heterozygous for the aHUS-risk haplotype CFH-H3 (Table 1).

Case 4 had persistent proteinuria and microscopic haematuria since the age of 54 years and was admitted to our department at the age of 59 years for macroscopic haematuria and acute renal failure (serum creatinine from 168 to 760 µmol/L). A kidney biopsy showed diffuse tubular red cells casts but isolated mesangial C3 deposition on immunofluorescence; mesangial electron-dense deposits were disclosed by electron microscopy; altogether, these data supported the diagnosis of C3GN. During his hospital stay, the patient showed a spontaneous partial kidney function recovery (serum creatinine 176 µmol/L). Three months later he had a relapse of macroscopic haematuria and kidney function worsening (serum creatinine 592 µmol/L). A new kidney biopsy confirmed the diagnosis of C3GN with concurrent histological evidence of TMA (Figure 1c and d). He was treated with PE that was soon stopped because of an allergic reaction to plasma; three methylprednisolone boluses (500 mg each) were administered, followed by oral prednisone (1 mg/kg/day) and cyclophosphamide (1.5 mg/kg/day). aHUS remitted and an almost complete recovery of kidney function was obtained. At 12 months follow-up, both aHUS and C3GN were in remission; serum C3 was normal. ADAMTS13 activity was normal. He had no mutations in CFH, MCP and CFI genes. Homozygous deletions of CFHRI-R3 and anti-CFH antibodies were excluded. The C3 nephritic factor was negative. This patient was found to be CC homozygous for the c.2232T>C SNP tagging the MCPggaac aHUS-risk haplotype (Table 1).

The last two patients presented with renal vasculitis. Case 5 was admitted to our department at the age of 68 years because of nephrotic-range proteinuria, haemolysis, thrombocytopenia and acute renal failure. He had been diagnosed 2 years earlier as having GPA without renal involvement. A kidney biopsy confirmed the presence of necrotizing extracapillary proliferative glomerulonephritis with signs of TMA (Figure 1e). Immunofluorescence showed intense and diffuse C3 deposition. The patient was treated with PE, steroids and cyclophosphamide and, after 32 days, the laboratory signs of aHUS disappeared; renal function only partially recovered (serum creatinine decreased from 968 to 440 µmol/L). After 20 months, he started on haemodialysis although no aHUS recurrence occurred and 10 months after the beginning of haemodialysis he died of sepsis.

Case 6 was admitted to our department at the age of 32 years for nephrotic syndrome (24-h proteinuria 10 g), palpable purpura involving the lower extremities, abdominal pain and diarrhoea. A kidney biopsy showed crescentic glomerulonephritis with IgA and intense C3 deposition on immunofluorescence. Adult-onset Henoch–Schoenlein purpura was diagnosed and treated with steroids and oral cyclophosphamide. During immunosuppressive therapy, nephrotic syndrome persisted and was complicated by insidious haemolysis with rapidly progressive kidney failure (serum creatinine rose from 123 to 293 µmol/L). A kidney biopsy was repeated (Figure 1f) and confirmed intracapillary proliferation associated with intracapillary thrombi and arteriolar thrombosis. The clinical picture was unresponsive to high-dose steroids and the patient refused PE. RTX (375 mg/m²/weekly for 4 weeks) was administered. Signs of haemolysis disappeared, but renal failure and nephrotic-range proteinuria persisted. One year later the patient developed overt aHUS (severe thrombocytopenia, anaemia and renal failure); he finally accepted to start PE and haemolysis subsided after 14 days. However, renal function did not improve and he had to start haemodialysis.

No mutations of CFH, MCP and CFI were identified in Cases 5 and 6, but both of them carried the aHUS-predisposing CFH-H3 risk haplotype in homozygosity (Table 1).

Literature review

The results of our literature review are detailed in Tables 2–4. In particular, Table 2 reports the published cases of aHUS associated with a pre-existing nephrotic syndrome, Table 3 the cases of aHUS associated with MPGN and Table 4 those associated with vasculitic syndromes.

DISCUSSION

We present here a series of six patients who had an initial diagnosis of glomerulopathy and later showed a shift to aHUS. The patients’ nephropathies were etiologically distinct, but they can be grouped under three different patterns: nephrotic syndrome-causing glomerulopathy, MPGN/C3 glomerulopathy and immune-mediated/vasculitic glomerulonephritis.

To further investigate the link between glomerulopathy and aHUS, we reviewed the published cases of aHUS associated with an underlying glomerulopathy or vasculitis, and overall identified 65 cases (17 associated with nephrotic syndrome, 16 with MPGN and 32 with vasculitis syndromes).

In our case series, we excluded lupus nephritis patients since a close relationship with aHUS has already been documented, with 5–10% of lupus nephritis patients developing this complication. The aetiopathogenetic aspects linking SLE and aHUS are still unclear, but a role of complement dysregulation and CFH dysfunction in the susceptibility to SLE appears to emerge from genetic studies [13].

Five patients in our case series (one of them heterozygous for a CFH mutation) carried, in homo- or heterozygosity, the risk haplotype CFH-H3 (identifying the haplotype CFHi1ggt), previously described to be strongly associated with aHUS appearance [14–17], while another one patient was homozygous for the MCPggaac risk haplotype that has been shown to predispose to aHUS when present on both alleles [18]. Thus, it is possible that such predisposing genetic background contributed to amplifying the complement AP dysregulation triggered by glomerulopathies, thus leading to overt aHUS. In this regard, another MCP risk haplotype (MCPaaggt), not evaluated in our patients, was recently associated with C3GN and MPGN I [15], suggesting that the role of these polymorphisms...
in *CFH* and *MCP* is not limited to aHUS, in the line of the common complement-dysregulation background in aHUS and C3GN/MPGN.

We discuss our experience and the literature data organizing the collected patients on the basis of the underlying glomerulopathy.

<table>
<thead>
<tr>
<th>Author year</th>
<th>Sex</th>
<th>Age</th>
<th>Glomerulopathy</th>
<th>24-h proteinuria</th>
<th>Complement evaluation</th>
<th>Focused therapy</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marie et al. 1969 [20]</td>
<td>F</td>
<td>7</td>
<td>MNG</td>
<td>>3.5 g</td>
<td>N/A</td>
<td>Steroids</td>
<td>Proteinuria</td>
</tr>
<tr>
<td>Halikowski et al. 1971 [21]</td>
<td>F</td>
<td>7</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>Dische et al. 1978 [22]</td>
<td>M</td>
<td>20</td>
<td>MNG</td>
<td>1 g</td>
<td>Normal levels of C3 and C4 IF: IgG deposits</td>
<td>Steroids</td>
<td>Died</td>
</tr>
<tr>
<td>Krensky et al. 1981 [23]</td>
<td>M</td>
<td>7</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>N/A</td>
<td>Steroids</td>
<td>ESRD</td>
</tr>
<tr>
<td>Krensky et al. 1981 [23]</td>
<td>N/A</td>
<td>N/A</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>N/A</td>
<td>Steroids</td>
<td>ESRD</td>
</tr>
<tr>
<td>Krensky et al. 1981 [23]</td>
<td>N/A</td>
<td>N/A</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>N/A</td>
<td>Steroids</td>
<td>CKD</td>
</tr>
<tr>
<td>Siegler et al. 1989 [24]</td>
<td>M</td>
<td>22</td>
<td>MCD</td>
<td>4.7 g</td>
<td>Normal levels of C3 and C4</td>
<td>Steroids</td>
<td>CKD</td>
</tr>
<tr>
<td>Friedlander and Jacobs 1991 [25]</td>
<td>N/A</td>
<td>N/A</td>
<td>MNG</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bokenkamp et al. 1991 [26]</td>
<td>M</td>
<td>5</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>Normal levels of C3 and C4</td>
<td>N/A</td>
<td>ESRD</td>
</tr>
<tr>
<td>Liapis 2003 [27]</td>
<td>F</td>
<td>31</td>
<td>MNG</td>
<td>>3.5 g</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Benz et al. 2004 [28]</td>
<td>M</td>
<td>16</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>N/A</td>
<td>Steroids, i.v. Ig, RTX</td>
<td>Recovered</td>
</tr>
<tr>
<td>Koulova et al. 2005 [29]</td>
<td>M</td>
<td>40</td>
<td>MNG</td>
<td>10 g</td>
<td>Normal levels of C3, C4 and CH50</td>
<td>PE, steroids, VCR, RTX</td>
<td>Proteinuria</td>
</tr>
<tr>
<td>Benz et al. 2007 [30]</td>
<td>F</td>
<td>12</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>Normal levels of C4</td>
<td>Steroids</td>
<td>ESRD</td>
</tr>
<tr>
<td>Suri et al. 2008 [31]</td>
<td>M</td>
<td>11</td>
<td>FSGS</td>
<td>>3.5 g</td>
<td>Normal levels of C3 and C4</td>
<td>PE, steroids, MMF, RTX</td>
<td>Proteinuria</td>
</tr>
<tr>
<td>Kuppachi et al. 2009 [32]</td>
<td>M</td>
<td>43</td>
<td>MNG</td>
<td>10.2 g</td>
<td>IF: IgG deposits</td>
<td>PE, steroids, RTX</td>
<td>Proteinuria</td>
</tr>
<tr>
<td>Noris et al. 2010 [33]</td>
<td>F</td>
<td>31</td>
<td>MNG</td>
<td>>3.5 g</td>
<td>CFH mutation Reduced levels of C3</td>
<td>PE, steroids</td>
<td>ESRD</td>
</tr>
<tr>
<td>Noris et al. 2010 [33]</td>
<td>F</td>
<td>N/A</td>
<td>MCD</td>
<td>N/A</td>
<td>No complement mutations</td>
<td>PE, steroids, i.v. Ig</td>
<td>N/A</td>
</tr>
</tbody>
</table>

ESRD, end-stage renal disease; FSGS, focal and segmental glomerulosclerosis; i.v Ig, intravenous immunoglobulins; MCD, minimal change disease; MMF, mycophenolate mofetil; MNG, membranous glomerulonephritis; PE, plasma exchange; RTX, rituximab; VCR, vincristine.
<table>
<thead>
<tr>
<th>Author et al. year</th>
<th>Sex</th>
<th>Age</th>
<th>Glomerulopathy</th>
<th>24-h proteinuria</th>
<th>Complement evaluation</th>
<th>Focused therapy</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habib et al. 1969 [48]</td>
<td>N/A</td>
<td>N/A</td>
<td>MPGN</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>Krensky et al. 1981 [23]</td>
<td>F</td>
<td>1</td>
<td>MPGN</td>
<td>Elevated</td>
<td>N/A</td>
<td>Cyclophosphamide</td>
<td>ESRD</td>
</tr>
<tr>
<td>Krensky et al. 1981 [23]</td>
<td>M</td>
<td>5</td>
<td>MPGN</td>
<td>Elevated</td>
<td>N/A</td>
<td>None</td>
<td>ESRD</td>
</tr>
<tr>
<td>Gomez et al. 1984 [49]</td>
<td>F</td>
<td>3</td>
<td>MPGN type I</td>
<td>7 g</td>
<td>sC3 reduced</td>
<td>None</td>
<td>CKD</td>
</tr>
<tr>
<td>Pérez et al. 1988 [50]</td>
<td>F</td>
<td>24</td>
<td>MPGN type I</td>
<td>3 g</td>
<td>sC3,sC4 normal</td>
<td>PE</td>
<td>CKD</td>
</tr>
<tr>
<td>Siegler et al. 1989 [24]</td>
<td>F</td>
<td>1</td>
<td>MPGN type I</td>
<td>>3.5 g</td>
<td>Reduced sC3 and sC4, IF: C3 deposits</td>
<td>Steroids</td>
<td>ESRD</td>
</tr>
<tr>
<td>Vaziri et al. 2006 [51]</td>
<td>M</td>
<td>48</td>
<td>MPGN type I</td>
<td>>3.5 g</td>
<td>CFH mutation; sC3, sC5, CFB and properdin reduced, IF: C3 deposits</td>
<td>PE, steroids</td>
<td>Died</td>
</tr>
<tr>
<td>Vaziri et al. 2006 [51]</td>
<td>F</td>
<td>6</td>
<td>MPGN</td>
<td>N/A</td>
<td>CFH mutation sC3 reduced IF: C3-IgM deposits</td>
<td>PE</td>
<td>ESRD</td>
</tr>
<tr>
<td>Mak et al. 2009 [52]</td>
<td>F</td>
<td>39</td>
<td>MPGN</td>
<td>11 g</td>
<td>HCV+ sC3 and sC4 reduced. IF: C3, IgG, IgM, IgA deposits</td>
<td>PE, steroids, cyclophosphamide i. v. Ig, RTX</td>
<td>CKD</td>
</tr>
<tr>
<td>Noris et al. 2010 [33]</td>
<td>F</td>
<td>20</td>
<td>MPGN</td>
<td>N/A</td>
<td>no complement mutations sC3, sC4 normal</td>
<td>Steroids</td>
<td>ESRD</td>
</tr>
<tr>
<td>Noris et al. 2010 [33]</td>
<td>F</td>
<td>18</td>
<td>MPGN</td>
<td>5 g</td>
<td>CFH mutation sC3 reduced</td>
<td>PE, steroids</td>
<td>ESRD, Died</td>
</tr>
<tr>
<td>Noris et al. 2010 [33]</td>
<td>M</td>
<td>22</td>
<td>MPGN</td>
<td>N/A</td>
<td>CFI mutation sC3 reduced</td>
<td>PE, steroids</td>
<td>N/A</td>
</tr>
<tr>
<td>Noris et al. 2010 [33]</td>
<td>M</td>
<td>N/A</td>
<td>MPGN</td>
<td>N/A</td>
<td>CFP mutation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Noris et al. 2010 [33]</td>
<td>F</td>
<td>15</td>
<td>MPGN type I</td>
<td>N/A</td>
<td>C3 mutation sC3 reduced</td>
<td>PE, steroids</td>
<td>ESRD, Died</td>
</tr>
<tr>
<td>Lorcy et al. 2011 [53]</td>
<td>F</td>
<td>36</td>
<td>MPGN</td>
<td>>3.5 g</td>
<td>anti-CFH antibody; sC3 reduced</td>
<td>Steroids, cyclophosphamide</td>
<td>ESRD</td>
</tr>
</tbody>
</table>

Continued
Nephrotic syndrome (minimal change disease, FSGS, membranous nephropathy)

The presentation of Case 1 is similar to the 17 patients with nephrotic syndrome reported in the literature who later evolved into aHUS (Table 2) [20–33]. These patients were all characterized by isolated nephrotic syndrome. Where complement evaluation was observed [22, 24, 26, 29–31, 33], no evidence of AP hyperactivation was observed, like in Case 1, with the exception of one patient who had a CFH mutation and reduced serum levels of C3 [33] (Table 2). In Case 1, however, the presence of the CFH-H3 risk haplotype in homozygosity suggests that this patient could be genetically predisposed to aHUS.

Nephrotic-range proteinuria is associated with endothelial dysfunction as documented by increased plasma soluble thrombomodulin (TM) levels, due to shedding from damaged endothelium and the release of von Willebrand factor [34], which together with enhanced platelet aggregation create a predisposing environment for the development of aHUS [35]. TM is an endothelial glycoprotein that is involved directly in the degradation of C3a that in turn triggers inflammation and microvascular thrombosis, as was recently documented in an experimental study [36]. Moreover, severe proteinuria probably determines vascular endothelial growth factor (VEGF) reduction in the capillary lumen, by decreased size selectivity of the slit diaphragm, counteracting its diffusion from podocytes to the glomerular capillary lumen [37]. The latter finding is of relevance to understand the pathogenesis of aHUS in patients with nephrotic syndrome, since VEGF deficiency has been shown to cause TMA [38].

Moreover, it has been shown that aHUS itself aggravates proteinuria by causing podocyte fusion due to acute TMA-induced ischaemia [39]. Thus, we would speculate that in patients with aHUS superimposed to nephrotic syndrome the environment predisposing to aHUS is further deteriorated by aHUS itself, raising a possible self-perpetuating loop.

Case 1 showed a dramatic response to RTX, and we identified other four cases of nephrotic syndrome-associated aHUS with good response to RTX in the recent literature [28, 29, 31, 32] (Table 2). RTX is considered a second-line therapy for FSGS [40] and for membranous nephropathy [41] and a potential adjuvant therapy in some cases of TMA [42]. In this subgroup of RTX-treated patients, RTX appeared to be effective in preventing exacerbations when PE treatments were stopped, and also to be effective in avoiding subsequent relapses. RTX could thus break the nephrotic proteinuria-related loop that maintains haemolysis and simultaneously treat associated TMA. Indeed, an almost complete recovery of renal function was observed in the whole RTX-treated subgroup, while the non RTX-treated patients developed CKD or ESRD (Table 2).

MPGN/C3 glomerulopathy (C3GN)

We observed two cases of MPGN type I and one of C3GN. These cases recognize a similar aetiopathogenetic mechanism involving complement dysregulation. Recently, crucial advances have been made in understanding complement regulation and its implications in glomerulopathies [15, 43]. Complement AP dysregulation due to the presence of antibodies inhibiting the decay of C3 convertase (such as C3Nef) or to a genetically determined failure of CFH to control complement activation was initially reported [44]. More recently a role for antibodies against CFH, or mutations in CFH related genes (CFHR) and in other regulatory factors (such as CFI, MCP or C3) have been described [15, 45–47]. Loss of regulation of complement AP activity leads to different phenotypical expressions of renal disease ranging from aHUS to C3GP (a classification recently proposed to include some cases of MPGN type I, dense deposit disease-DDD, C3GN and CFHR5 nephropathy) [2]. In our MPGN/C3GN cases (Cases 2, 3, 4) serum C3 levels were persistently low and renal biopsy showed C3 mesangial deposition, corroborating the relationship between AP hyperactivation and both C3 glomerulopathy...
<table>
<thead>
<tr>
<th>Author year</th>
<th>Sex</th>
<th>Age</th>
<th>Vasculitis</th>
<th>24 h-proteinuria</th>
<th>Complement evaluation</th>
<th>Focused therapy</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benitez et al. 1964</td>
<td>N/A</td>
<td>N/A</td>
<td>MPA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Stefani et al. 1978</td>
<td>F</td>
<td>23</td>
<td>MPA</td>
<td>2 g</td>
<td>N/A</td>
<td>Steroids</td>
<td>N/A</td>
</tr>
<tr>
<td>Stefani et al. 1978</td>
<td>M</td>
<td>16</td>
<td>MPA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Jordan et al. 1986</td>
<td>N/A</td>
<td>N/A</td>
<td>GPA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Kuroda et al. 1986</td>
<td>N/A</td>
<td>N/A</td>
<td>MPA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Green et al. 1988</td>
<td>F</td>
<td>18</td>
<td>MPA</td>
<td>N/A</td>
<td>N/A</td>
<td>PE</td>
<td>ESRD</td>
</tr>
<tr>
<td>Heptinstall 1992</td>
<td>N/A</td>
<td>N/A</td>
<td>MPA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Hirsch et al. 1995</td>
<td>F</td>
<td>66</td>
<td>MPA</td>
<td>1.4 g</td>
<td>Normal sC3, sC4</td>
<td>PE, steroids, cyclophosphamide</td>
<td>ESRD</td>
</tr>
<tr>
<td>Filler et al. 1997</td>
<td>F</td>
<td>10</td>
<td>HSP</td>
<td>>3.5 g</td>
<td>Reduced sC3</td>
<td>PE, steroids</td>
<td>ESRD</td>
</tr>
<tr>
<td>Stefanidis et al. 1998</td>
<td>F</td>
<td>68</td>
<td>MPA</td>
<td>6 g</td>
<td>IF: no C3 deposits</td>
<td>PE, steroids, cyclophosphamide</td>
<td>ESRD</td>
</tr>
<tr>
<td>Hollenbeck et al. 1998</td>
<td>N/A</td>
<td>N/A</td>
<td>MPA</td>
<td>N/A</td>
<td>PE, steroids</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Lim et al. 1998</td>
<td>F</td>
<td>66</td>
<td>GPA</td>
<td>N/A</td>
<td>Normal sC3 , sC4</td>
<td>PE, steroids, cyclophosphamide</td>
<td>CKD</td>
</tr>
<tr>
<td>Rizvi et al. 2000</td>
<td>N/A</td>
<td>N/A</td>
<td>GPA</td>
<td>N/A</td>
<td>PE, cyclophosphamide</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Yamasaki et al. 2001</td>
<td>F</td>
<td>56</td>
<td>MPA</td>
<td>N/A</td>
<td>PE, steroids, cyclophosphamide</td>
<td>Died</td>
<td></td>
</tr>
<tr>
<td>Sato et al. 2002</td>
<td>F</td>
<td>50</td>
<td>MPA</td>
<td>N/A</td>
<td>PI, steroids, cyclophosphamide</td>
<td>Recovered</td>
<td></td>
</tr>
<tr>
<td>Sato et al. 2002</td>
<td>F</td>
<td>68</td>
<td>MPA/GPS</td>
<td>N/A</td>
<td>PE, steroids, CPM</td>
<td>Died</td>
<td></td>
</tr>
<tr>
<td>Suzuki et al. 2004</td>
<td>F</td>
<td>73</td>
<td>MPA</td>
<td>N/A</td>
<td>PE, steroids, CPM</td>
<td>Died</td>
<td></td>
</tr>
<tr>
<td>Al-Toma et al. 2005</td>
<td>F</td>
<td>40</td>
<td>HSP</td>
<td><3 g</td>
<td>Normal sC3,C4 IF: C3 deposits</td>
<td>PE, steroids</td>
<td>CKD</td>
</tr>
<tr>
<td>Fujimura et al. 2006</td>
<td>F</td>
<td>76</td>
<td>MPA</td>
<td>N/A</td>
<td>PI, steroids</td>
<td>Died</td>
<td></td>
</tr>
<tr>
<td>Yamazaki et al. 2007</td>
<td>F</td>
<td>61</td>
<td>GPA</td>
<td><3 g</td>
<td>Normal sC3, sC4</td>
<td>PE, steroids</td>
<td>CKD</td>
</tr>
<tr>
<td>Yoshioka et al. 2007</td>
<td>F</td>
<td>78</td>
<td>MPA</td>
<td><3 g</td>
<td>Normal sC3, sC4</td>
<td>Steroids, cyclophosphamide</td>
<td>Recovered</td>
</tr>
</tbody>
</table>

Continued
and aHUS. A single case (Case 2) carried a CFH genetic alteration that would have predisposed to both MPGN and to aHUS [18], but he was also found to be homozygous for the risk haplotype CFH-H3 that could have led to overt aHUS; moreover the other two cases carried respectively the CFH-H3 (in heterozygosity) and the MCPggaac (in homozigosity) aHUS-risk haplotypes, that could have genetically predisposed to aHUS.

In our literature review (Table 3) [23, 24, 33, 48–55], we found 17 cases of aHUS associated with MPGN. Complement mutations were not investigated in the earliest reports but, by the time genetic and immunological complement analyses became available, mutations in CFH, CFI, C3, and in CFP (encoding for properdin, which stabilizes the AP C3 convertase) [56] were identified in six patients with MPGN/aHUS [33,51,54], whereas anti-CFH antibodies were found in other two patients [53, 54]. Thus, in particular, CFH, CFI, C3 mutations and anti-CFH antibodies are emerging as predisposing factors not only for aHUS but also for MPGN, and some authors consider that, as expression of a single aetiology-pathogenesis, aHUS and MPGN would be two faces of the same medal [2, 46]; in keeping with this view, it was recently shown that MPGN can switch into aHUS and vice versa without discontinuity [53, 56, 19].

The clinical outcome and the renal prognosis (where reported) were poor in ~50% of the cases (Table 3). We found a single case, a silent HCV carrier, treated with RTX. A complete recovery from nephrotic syndrome and a partial rescue of renal function were observed. Other cases were treated with eculizumab, a humanized monoclonal antibody against complement protein C5 that inhibits activation of the terminal complement pathway; long-term follow-up data are not available in these patients [54, 55]. Eculizumab, stopping the chronic hyperactivation of complement AP, represents a promising therapeutic option that could change the renal prognosis of these patients.
Immune-mediated/vasculitic glomerulonephritis

Recently AP hyperactivation has been shown to play an important role in ANCA-associated rapidly progressive glomerulonephritis. Indeed disease progression could be prevented by C3 depletion in animal models, and human neutrophils involved in ANCA-associated vasculitis have been shown to activate AP and release C5 fragments, which further amplify neutrophil pro-inflammatory response [2]. Our two cases showed intense mesangial deposits of C3, and one of them also reduced serum C3 levels. So we can hypothesize that vasculitis cases developed aHUS because of an intense AP activation. This mechanism is quite similar to that described for Shiga toxin-associated HUS that, determining an exuberant C3a formation, triggers microvascular thrombosis [35]. Moreover we could speculate that our two patients were genetically predisposed to develop aHUS, since both were homozygous for the aHUS-risk haplotype CFH-H3.

Another possible pathogenic mechanism, similar to that involved in microangiopathic haemolytic anaemia in SLE patients, would be that glomerulonephritis itself could trigger aHUS [57, 58], because it produces endothelial damage and red cell fragmentation in the glomerular bed thus favouring the development of TMA.

In our two patients, haemolysis appeared despite treatment with steroids and cyclophosphamide. We used PE or RTX but we obtained exclusively remission of haemolysis, without recovery of renal function.

In the literature, we identified 32 cases of renal vasculitis complicated by aHUS (Table 4) [59–84]. About 80% of such cases were microscopic polyangiitis (MPA); rarely other renal vasculitis was identified (GPA and adult-onset Henoch–Schoenlein purpura). In the follow-up, ESRD or death occurred in 60% of the cases whose follow-up was available. One patient was treated with RTX, which determined a prompt arrest of PE-resistant aHUS, but the patient remained haemodialysis-dependent. It is arguable that an early treatment with RTX or with eculizumab would ameliorate the prognosis of these patients.

In conclusion, taking together the glomerulopathies that trigger complement hyperactivation–dysregulation, the prevalence of associated aHUS could emerge as a relevant issue. Indeed TMA associates with lupus nephritis, MPGN and C3 glomerulopathies, and also with IgA nephropathy [6]. Very likely, renal vasculitis shares a similar relationship with TMA. More difficult to explain is the link between idiopathic nephritic syndrome and aHUS. We hypothesize that in some cases, as in our patients, mutations or aHUS-risk haplotypes in genes encoding complement regulatory proteins (CFH and MCP) and/or local predisposing environment with endothelial dysfunction would trigger aHUS. Nephrologists should therefore keep a high index of suspicion of underlying complement dysfunction and TMA in glomerulopathic patients who show sudden anaemia, low platelet counts and LDH increase [85] (Figure 2).

An early recognition of aHUS may allow appropriate management and prevention of life-threatening consequences. In selected cases, an early application of PE and/or of RTX showed efficacy in silencing haemolysis and contemporarily treating the underlying glomerulopathy [40–42, 86]. Moreover, in nephrotic aHUS patients treated with RTX, the drug was able to stop the loop of heavy proteinuria-aHUS and to reverse positively the road to a rapid decline of renal function. Obviously, the emerging anti-C5 biological agent eculizumab, which showed remarkable results in aHUS [87] and more recently also in C3 glomerulopathies [88], would represent an adjunctive therapy for this subtle clinical association.

REFERENCES

ACKNOWLEDGEMENT

This work was partially supported by grants from Telethon Foundation, Projects GGP09075 and GGP11201

CONFLICT OF INTEREST STATEMENT

None declared

7. De Serres SA, Isenring P. Athrombocytopenic thrombotic microangiopathy, a condition that could be overlooked based on current diagnostic criteria. Nephrol Dial Transpl 2009; 24: 1048–1050

53. Lorcy N, Rioux-Leclercq N, Lombard ML et al.
51. Vaziri-Sani F, Holmberg L, Sjöholm AG
50. Pérez AJ, Sobrado J, Courel M
49. Gómez Campderá FJ, Niembro E, López Gómez JM et al.
45. Abrera
44. Appel GB, Cook HT, Hageman G et al.
46. Servais A, Frémeaux-Bacchi V, Lequintrec M et al.
47. Martínez-Barricarte R, Heurich M, Valdes-Cañedo F
55. Radhakrishnan S, Lunn A, Kirsch
54. Brackman D, Sartz L, Leh S
44. Appel GB, Cook HT, Hageman G et al.
43. George JN. Corticosteroids and rituximab as adjunctive treatments for thombotic thrombocytopenic purpura. Am J Hematol 2012; 87: S88–S91
43. George JN. Corticosteroids and rituximab as adjunctive treatments for thombotic thrombocytopenic purpura. Am J Hematol 2012; 87: S88–S91
42. George JN. Corticosteroids and rituximab as adjunctive treatments for thombotic thrombocytopenic purpura. Am J Hematol 2012; 87: S88–S91
39. Vaziri-Sani F, Holmberg L, Sjöholm AG
38. Vaziri-Sani F, Holmberg L, Sjöholm AG
37. Vaziri-Sani F, Holmberg L, Sjöholm AG
36. Vaziri-Sani F, Holmberg L, Sjöholm AG
35. Vaziri-Sani F, Holmberg L, Sjöholm AG
34. Vaziri-Sani F, Holmberg L, Sjöholm AG
33. Vaziri-Sani F, Holmberg L, Sjöholm AG
32. Vaziri-Sani F, Holmberg L, Sjöholm AG
31. Vaziri-Sani F, Holmberg L, Sjöholm AG
30. Vaziri-Sani F, Holmberg L, Sjöholm AG
29. Vaziri-Sani F, Holmberg L, Sjöholm AG
28. Vaziri-Sani F, Holmberg L, Sjöholm AG
27. Vaziri-Sani F, Holmberg L, Sjöholm AG
26. Vaziri-Sani F, Holmberg L, Sjöholm AG
25. Vaziri-Sani F, Holmberg L, Sjöholm AG
24. Vaziri-Sani F, Holmberg L, Sjöholm AG
23. Vaziri-Sani F, Holmberg L, Sjöholm AG
22. Vaziri-Sani F, Holmberg L, Sjöholm AG
21. Vaziri-Sani F, Holmberg L, Sjöholm AG
20. Vaziri-Sani F, Holmberg L, Sjöholm AG
19. Vaziri-Sani F, Holmberg L, Sjöholm AG
18. Vaziri-Sani F, Holmberg L, Sjöholm AG
17. Vaziri-Sani F, Holmberg L, Sjöholm AG
16. Vaziri-Sani F, Holmberg L, Sjöholm AG
15. Vaziri-Sani F, Holmberg L, Sjöholm AG
14. Vaziri-Sani F, Holmberg L, Sjöholm AG
13. Vaziri-Sani F, Holmberg L, Sjöholm AG
12. Vaziri-Sani F, Holmberg L, Sjöholm AG
11. Vaziri-Sani F, Holmberg L, Sjöholm AG
10. Vaziri-Sani F, Holmberg L, Sjöholm AG
9. Vaziri-Sani F, Holmberg L, Sjöholm AG
8. Vaziri-Sani F, Holmberg L, Sjöholm AG
7. Vaziri-Sani F, Holmberg L, Sjöholm AG
6. Vaziri-Sani F, Holmberg L, Sjöholm AG
5. Vaziri-Sani F, Holmberg L, Sjöholm AG
4. Vaziri-Sani F, Holmberg L, Sjöholm AG
3. Vaziri-Sani F, Holmberg L, Sjöholm AG
2. Vaziri-Sani F, Holmberg L, Sjöholm AG
1. Vaziri-Sani F, Holmberg L, Sjöholm AG

76. Yamazaki M, Takei T, Otsubo S. Wegener’s granulomatosis complicated by intestinal ulcer due to cytomegalovirus infection and by thrombotic thrombocytopenic purpura. Intern Med 2007; 46: 1435–1440

Received for publication: 4.2.2013; Accepted in revised form: 11.4.2013