HYDROGEN SULFIDE AMELIORATES CISPLATIN-INDUCED ACUTE KIDNEY INJURY IN MICE

Dong Jun Park¹, Hyun Seop Cho², Jin Hyun Kim³, Myeong Hee Jung³ and Se-Ho Chang⁴

¹Gyeongsang National University Medical School, Department of Internal Medicine, Jinju, Republic of Korea, ²Gyeongsang National University Hospital, Internal Medicine, Jinju, Republic of Korea, ³Gyeongsang National University Hospital, Biomedical Research Institute, Jinju, Republic of Korea, ⁴Gyeongsang National University Medical School, Internal Medicine, Jinju, Republic of Korea

Introduction and Aims: Although hydrogen sulfide (H₂S), the third endogenous gaseous molecule with important physiological roles, is beneficial in chronic kidney disease, the role of H₂S in acute kidney injury (AKI) remains to be controversial. The present study aimed to investigate the effect of H₂S on cisplatin (CP)-induced AKI in mice by administrating exogenous H₂S.

Methods: Mice were randomly divided into control group, sodium hydrosulfide (NaHS) only group (NaHS 56 µmol/kg, i.p., day -1 through day 3), CP group (20mg/kg, i.p., day 0), CP+NaHS groups, with 10 mice in each group. Blood sample was collected 3 day after cisplatin for renal function and enzyme activity and the kidneys were harvested for histological, immunohistochemical and Western blot analysis. Cystathionine-γ-lyase (CSE) activity was measured by the spectrophotometric methylene blue method.

Results: CP-treated mice demonstrated increases in serum creatinine and blood urea nitrogen (BUN). NaHS administration prevented this deterioration of renal function. The pathological features of kidney injury were also alleviated by NaHS. The H₂S concentration was significantly decreased in the cisplatin group and this reduction was attenuated by the NaHS treatment. In the CP-treated mice, the levels of CSE, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), MAPKs, and pSmad were significantly increased. All these alterations were reduced by treatment of NaHS whereas cystathionine β-synthase (CBS) level was significantly increased.

Conclusions: Treatment with NaHS attenuates CP-induced AKI in the mice resulting in elevation of CSE and decrease of CBS. This effect seems to be involved with the restriction of the inflammation in the kidneys from NaHS+CP-treated mice. Therefore, hydrogen sulfide might have therapeutic potentials in preventing AKI in conditions to receive CP.