CHRONIC KIDNEY DISEASE.
NUTRITION, INFLAMMATION AND OXIDATIVE STRESS

SP431 CIRCULATING ALPHA-TOCOPHEROL AND INSULIN SENSITIVITY AMONG ELDERLY MEN WITH CHRONIC KIDNEY DISEASE

Hong Xu1, Zibo Xiong1, Johan Ärnlöv2, Tommy Cederholm3, Per Sjögren7, Bengt Lindholm1, Ulf Risérus3 and Juan Jesús Carrero1
1Karolinska Institutet, Divisions of Renal Medicine and Baxter Novum, Stockholm, Sweden, 2Uppsala University, Department of Medical Sciences, Uppsala, Sweden, 3Uppsala University, Department of Public Health and Caring Sciences, Uppsala, Sweden

Introduction and Aims: Modifiable risk factors can contribute to the insulin resistance and hyper-insulinemia that are commonly observed in individuals with chronic kidney disease (CKD). Evidence in the general population suggests that vitamin E supplementation may improve both insulin sensitivity and secretion. We here hypothesize that hypovitaminosis E, a common deficiency in CKD, is an additional risk factor for insulin resistance.

Methods: Cross-sectional analysis including 273 non-diabetic men aged 70-71 with CKD (defined as either cystatin-C estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m² or urinary albumin excretion rate ≥20 µg/min). Insulin sensitivity index (M/I ratio) was measured by euglycemic clamps. Serum alpha, beta and gamma tocopherol concentrations were quantified by high-performance liquid chromatography (HPLC). Dietary vitamin E intake was estimated from 7-day dietary records. Uni- and multivariate regression models were fitted to assess the potential association between M/I and tocopherols.

Results: The mean serum alpha-tocopherol was 1.61±0.28 mg/mmol, eGFR was 52.9 (IQR, 46.9 - 57.7) mL/min/1.73m² and UAER was 5.7 (IQR, 3.4 - 26.3) µg/min. In fully-adjusted multivariable regression analyses, serum alpha-tocopherol levels were positively associated with M/I (standard β=0.18, P=0.001). No association was observed for serum beta and gamma-tocopherol concentrations.

Conclusions: Serum alpha-tocopherol concentration was associated with gold-standards of insulin sensitivity in non-diabetic older men with CKD. This is consistent with the hypothesis that vitamin E supplementation may improve insulin sensitivity in this patient population.

Vitamin E supplementation may improve both insulin sensitivity and secretion. We here hypothesize that hypovitaminosis E, a common deficiency in CKD, is an additional risk factor for insulin resistance.

Methods: Cross-sectional analysis including 273 non-diabetic men aged 70-71 with CKD (defined as either cystatin-C estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m² or urinary albumin excretion rate ≥20 µg/min). Insulin sensitivity index (M/I ratio) was measured by euglycemic clamps. Serum alpha, beta and gamma tocopherol concentrations were quantified by high-performance liquid chromatography (HPLC). Dietary vitamin E intake was estimated from 7-day dietary records. Uni- and multivariate regression models were fitted to assess the potential association between M/I and tocopherols.

Results: The mean serum alpha-tocopherol was 1.61±0.28 mg/mmol, eGFR was 52.9 (IQR, 46.9 - 57.7) mL/min/1.73m² and UAER was 5.7 (IQR, 3.4 - 26.3) µg/min. In fully-adjusted multivariable regression analyses, serum alpha-tocopherol levels were positively associated with M/I (standard β=0.18, P=0.001). No association was observed for serum beta and gamma-tocopherol concentrations.

Conclusions: Serum alpha-tocopherol concentration was associated with gold-standards of insulin sensitivity in non-diabetic older men with CKD. This is consistent with the hypothesis that vitamin E supplementation may improve insulin sensitivity in this patient population.