Correction: Density structure of Kilauea volcano: implications for magma storage and transport

Roger P Denlinger1 and Ashton Flinders2

1Cascade Volcano Observatory, 1300 SE Cardinal Ct, Bldg 10, Vancouver, WA 98683, USA. E-mail: roger@usgs.gov
2Hawaiian Volcano Observatory, Hilo, Hawaii, 96720, USA

Accepted 2024 July 1 in original form 2024 June 29

Key words: Correction; Gravity anomalies and Earth structure; Magma migration and fragmentation; Physics and chemistry of magma bodies; Volcano seismology.

In Denlinger & Flinders (2024), a data file used to compare the pattern of the total magnetic field to InSAR data collected during the 2018 catastrophic eruption was mislabelled. The data file that was plotted should have been the total magnetic field reduced to the pole, as labelled in the figure, but instead the data plotted were the unreduced total magnetic field. This error occurred because the original datafile was mislabelled, and the discrepancy was not discovered until we began analysing the data for a subsequent study. As both fields are very similar (see Figs 1 and 2), and as both fields are aligned with the East-West trending InSAR anomaly along the East Rift Zone in 2018, the results and conclusions of the paper are unaffected. However, for completeness and accuracy of this paper, we correct this misrepresentation as shown in figures below, replacing Fig. 2 in the original paper with Fig. 2 below.

REFERENCE

Figure 1. This is the comparison made in the original Fig. 2 in Denlinger & Flinders (2024), that was labelled as Total Magnetic Field Reduced to Pole. The maximum in this anomaly is aligned with the maximum in the InSAR anomaly.

Figure 2. This is the field that should have been plotted in Fig. 2 of Denlinger & Flinders (2024). The field still aligns with and follows the InSAR anomaly but the maximum is shifted slightly north from the maximum in the InSAR anomaly.

© The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.