Magnetic fabrics induced by dynamic faulting reveal damage zone sizes in soft rocks, Dead Sea basin

T. Levi, R. Weinberger and S. Marco

1Geological Survey of Israel, 30 Malkhe Yisrael Street, Jerusalem 95501, Israel. E-mail: tsafir@gsi.gov.il
2Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
3Department of Geophysics and Planetary Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Accepted 2014 July 29. Received 2014 July 28; in original form 2013 October 2

1 INTRODUCTION

An earthquake is an expression of a sudden release of remote tectonic strain that accumulates during relative plate motions. During a seismic event, the stored elastic and inelastic strains are released dynamically by fast faulting and spreading of acoustic waves through the medium (e.g. Shearer 1999). The principal axes of the remote tectonic strain (i.e. far-field strain) can be considered approximately constant over a hundred of kilometres in certain region and several earthquake cycles. In such a case, the strain field is commonly determined by analysis of the fault-plane and moment tensor solutions of a large group of earthquake events or by analysis of mesoscale kinematic indicators (e.g. fault-plane solutions utilizing striations on small faults). However, the principal axes of the local strain field (i.e. near-field strain) released during individual earthquake events may vary up to several kilometres from the fault planes (e.g. Ma & Andrews 2010). They can be determined by calculations of the moment tensor solutions based on recordings of the direction and time of arrival of P waves in seismic stations adjacent to the active fault strands (e.g. Yukutake et al. 2010), or by simulations with various mechanical models (e.g. Rice et al. 2005; Fukuyama 2009, and references therein).

During the faulting, a recoverable elastic deformation and partially unrecoverable inelastic deformation evolve. Usually the inelastic deformation is expressed by an envelope of deformed volume around the faults, known as a damage zone. This zone includes a wide variety of structures that span from micron to meter scales (Chester & Logan 1986; Weinberger et al. 2000; Shipton & Cowie 2003; Schultz & Fossen 2008; Braathen et al. 2009; Faulkner et al. 2011, and references therein). The damage zone has received a lot of attention over the years, as it is a key component in the energy balance of earthquake and faulting mechanisms (Rice et al. 2005; Ma & Andrews 2010).

Determining the size of the damage zone near faults is important for understanding the mechanism of fault propagation during brittle fracturing and the earthquake process at the upper crust (Lyakhovsky & Ben-Zion 2008). The decay of damage zones with distance from fault planes is related to the decline of the strain field away from the faults, as is predicted by fracture mechanics models (e.g. Scholz 2002). Despite the importance in determining the size...
of the damage zones, it is difficult to distinguish between the effect of the remote and the local strain fields close to fault planes. This difficulty arises because the local strain field is likely to be complex compared to the remote strain field; in some places close to the fault planes the mesoscale kinematic indicators are absent, and it is not always clear which structural characteristics determine the size of the damage zones.

Aiming to overcome the above difficulty, we analyse the anisotropy of magnetic susceptibility (AMS) of soft rocks next to normal faults. In many deformed environments, the principal AMS axes are coaxial with the directions of the principal strain axes (Borradaile 1987, 1991; Borradaile & Henry 1997; Mattei et al. 1997; Parés et al. 1999; Hirt et al. 2000; Cifelli et al. 2005; Latta & Anastasio 2007; Soto et al. 2007; Hrouda et al. 2009; Borradaile & Jackson 2010; Porreca & Mattei 2012). The AMS generally reflects the inelastic strain preserved in the rocks in the form mainly of lattice distortion and crystallographic axis rotations (e.g. Borradaile & Henry 1997). Lineations and foliations of magnetic fabrics may form as a result of sedimentary processes such as deposition and compaction (Hrouda 1982; Taira 1989; Tarling & Hrouda 1993) and transport of clastics (e.g. Rees 1971; Rees & Woodall 1975; Liu et al. 2001; Levi et al. 2006).

Magnetic fabrics in soft sediments may be developed under different sedimentary environments such as marine coastal settings, tidal bore in estuarine settings, or in bottom lake environments (e.g. Beck 2009). Under instability triggered by an earthquake or pore-water pressure increases, the column sediments can be transported and associated with various types of deformed structures (e.g. ‘ball-and-pillow’ like structures, slumps and brecciated layers; see Marco & Agnon 2005; Beck 2009).

Tectonic AMS subfabrics may develop during progressive deformation under regional shortening (Kissel et al. 1986) or elongation (e.g. Cifelli et al. 2005) or crenulation formation (e.g. Porreca & Mattei 2012). Such subfabrics obliterate the primary sedimentary magnetic fabric, according to the nature and extent of the deformation (e.g. Borradaile 1991; Parés et al. 1999; Housten & Kanamatsu 2003; Parés & Van der Pluijm 2003; Schwehr & Tauxe 2003; Aubourg et al. 2010; Larrasoaña et al. 2011; Levi & Weinberger 2011; Cifelli et al. 2013, among many others). Hence, magnetic lineations and foliations begin to develop during progressive deposition and deformation, preserving inelastic strain stored in the rocks.

The determination of whether the magnetic fabrics near fault planes are a direct product of dynamic faulting events (i.e. local strain field) or the consequence of a long period of tectonic activity (i.e. remote strain field) is yet unclear. If the AMS fabrics are associated with the faulting, they could represent the spatial distribution of the local strain field, be applied to determine the extent of the inelastic damage zone that develops during the fault activity, and also could be useful in determining the fault-plane solutions of past earthquake events.

The development of AMS fabrics may take hundreds of thousands of years during protracted geological processes such as deposition, compaction and lithification (García-Lasanta et al. 2013) or folding. Larrasoaña et al. (2011) show that in Lake Issyk-Kul in the Kyrgyz Tien Shan fold-and-thrust belt the tectonic AMS fabrics were rapidly locked, shortly (~dozens of years) after sediment deposition during the Late Holocene. Borradaile & Hamilton (2004) suggest that the AMS fabrics are comparable to fault-plane solutions for recent earthquakes in the Polis rift, NW Cyprus. In this context, Aubourg et al. (2004) compare the AMS fabrics from Zagros-Makran block (Iran) to the directions of P-axes of fault-plane solutions in this region. In western part and southeastern parts of the block they found good agreement between the AMS axes and P-axes directions. However, in some parts of the study area Aubourg et al. (2004) find a contrasting pattern between the AMS shortening directions and the P-axes directions, suggesting that the AMS recorded a longer deformation history compared to that of the recent seismic activity. Nevertheless, the distinction between magnetic fabrics associated with the remote strain fields and those associated with earthquake-driven local strain fields is still questionable.

In this study, we explore the development of magnetic fabrics close to three well-documented faults that cross late Pleistocene soft rocks in the Masada Plain, Israel (Marco & Agnon 2005), within the seismically active Dead Sea basin (Fig. 1). We identify the relations between the faulting processes and magnetic fabrics, provide a method for characterizing the size of the inelastic damage
zone next to faults, and propose that the magnetic fabrics resemble the fault-plane solutions of past earthquakes.

2 MAGNETIC FABRICS NEXT TO FAULT PLANES

We use AMS fabrics to distinguish between four different settings (Table 1), two of which are associated with sedimentary processes (Rees 1971; Rees & Woodall 1975; Tauxe 1988; Levi et al. 2006b; García-Lasanta et al. 2013) and the other two with deformation processes (Borradaile & Henry 1997; Borradaile & Jackson 2010; Levi & Weinberger 2011). By elucidating changes in the AMS fabrics within fault zones and away from them (i.e. far and near zones), we can further differentiate between the effect of remote and local strain fields and document fabrics preserved in soft sedimentary rocks (Fig. 2).

AMS is described by three principal axes, k_{max} (k_1), k_{int} (k_2) and k_{min} (k_3), which correspond to the maximum, intermediate and minimum magnetic susceptibility magnitudes, respectively. Statistically, the principal AMS axes of a number of samples are displayed with their associated 95 per cent confidence ellipses (Jelinek 1978) and the bootstrapped confidence limits (Tauxe et al. 1991). In setting 1, the particles are settled and scattered on the bedding planes, and the AMS fabric is characterized by well-grouped vertical k_3 axes and scattered k_1 and k_2 axes along the girdle. Under these conditions, the 95 per cent confidence regions of k_1 and k_2 axes are relatively large and overlap. In setting 2 the particles are transported by currents towards the depocentre, and due to particle alignment the AMS fabric is characterized by well-grouped subvertical k_1 axes and weakly clustered subhorizontal k_1 and k_2 axes. Under conditions of laminar and slow currents with transported prolate particles (or spherical, but aligned along a certain line) above the bottom of the lake, which slopes down moderately, k_1 axes are expected to be parallel to the transport direction (Rees & Woodall 1975; Hrouda 1982; Taira 1989; Tauxe 1998) and the 95 per cent confidence ellipses of k_1 and k_2 may be relatively large. We hypothesize that settings 1 and 2, which are associated with sedimentary processes, will be diagnostic for the sedimentary rocks throughout the entire region (Fig. 2).

In setting 3 the remote tectonic strain (stress) field aligns the particles such that k_1, k_2 and k_3 axes are well grouped and coaxial with the remote maximum (ε_1), intermediate (ε_2) and minimum (ε_3) shortening axes, respectively. If the remote strain field is dominant and obliterates an original fabric, the resulting fabric is expected to be similar everywhere, without relation to the distance from the fault planes. In setting 4 the local strain field is dominant and aligns the particles such that k_1, k_2 and k_3 axes are well-grouped close to the fault planes. The resulting ‘deformation fabrics’ is characterized by either k_1 or k_2 axes parallel to the strike of the nearby fault; away from the fault planes, the original fabrics are not obliterated (Fig. 2). Because the local strain field often varies close to the fault planes, the AMS fabrics within a damage zone may change from one place to another (e.g. Ma & Andrews 2010). Under deformation conditions (settings 3 and 4), the 95 per cent confidence ellipses of k_1, k_2 and k_3 axes are relatively small and well-isolated from each other. Nevertheless, if only ε_1 or ε_3 axes are dominant (uniaxial strain), the 95 per cent confidence regions of

<table>
<thead>
<tr>
<th>Geologic settings</th>
<th>Cause of anisotropy</th>
<th>Fabric characteristics</th>
<th>Statistics</th>
<th>Distribution area</th>
<th>Relation to faults</th>
<th>Distinct directions of AMS axes</th>
<th>Characterizations of the region</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentation conditions</td>
<td>Setting 1</td>
<td>Deposition of particles</td>
<td>Well-grouped vertical k_3 axes, scattered k_1 and k_2 axes along the girdle.</td>
<td>95% confidence ellipses of k_1 and k_2 axes are relatively large and overlapped</td>
<td>Everywhere</td>
<td>None</td>
<td>Vertical k_3</td>
<td>Lacustrine environment</td>
</tr>
<tr>
<td>Setting 2</td>
<td>Transport of clastics toward the depocenter</td>
<td>Well-grouped sub-vertical k_3 axes, weakly-grouped k_1 and k_2 axes along the girdle.</td>
<td>95% confidence ellipses of k_1 and k_2 axes are relatively large</td>
<td>Vast areas</td>
<td>None</td>
<td>k_3 axes parallel to the transport direction</td>
<td>Lake depocenter is directed eastward</td>
<td>Termed “flow fabric”</td>
</tr>
<tr>
<td>Deformation conditions</td>
<td>Setting 3</td>
<td>Deformation - effect of remote strain</td>
<td>Well-grouped k_1, k_2 and k_3 axes.</td>
<td>95% confidence ellipses of k_1, k_2 and k_3 are relatively small and well-isolated from each other</td>
<td>Everywhere</td>
<td>Yes – to a large set of faults</td>
<td>Principal AMS and remote strain axes are coaxial</td>
<td>Maximum horizontal remote compression is -340° - 160°</td>
</tr>
<tr>
<td>Setting 4</td>
<td>Deformation - effect of local strain</td>
<td>Well-grouped k_1, k_2 and k_3 axes.</td>
<td>95% confidence ellipses of k_1, k_2 and k_3 are relatively small and well-isolated from each other</td>
<td>Damage zones near individual faults</td>
<td>Yes – to individual faults</td>
<td>Principal AMS and local strain axes are coaxial</td>
<td>Faults strike are 310°, 330° and 030°</td>
<td>Termed “deformation fabric” and obliterate previous fabrics</td>
</tr>
</tbody>
</table>
Figure 2. Scheme of faulted blocks and synthetic magnetic fabrics near and far from the fault plane. Four different settings are presented: (I) deposition of particles during sedimentation, (II) transport of clastics towards the depocentre, (III) effect of remote and (IV) local strain. For each setting the magnetic fabrics are presented as lower-hemisphere of AMS principal axes and their confidence regions. \(\varepsilon_1^r, \varepsilon_2^r \) and \(\varepsilon_3^r \) are the maximum, intermediate and least principal remote strain axes, respectively. \(\varepsilon_1^l, \varepsilon_2^l \) and \(\varepsilon_3^l \) are the maximum, intermediate and least principal local (instantaneous) strain axes, respectively. The local strain axes are not necessarily coaxial with the remote strain axes.

two AMS axes overlap on a plane perpendicular to either \(k_3 \) or \(k_1 \) axes (Fig. 2).

3 GEOLOGICAL SETTING

The Masada Fault Zone (MFZ) comprises a set of normal faults on the western margin of the Dead Sea basin, near Masada, a UNESCO World Heritage Site (Fig. 1). The MFZ is part of the Dead Sea Transform (DST) system, which accommodates \(\sim 10^5 \) km of relative sinistral displacement between the African (Sinai) and Arabian plates since the Early-Middle Miocene (Garfunkel 1981, and references therein). The study area is located along a transtensional sector of the DST system (Garfunkel 1981), in which the main strike-slip fault is accompanied by a belt of normal-oblique faults in the western side of the Dead Sea basin (Sagy et al. 2003). The soft rocks exposed in the Masada Plain belong to the late Pleistocene Lisan Formation. It consists mostly of lacustrine laminae of aragonite and fine detritus as well as a few gypsum layers, dated between \(\sim 70 \) 000 and 14 000 yr by U-series (Haase-Schramm et al. 2004, and references therein). The aragonite precipitated chemically from the upper surface of Lake Lisan whereas the fine detritus, which contains minerals such calcite, dolomite, aragonite, quartz and clay, was carried by annual floods.

The MFZ has repeatedly ruptured the surface (i.e. Lake Lisan bottom) along several kilometers. Studies of the MFZ provide ample examples for fundamental characteristics of earthquakes, such as long-term temporal clustering, repeated faulting on the same planes for a limited time on the order of a few thousands of years, and the formation of subaqueous breccia layers interpreted as seismites (Marco et al. 1996; Marco & Agnon 2005). Faults in the MFZ are commonly overlain by continuous horizontal layers, indicating syndepositional surface ruptures (Fig. 3). Synthetic and antithetic fault planes dip between 40° and 55° and strike between NNW and NNE. All faults show a normal sense of motion (Marco & Agnon 1995) with slip motion predominantly along the dip direction. The strike distribution resembles the basin’s large-scale active faults (Sagy et al. 2003). The total normal displacement along the faults is up to \(\sim 3.5 \) m. Based on detailed stratigraphy Marco & Agnon (2005) differentiated several distinct rupture events along individual faults, each of which is between 0.37 and 0.82 m. Paleoseismic records based on breccia layers reveal numerous \(M > 6 \) earthquake events during the last 70 000 yr (Marco & Agnon 2005).

4 SAMPLING STRATEGY AND METHODS

4.1 Magnetic methods

The AMS was examined along undeformed sedimentary layers (i.e. breccia, fractures or folds were not observed by naked eyes) near
three well-documented normal faults in the MFZ (fault numbers 1, 3 and 25 in Marco & Agnon 2005, denoted in this study MM, MP and MS, respectively; Figs 1c and 3). In addition to AMS, the anisotropy of anhysteretic remanent magnetization (AARM) was examined up to ∼1 m away from the plane of Fault MS. 162 samples were collected from outcrops within several meters of the three faults studied and 30 samples from two undeformed sedimentary reference outcrops located in the Ami'az Plain, 25 km south of the MFZ (Fig. 1). For sampling we used oriented plastic cubes (2 cm × 2 cm × 2 cm) and cylinders (height and diameter of 2.5 cm) with a negligible diamagnetic AMS signal (∼3 × 10⁻⁶ SI) that was subtracted later from the measurements. We sampled along the fault planes up to ∼1 m intensively at 50 mm increments and further up to ∼5.5 m away from the fault planes, at 0.5 m increments.

The AMS and the AARM were studied at the Geological Survey of Israel rock-magnetic laboratory. The AMS was measured with a KLY-4S Kappabridge (AGICO Inc., Brno, Czech Republic) and the AARM with AF demagnetizer/magnetizer LDA-3/AMU-1 and a JR-6 spinner magnetometer (AGICO Inc., Brno, Czech Republic). First, the samples demagnetized at a peak field of 100 mT, in which the magnetization values decreased by 90 per cent. Then, the remanent magnetization was imparted in six pairs of antiparallel directions with a DC field of 500 µT and AC field of 50 mT.

The principal susceptibility axes with their 95 per cent confidence ellipses (Jelinek 1978) and bootstrapped confidence limits (Tauxe et al. 1991) were analyzed with Anisoft42 and Pmag.py software (http://magician.ucsd/Software/PmagPy), respectively.

To evaluate the magnetic fabrics and to test the possibility that they are associated with inelastic strain in soft rocks close to fault planes, we calculated various anisotropy parameters: the mean magnetic susceptibility, \(k_m = (k_1 + k_2 + k_3)/3 \) (Nagata 1961), the lineation, \(L = k_1/k_2 \) (Balsley & Buddington 1960), the foliation, \(F = k_2/k_3 \) (Stacey 1960), and the shape of the AMS ellipsoid, \(T \) (Jelinek 1981). The latter variable varies from prolate, where \(-1 ≤ T ≤ 0\), to oblate, where \(0 ≤ T ≤ 1\). To test the possibility that different magnetic fabrics are associated with different sedimentary conditions (e.g. Taira 1989), we calculated (1) the anisotropy quotient, \(q = (k_3 - k_2)/[(k_1 + k_2)/2 - k_3]\) (Rees 1966), which represents the relative strengths of magnetic lineation and foliation and (2) the imbrication angle, \(β = 90° - I(k_3)\), where \(I \) stands for the inclination of \(k_3 \) (Taira 1989). We used Faultkinwin 1.2.2 software (Allmendinger 2001) in order to calculate the (instantaneous) strain axes that are associated with the fault-plane solutions of the studied faults.

Several rock-magnetic experiments were carried out on selected samples in order to characterize the magnetic carriers and their contribution to the magnetic susceptibility and fabrics. Samples were stepwise demagnetized to peak AF of 70 mT, in 5 mT or 10 mT increments. Temperature-dependence susceptibility curves (\(k-T \)) were performed, combining the KLY-3S kappabridge with CS-L (low temperature cryostat apparatus between 78 and 273 K) and CS-3 furnace (temperature range between ∼25 and 700 °C; AGICO Inc., Brno, Czech Republic).
Magnetic fabrics induced by dynamic faulting

Figure 5. Thermomagnetic (k–T) curves of a representative sample (MS15). (a) High-temperature curves (heating and cooling). (b) Low-temperature curve. See text for an interpretation.

Table 2. AMS data of sub-groups in sites MM, MP and MS.

<table>
<thead>
<tr>
<th>Site</th>
<th>N</th>
<th>k_m</th>
<th>L</th>
<th>P'</th>
<th>T</th>
<th>β</th>
<th>q</th>
<th>$D,I(k_1)$</th>
<th>$D,I(k_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM(a)</td>
<td>10</td>
<td>28(3)</td>
<td>1.009 (0.009)</td>
<td>1.04 (0.01)</td>
<td>0.6(0.3)</td>
<td>18</td>
<td>0.25</td>
<td>113, 81</td>
<td>247, 07</td>
</tr>
<tr>
<td>MM(b)</td>
<td>9</td>
<td>36(5)</td>
<td>1.005 (0.003)</td>
<td>1.043 (0.004)</td>
<td>0.76 (0.005)</td>
<td>8</td>
<td>0.13</td>
<td>334, 82</td>
<td>179, 07</td>
</tr>
<tr>
<td>MM(c)</td>
<td>12</td>
<td>27(4)</td>
<td>1.007 (0.006)</td>
<td>1.038 (0.007)</td>
<td>0.67 (0.2)</td>
<td>15</td>
<td>0.17</td>
<td>128, 75</td>
<td>290, 15</td>
</tr>
<tr>
<td>MM(d)</td>
<td>13</td>
<td>29(3)</td>
<td>1.005 (0.003)</td>
<td>1.033 (0.006)</td>
<td>0.69 (0.18)</td>
<td>11</td>
<td>0.12</td>
<td>107, 80</td>
<td>333, 07</td>
</tr>
<tr>
<td>MM(e)</td>
<td>13</td>
<td>27(2)</td>
<td>1.006 (0.003)</td>
<td>1.039 (0.003)</td>
<td>0.68 (0.18)</td>
<td>13</td>
<td>0.19</td>
<td>096, 77</td>
<td>248, 12</td>
</tr>
<tr>
<td>MM(f)</td>
<td>5</td>
<td>45(5)</td>
<td>1.005 (0.003)</td>
<td>1.031 (0.003)</td>
<td>0.65 (0.19)</td>
<td>5</td>
<td>0.22</td>
<td>109, 85</td>
<td>269, 05</td>
</tr>
<tr>
<td>MM(g)</td>
<td>7</td>
<td>47(18)</td>
<td>1.007 (0.007)</td>
<td>1.04 (0.012)</td>
<td>0.67 (0.2)</td>
<td>12</td>
<td>0.13</td>
<td>094, 78</td>
<td>249, 11</td>
</tr>
<tr>
<td>MP(a)</td>
<td>8</td>
<td>37(4)</td>
<td>1.004 (0.002)</td>
<td>1.036 (0.003)</td>
<td>0.77 (0.09)</td>
<td>4</td>
<td>0.11</td>
<td>133, 87</td>
<td>004, 02</td>
</tr>
<tr>
<td>MP(b)</td>
<td>6</td>
<td>42(8)</td>
<td>1.004 (0.002)</td>
<td>1.037 (0.004)</td>
<td>0.76 (0.09)</td>
<td>2</td>
<td>0.11</td>
<td>042, 88</td>
<td>207, 02</td>
</tr>
<tr>
<td>MP(c)</td>
<td>17</td>
<td>49 (9)</td>
<td>1.005 (0.003)</td>
<td>1.036 (0.004)</td>
<td>0.75 (0.14)</td>
<td>4</td>
<td>0.16</td>
<td>348, 88</td>
<td>126, 02</td>
</tr>
<tr>
<td>MP(d)</td>
<td>11</td>
<td>36(3)</td>
<td>1.005 (0.002)</td>
<td>1.039 (0.005)</td>
<td>0.74 (0.09)</td>
<td>4</td>
<td>0.17</td>
<td>162, 86</td>
<td>007, 04</td>
</tr>
<tr>
<td>MS(a)</td>
<td>9</td>
<td>30(9)</td>
<td>1.008 (0.003)</td>
<td>1.038 (0.005)</td>
<td>0.55 (0.09)</td>
<td>7</td>
<td>0.27</td>
<td>069, 83</td>
<td>248, 07</td>
</tr>
<tr>
<td>MS(b)</td>
<td>13</td>
<td>32(9)</td>
<td>1.00 (5.002)</td>
<td>1.042 (0.004)</td>
<td>0.748 (0.1)</td>
<td>6</td>
<td>0.16</td>
<td>065, 83</td>
<td>244, 07</td>
</tr>
<tr>
<td>Reference-aragonite (A)</td>
<td>20</td>
<td>48(12)</td>
<td>1.002 (0.001)</td>
<td>1.026 (0.003)</td>
<td>0.87 (0.06)</td>
<td>3</td>
<td>0.07</td>
<td>280, 87</td>
<td>149, 02</td>
</tr>
<tr>
<td>Reference-detritus (B)</td>
<td>10</td>
<td>76(14)</td>
<td>1.003 (0.001)</td>
<td>1.016 (0.007)</td>
<td>0.48 (0.36)</td>
<td>6</td>
<td>0.19</td>
<td>279, 84</td>
<td>160, 03</td>
</tr>
</tbody>
</table>

Notes: N, number of specimens; k_m, mean susceptibility, (in 10^{-6} SI units); L, lineation; P', corrected anisotropy degree (not referred to in the text); T, shape of the AMS ellipsoid, β, imbrication angle; q, anisotropy quotient; $D,I(k_1)$, declination and inclination of the minimum susceptibility axis (geographic coordinates); $D,I(k_1)$, declination and inclination of the maximum susceptibility axis (geographic coordinates).

a Standard deviation in parentheses.

4.2 Geochemical methods

To test the possible effect of Fe and Mn ions on the magnetic fabrics we analysed the bulk mineralogy of 13 samples using X-ray diffraction (XRD) and the chemical composition of their CaCO$_3$ fraction at the Geological Survey of Israel. Since the carbonate fraction (laminae of aragonite) is significantly more sensitive to diagenetic processes than the fine detritus, the CaCO$_3$ fraction of these samples was extracted as follows: 0.5 g of sample was treated with 15 ml of 3M HNO$_3$ for 1 hr. The solution was separated and analysed for major elements including Fe and Mn ions using an Inductively Coupled Plasma Mass Spectrometer (ICP- AES; Perkin Elmer OPTIMA 3300; $1\sigma < 3$ per cent).

5 ROCK MAGNETISM OF THE LISAN FORMATION

AF experiments indicate that the ferromagnetic carriers have low coercivity spectra. The characteristic remanent magnetization (ChRM) of the rocks shows the expected late Pleistocene direc-
Magnetic fabrics detected in the Ami’az Plain (A1, B1). A1–B1: k_1, k_2 and k_3 curves show defined Verwey transitions near the strik of the fault. Likewise, either k_1 or k_2 axes are oblique to the strike of the fault. In four out of five AMS stereograms ranging up to 55 cm, k_2 axes align with the strike of Fault MM (Fig. 7). Stereograms I.2, I.3 and II.1). In the other stereograms (Fig. 7, III.1, III.2), either k_1 or k_2 axes are oblique to the strike of the fault. Likewise, either k_1 or k_2 axes are subvertical and well grouped, k_2 axes are subvertical and well grouped, k_1 and k_2 axes are switched (Fig. 9, I.1, I.2) are parallel to the strikes of faults MP and MS, respectively. In four out of five AMS stereograms of Fault MM the AMS axes (Fig. 7; Stereograms I.2, I.3, I.2 and III.1) are compatible with the fault-plane solutions (Fig. 7d). In the other stereogram (Fig. 7, III.2), k_1 and k_2 axes are switched. Likewise, the AMS stereograms of faults MP and MS are compatible with the fault-plane solutions, while in Fault MP k_1 and k_2 axes are switched (Fig. 8). The AARM fabric next to Fault MM (site I.1) shows subvertical, well-grouped k_1 axes and subhorizontal k_1 and k_2 axes with overlapping 95 per cent confidence ellipses and bootstrapped confidence limits (Fig. 10).

Fig. 11 shows the high values ($>$ 1.015) of the magnetic lineation L near Fault MM relative to L values from the reference outcrops in the Ami’az Plain ($>$ 1.0025). A similar pattern is seen in the hanging wall, although the values are lower than those of the footwall. There are only small differences in T values between sites that have well-grouped AMS axes and those that have subhorizontal k_1 and k_2 axes with relatively large 95 per cent confidence ellipses (Table 2; Supplementary Data item II). However, on q–β plot (Fig. 12) that typically indicates a transition from one sedimentary environment to another (i.e. from gravity sedimentation to current conditions; Taira 1989) samples that have a well-grouped AMS axes cannot be separated from samples that have subhorizontal k_1 and k_2 axes with relatively large 95 per cent confidence ellipses.

6 MAGNETIC FABRICS

The values of k_{an} in Masada Plain fall in a narrow range between 30 and 50 \times 10$^{-8}$ SI (Table 2), which is typical for soft clay-carbonate sediments (e.g. Cifelli et al. 2004; Levi et al. 2006b). k_{an} values of samples that were taken close to and away from the fault planes are indistinguishable (Table 2).

The AMS of the reference outcrops in the Ami’az Plain is characterized by large 95 per cent confidence ellipses (Figs 6A1 and B1) and by overlap of the bootstrapped confidence limits (Fig. 6B2) of k_1 and k_2 axes. The AMS fabrics next to Fault MM are shown in Fig. 7. At ranges of 70–255 cm (hanging wall) and 65–550 cm (footwall) from the fault planes k_1 axes are subvertical and well grouped, whereas the 95 per cent confidence ellipses and the bootstrapped confidence limits of the subhorizontal k_1 and k_2 axes overlap. On the other hand, close to Fault MM, at ranges of 0–50 cm (hanging wall) and 0–55 cm (footwall) from the fault planes, the AMS fabrics are characterized by well-grouped and isolated k_1, k_2 and k_3 axes. Within the area enclosed between two fault strands (intermediate block, zone II in Fig. 7), the AMS also shows similar fabric characteristics. Likewise, results obtained close to faults MS and MP show well grouped and isolated k_1, k_2 and k_3 axes next to fault strands, and overlapping k_1 and k_2 axes away from these strands (Figs 8 and 9).

In three out of five AMS stereograms ranging up to 55 cm, k_2 axes align with the strike of Fault MM (Fig. 7; Stereograms I.2, I.3 and II.1). In the other stereograms (Fig. 7, III.1, III.2), either k_1 or k_2 axes are subvertical and well grouped, and k_1 and k_2 axes are switched (Fig. 9, I.1, I.2). In the other stereogram (Fig. 7, III.2), k_1 and k_2 axes are switched. Likewise, the AMS stereograms of faults MP and MS are compatible with the fault-plane solutions, while in Fault MP k_1 and k_2 axes are switched (Fig. 8). The AARM fabric next to Fault MS (site I.1) shows subvertical, well-grouped k_1 axes and subhorizontal k_1 and k_2 axes with overlapping 95 per cent confidence ellipses and bootstrapped confidence limits (Fig. 10).

7 GEOCHEMICAL RESULTS

XRD results show that all samples consist of aragonite as the most dominant (>50 per cent) mineral, with some minor (<5–20 per cent) quartz, phyllosilicates and calcite, as well as traces (<5 per cent) of gypsum, dolomite and halite (Supplementary Data item III, Table 1).

The average contents of Fe and Mn of the 13 representative samples are 1777 and 89 ppm, respectively (Table 3). Fig. 13 shows that the distribution of major elements between sets of samples that were taken close to and away from the fault planes is almost indistinguishable.

8 DISCUSSION

The AMS fabrics of the reference Lisan outcrops in the Ami’az Plain (Fig. 6, fabrics A1; B1) fit well with the criteria defining sedimentary processes (settings 1 and 2 in Table 1) and, hence, can be termed ‘deposition fabrics’. The AMS fabrics obtained meters away from the fault planes in the Masada Plain (Fig. 7, fabrics, I.1, III.3; and Fig. 8, fabrics, I.1, II.2) also fit well with the criteria defining sedimentary processes (Supplementary Data item II). The
Magnetic fabrics induced by dynamic faulting

Figure 7. Magnetic fabrics detected at Fault MM, Masada Plain. (a) Magnetic fabrics detected at the footwall (I), intermediate block (II) and hanging wall (III) of the fault. Blue squares, green triangles and pink circles represent k_1, k_2 and k_3 AMS axes. Blue and red lines mark zones in which either deposition fabric or deformation fabric is detected, respectively. The magnetic fabrics are presented in lower-hemisphere equal-area projections of principal AMS axes and their 95 per cent confidence regions. Dashed lines indicate the strike direction of the nearby fault strand. The distance from fault strands (reference lines 1 and 2) are marked in centimetres. (b) Sketch of Fault MM after Marco & Agnon (2005), in which line drawings are traced from photographs (Fig. 3), emphasizing bedding, breccia layers (pattern) and fault planes (solid lines). Two small stereograms show the orientations of the fault strands. Footwall (I), intermediate block (II) and hanging wall (III) are indicated. (c) Lower-hemisphere, equal-area projection of AMS principal axes and the bootstrapped confidence limits. (d) Two fault-planes and moment-tensor solutions calculated for the footwall (I), and hanging wall (II). Dashed arrows mark the dip-slip direction. ε_1^1, ε_2^2 and ε_3^3 are the instantaneous maximum, intermediate and least principal strain axes, respectively.

AMS fabrics of Lisan layers next to (<0.5 m) fault planes are characterized by well-grouped k_1 and k_2 axes, and, hence, meet the criteria of deformation processes (settings 3 and 4; Fig. 7, I.2, I.3, II.1, III.1 and III.2; Fig. 8, I.2, II.1; Fig. 9, I.2). Following, we first demonstrate the relation of the obtained AMS fabrics to deformation processes. Next, we discuss the possibility that these AMS fabrics were formed under setting 4 and are compatible with the hypothesis that distinguish AMS fabrics were formed due to fault-driven local strain field.

The possibility that the AMS fabrics next to the faults were formed due to transport of clastics (setting 2) into Lake Lisan is excluded for four main reasons:

1. The AARM fabric of samples close to Fault MS unmistakably shows ‘deposition fabrics’ (scattered k_1 and k_2 axes along the girdle; see Fig. 10), while the AMS fabric of the same samples shows well-grouped k_1 and k_2 axes (Fig. 9, I.2). Rock-magnetic experiments demonstrate that the dominant ferromagnetic phase of the Lisan Formation is titanomagnetite grains of PSD to strong MD (Marco et al. 1998; Levi et al. 2006b). The state of the titanomagnetite domain might play an important role in the acquisition of AMS fabrics. For MD grains the magnetization has maximum susceptibility values in the direction of the grains’ long axis (‘normal’ fabric), while in SD grains an ‘inverse’ fabric with maximum susceptibility in the direction of the grains’ short axis may occur (Rochette et al. 1992; Borradaile & Jackson 2004 and references therein). Hence, if the...
titanomagnetite contributes somewhat to the magnetic fabrics of the studied Lisan Formation, ‘normal’ AMS fabrics are expected.

We suggest that these grains preserve the original ‘deposition fabrics’ as revealed by the AARM fabric, and that this fabric was not affected by the faulting processes. Therefore, it is suggested that the AMS fabrics of the aragonite layers are controlled by the alignment of aragonite needles (Ron et al. 2006), which are the most common diamagnetic mineral in the Lisan Formation, and probably by alignment of sporadic paramagnetic minerals in the detritus layers.

(2) The AMS fabric varies away from the fault planes on a scale of centimetres. It is unlikely that settling of particles and transport of clastics under sedimentary conditions (settings 1 and 2) could have changed the fabrics on such a small scale; (3) Differences in q and β values usually indicate transitions from one sedimentary environment to another. Fig. 12 shows clearly that samples with well-grouped AMS axes cannot be separated from samples that have subhorizontal k_1 and k_2 axes with relatively large 95 per cent confidence ellipses and bootstrapped confidence limits (Supplementary Data item II). This suggests that the formation of the two types of magnetic fabrics is not related to different sedimentary environments and conditions and (4) Under sedimentary conditions that involve transport of clastics eastward towards the Dead Sea depocentre (Alsop & Marco 2012), k_1 axes should be parallel to the transport direction and be aligned along an east–west axis over the entire region. However, the present results indicate that k_1 axes next to faults MP and MS are perpendicular to the strikes of the faults (trending NNE and NW, respectively) and as a result are not aligned along an east-west direction throughout the entire region (Fig. 8, I.2, II.1; Fig. 9, I.2). In Fault MM (Fig. 7, I.2, I.3, II.1 and III.1) k_1 axes are aligned along ~ENE–WSW direction, but this seems to be due to the perpendicular relation between k_1 axes and the fault plane, as in faults MP and MS.

There are several arguments that clearly indicate that fluid circulation did not play a significant role in the formation of the unique magnetic fabrics near the fault planes:

1. Aragonite is an unstable mineral that in the presence of meteoric water changes to calcite (Katz et al. 1972). The bulk mineralogy of selected samples shows dominancy of aragonite and the lack of significant amount of calcite. This indicates that fluids were hardly passed through the sediment and along the fault planes after deposition. Aragonite has a very distinct Ca^{2+}/Sr^{2+} ratio, which is ten times greater then that of calcite. The results of the ICP-AES show that the Ca^{2+}/Sr^{2+} ratio remains constant for all samples (Table 3, Supplementary Data item IV), indicating that the contribution of calcite due to transformation of aragonite into calcite is negligible. This is in agreement with the results of the XRD measurements, indicating the predominance of aragonite in all samples (Supplementary Data item III, Table 1).

(2) The colour of the fine laminae of aragonite in the Lisan Formation is purely white. If indeed, fluids containing dissolved magnetic minerals (Fe and Mn) played a role, then these laminae near the fault planes would have stained by yellow to reddish colours. Though this effect has been documented near opening-mode fractures elsewhere in Amiaz Plain, it was not observed next to faults in Masada Plain.

3. Differences in k_m values may indicate differences in the content of magnetic minerals. The present results indicate that there are no significant differences in k_m values between sets of samples that show ‘deformation fabrics’ close to fault planes and those show ‘deposition fabrics’ away from the fault planes (Supplementary Data item V).

4. High concentrations of Fe^{2+} and Mn^{2+} close to fault planes may be the results of fluids circulating along the fault planes. In such a case, Fe^{2+}/Mn^{2+} ratio is expected to be constant and similar to the source fluid (Table 3 and Fig. 14). The present results indicate that there are no significant differences in the distribution of major elements ($Ca^{2+}, Sr^{2+}, Mg^{2+}, Al^{3+}, Mn^{2+}$ and Fe^{2+}) between sets of samples showing ‘deformation fabrics’ close to fault planes and those showing ‘deposition fabrics’ away from the fault planes (Table 3 and Fig. 13). Moreover, the results of the ICP-AES show that there is no correlation between Mn and Fe contents for samples that were taken close to fault planes (Fig. 14). Hence, the potential
Magnetic fabrics induced by dynamic faulting

Figure 8. Magnetic fabrics detected at Fault MP, Masada Plain. For legend see Figure MM. (a) Magnetic fabrics detected at the hanging wall (I), and footwall (II) of the fault. (b) Sketch of Fault MP, in which line drawings are traced from photographs, emphasizing bedding, breccia layers (pattern), and fault planes (solid lines). Two small stereograms show the orientations of the fault strands. Hanging wall (I), and footwall (II) are indicated. (c) Lower-hemisphere, equal-area projection of AMS principal axes and the bootstrapped confidence limits. (d) A fault-plane and moment-tensor solution calculated for the footwall (I). Dashed arrows mark the dip-slip direction. ϵ_1^1, ϵ_2^1 and ϵ_3^1 are the instantaneous maximum, intermediate and least principal strain axes, respectively.

effect of fluid circulation on the observed unique magnetic fabrics near the fault planes can be excluded.

The AMS fabrics reflect the inelastic strain that was stored in the soft rocks within decimeters of the three faults studied during the deformation process. We therefore interpret the AMS fabrics next to the faults as ‘deformation fabrics’ and suggest that they provide evidence for the inelastic strain stored in the soft rocks during faulting events along and close to the fault planes. The evidence that supports the possibility that this inelastic strain is an...
Figure 9. Magnetic fabrics detected at Fault MS, Masada Plain. For legend see Figure MM. (a) Magnetic fabrics detected at the footwall (I) of the fault. (b) Sketch of Fault MS, in which line drawings are traced from photographs, emphasizing bedding, breccia layers (pattern) and fault planes (solid lines). A small stereogram shows the orientation of the fault strand. Footwall (I) and hanging wall (II) are indicated. (c) Lower-hemisphere, equal-area projection of AMS principal axes and the bootstrapped confidence limits. (d) A fault-plane and moment-tensor solution calculated for the footwall (I). Dashed arrows mark the dip-slip direction. \(\varepsilon_1 \), \(\varepsilon_2 \) and \(\varepsilon_3 \) are the instantaneous maximum, intermediate and least principal strain axes, respectively.

Figure 10. Anisotropy of Anhysteretic Remanent Magnetization (AARM) measurements of representative samples taken near Fault MS (site-I.1). (a) Lower-hemisphere, equal-area projection of AARM principal axes and the 95 per cent confidence ellipses; Blue squares, green triangles and pink circles represent \(k_1 \), \(k_2 \) and \(k_3 \) axes, respectively. The 95 per cent confidence ellipses of \(k_1 \) and \(k_2 \) is about 50° which is characterizing ‘deposition fabrics’ (see also, Supplementary Data item II). (b) Lower-hemisphere, equal-area projection of AARM principal axes and the bootstrapped confidence limits.

The ‘deformation fabrics’ may be the expression of two different modes of local strain field: (1) Static strain field accumulating near the fault plane, usually due to the long-term steady plate motions. The static strain field is commonly explained by the ‘elastic rebound theory’ or the ‘quasi-static damage theory’ (e.g. Dugdale 1960; Turcotte & Schubert 1985; Cowie & Scholz 1992; Scholz 2002) and (2) dynamic strain field that formed near the fault plane due to fast radiation of the acoustic waves (e.g. Shearer 1999) and fast rupture propagation (e.g. Ben-Zion & Shi 2005; Rice et al. 2005; Lyakhovsky & Ben-Zion 2008; Ma & Andrews 2010).

Based on the rheology of the soft Lisan host rock and the setting of the syndepositional faults studied, it is likely that the effect of the static strain (stress) next to the faults was minor and the dynamic...
Magnetic fabrics induced by dynamic faulting

Footwall

Hanging wall

Reference value

Distance from fault plane (cm)

Figure 11. Variations of the L values with the distance from Fault MM. Footwall and hanging wall are indicated. Blue horizontal line represents the average L values of the reference site in the Ami’az Plain.

Figure 12. q (lineation intensity) versus β (imbrication angle) values of the AMS measurements, Masada Plain. The fabrics that have well-grouped AMS axes (red circles) cannot be differentiated from fabrics whose k_1 and k_2 axes are weakly grouped (blue squares).

Table 3. Chemical contents in ppm or % and ratios.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ca</th>
<th>Sr</th>
<th>Mg</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
<th>%Ca</th>
<th>%CaCO$_3$</th>
<th>%SiO$_2$</th>
<th>Ca/Mg</th>
<th>Fe/Mn</th>
<th>SiO$_2$/Al$_2$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-4</td>
<td>24316</td>
<td>5350</td>
<td>7594</td>
<td>683</td>
<td>103</td>
<td>1814</td>
<td>24.4</td>
<td>60.8</td>
<td>2988</td>
<td>32.1</td>
<td>17.5</td>
<td>2.3</td>
</tr>
<tr>
<td>MM-16</td>
<td>25679</td>
<td>5757</td>
<td>6419</td>
<td>565</td>
<td>102</td>
<td>1489</td>
<td>25.7</td>
<td>64.1</td>
<td>2736</td>
<td>40</td>
<td>14.6</td>
<td>2.6</td>
</tr>
<tr>
<td>MM-17</td>
<td>24452</td>
<td>5375</td>
<td>7281</td>
<td>633</td>
<td>90</td>
<td>1699</td>
<td>24.5</td>
<td>61.1</td>
<td>2817</td>
<td>33.6</td>
<td>18.5</td>
<td>2.4</td>
</tr>
<tr>
<td>MM-19</td>
<td>23116</td>
<td>5060</td>
<td>7652</td>
<td>591</td>
<td>125</td>
<td>1575</td>
<td>24.1</td>
<td>57.7</td>
<td>2613</td>
<td>30.2</td>
<td>12.6</td>
<td>2.3</td>
</tr>
<tr>
<td>MM-65</td>
<td>24167</td>
<td>5121</td>
<td>6807</td>
<td>734</td>
<td>86</td>
<td>2039</td>
<td>24.2</td>
<td>60.3</td>
<td>3107</td>
<td>35.5</td>
<td>23.6</td>
<td>2.2</td>
</tr>
<tr>
<td>MM-57</td>
<td>24064</td>
<td>5457</td>
<td>7375</td>
<td>848</td>
<td>116</td>
<td>2018</td>
<td>24.1</td>
<td>60.1</td>
<td>2914</td>
<td>32.6</td>
<td>17.4</td>
<td>1.8</td>
</tr>
<tr>
<td>MM-35</td>
<td>25289</td>
<td>5551</td>
<td>6411</td>
<td>559</td>
<td>85</td>
<td>1419</td>
<td>25.3</td>
<td>63.2</td>
<td>2531</td>
<td>39.4</td>
<td>16.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Average</td>
<td>24354</td>
<td>5333</td>
<td>7151</td>
<td>641</td>
<td>101</td>
<td>1717</td>
<td>24</td>
<td>60.8</td>
<td>2852</td>
<td>34</td>
<td>17.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Std. (1)</td>
<td>9119</td>
<td>274</td>
<td>529</td>
<td>69</td>
<td>15</td>
<td>217</td>
<td>1</td>
<td>4.6</td>
<td>197</td>
<td>4</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>MP-11</td>
<td>21643</td>
<td>4191</td>
<td>8098</td>
<td>942</td>
<td>87</td>
<td>2081</td>
<td>21.6</td>
<td>54</td>
<td>2837</td>
<td>26.7</td>
<td>24</td>
<td>1.6</td>
</tr>
<tr>
<td>MP-26</td>
<td>21904</td>
<td>4447</td>
<td>7065</td>
<td>743</td>
<td>107</td>
<td>1690</td>
<td>21.9</td>
<td>54.7</td>
<td>2809</td>
<td>31</td>
<td>16</td>
<td>2.2</td>
</tr>
<tr>
<td>MP-30</td>
<td>23176</td>
<td>4770</td>
<td>6199</td>
<td>680</td>
<td>83</td>
<td>1513</td>
<td>23.2</td>
<td>57.9</td>
<td>2816</td>
<td>37.4</td>
<td>18</td>
<td>2.2</td>
</tr>
<tr>
<td>MP-34</td>
<td>23640</td>
<td>4848</td>
<td>6767</td>
<td>744</td>
<td>78</td>
<td>1822</td>
<td>23.6</td>
<td>59</td>
<td>2933</td>
<td>34.9</td>
<td>23</td>
<td>2.1</td>
</tr>
<tr>
<td>MP-45</td>
<td>19728</td>
<td>3896</td>
<td>8367</td>
<td>857</td>
<td>164</td>
<td>2166</td>
<td>19.7</td>
<td>49.3</td>
<td>2738</td>
<td>23.6</td>
<td>13</td>
<td>1.7</td>
</tr>
<tr>
<td>MP-47</td>
<td>25583</td>
<td>5457</td>
<td>6676</td>
<td>781</td>
<td>78</td>
<td>1637</td>
<td>25.6</td>
<td>63.9</td>
<td>3129</td>
<td>38.3</td>
<td>21</td>
<td>2.1</td>
</tr>
<tr>
<td>Average</td>
<td>22591</td>
<td>4564</td>
<td>7032</td>
<td>777</td>
<td>89</td>
<td>1777</td>
<td>23</td>
<td>56.4</td>
<td>2849</td>
<td>33</td>
<td>20</td>
<td>2.1</td>
</tr>
<tr>
<td>Std. (1)</td>
<td>9684</td>
<td>303</td>
<td>796</td>
<td>114</td>
<td>13</td>
<td>239</td>
<td>1</td>
<td>4.8</td>
<td>57</td>
<td>5</td>
<td>4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Strain (stress) was dominant. First, the total displacement along Fault MM is the result of three dynamically-induced earthquake events, as demonstrated by the associated breccia layers (Marco & Agnon 2005). Second, a static strain field commonly accumulates due to frictional forces that lock the steady motion of the blocks on either side of the fault. Under the Lake Lisan water column, the calculated static frictional forces of the studied faults are very low (Supplementary Data item VI) and, consequently, the static strains along them are negligible. Third, static strains near the surface are low and would not modify the ‘deposition fabrics’ to ‘deformation fabrics’ without additional strains. This conclusion is supported by the detection of the depositional magnetic fabric away from the fault planes. Fourth, during dynamic rupturing/faulting, the local strain field varies significantly through the damage zone (Ma & Andrews 2010, fig. 14).

In inelastic dynamic models, in which slip rate, rock mechanical properties, depth, seismic wave velocities and remote stresses were taken into account, the near-surface inelastic strain is induced by the seismic waves ahead of the rupture front. The simulations show that the compressive and the extensive stresses (i.e. analogue to k_3 and to k_1 axes, respectively) are changeable around the fault, arising from variations over time of the seismic waves that interact with the small confining pressure near the surface. As the cohesion decreases upward, the inelastic zone (i.e. damage zone) broadens towards the surface. Likewise, in the ‘deformation fabrics’ either k_2 or k_1 axes are parallel to the strikes of the faults, implying that the strain field was interrelated with the rupture propagation, and, hence, was dynamic. Noticeably, in normal faulting the intermediate shortening axis (ϵ_2) is parallel to the strike of the fault and the maximum
shortening axis (ε_1) is perpendicular to it (Twiss & Moores 1992). An analogy to this is seen in four stereograms, in which k_1 axes are parallel to the strikes of the faults and k_3 axes are perpendicular to it (Fig. 7, I.2, I.3, II.1; Fig. 9, I.2). Fifth, the width W of the damage zone can be predicted from the total displacement D based on a correlation between the two attributes (e.g. Faulkner et al. 2011). In a quasi-static propagation the damage zone becomes wider as the fault displacement advances. Generally, the $W/D_{\text{total}} \geq 1$ for a total displacement of up to ~100 m (Faulkner et al. 2011, and references therein). In this mode of formation, the damage zone depends mainly on the fault displacement history (Tveranger et al. 2008; Childs et al. 2009; Faulkner et al. 2010; Torabi & Berg 2011). In dynamic propagation, the size of the damage zone depends mainly on the rupture propagation velocity (Rice et al. 2005). In this mode of formation, W could be much narrower than that formed by the quasi-static propagation, and it could be either symmetric or asymmetric around the faults (e.g. Ben-Zion & Shi 2005; Rice et al. 2005; Faulkner et al. 2011). In this study $W/D_{\text{total}} = \sim0.2$, indicating that this ratio is comparable to values of dynamic propagation. In addition, the width of the damage zone in Fault MM is symmetric around the fault plane (~0.5 m at the hanging wall and footwall) and in Fault MP is asymmetric (~0.6 and 0.02 m at the hanging wall and footwall, respectively). These observations best are explained by dynamic rather than static strains along the faults. Based on the above arguments, it is plausible to attribute the magnetic fabrics and the associated inelastic deformation to coseismic dynamic faulting.

This study shows that the ‘deformation fabrics’ were acquired during the rupturing process over a short time and localized space. Hence, they cannot be associated with an extensional (e.g. Cifelli et al. 2005) or compressional (Kissel et al. 1986) component of the far field.

We envision that during the rupturing event the seismic waves that passed through the Lisan soft rocks facilitated rotation and rearrangement of aragonite needles in the following manner. Clusters of aragonite needles form an apparent shape, in which its long and short axes are horizontal and vertical, respectively. In this cluster of particles the c-axes of the aragonite needles are vertical and parallel to the vertical k_3 axes and to the local maximum shortening axis (ε_1). The long axis of the apparent shape is effectively parallel to k_1 axes and to the maximum elongation axes (ε_3). Noted, that in this schematic model k_3 axes can be parallel, perpendicular or even oblique to the strike of the fault plane, depending on the orientation of ε_1 with respect to the fault plane during the rupturing event. The possibility that paramagnetic particles also involved with the soft-sediment deformation should be further studied in the future.

This study shows that most of the AMS stereograms that reflect a local and inelastic strain field resemble fault-plane solutions (i.e. the principal axes of the AMS and strain ellipsoids are coaxial; Figs 7–9). This conspicuous result indicates that although the local strain field is inelastic, it can provide a first-order approximation for the fault mechanism in the elastic strain regime. Hence, we suggest that the AMS method may be applicable for determining the fault-plane solutions of past earthquakes in soft rocks and could be useful in such rocks where strain markers are invisible.
ACKNOWLEDGEMENTS

This research was supported by the Israel Science Foundation (ISF grant No. 1245/11). We are grateful to Y. Harlavan for supportive discussion and help in analyzing the geochemical data. Thorough and helpful reviews of G. Borraidaile and M. Mattei, C. Aubourg, M. Chadima and the Editor E. Petrovsky are highly appreciated.

REFERENCES

Eyal, Y., 1996. Stress field fluctuations along the Dead Sea rift since the Middle Miocene, Tectonics, 15, 157–170.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Supplementary Data item I. Plot of Lisan hysteresis parameters (Day et al. 1977) Modified after Ron et al. (2006). Mrs – saturation of remanence; Ms – saturation magnetization; Be – coercivity field; Bcr – coercivity of remanence; SD – single domain; MD – multidomain; PSD – pseudo-single domain. Open circles refer to the residual material that remained after extracting the magnetic grains (open triangle) from detritus material (solid circles). Jrs – saturation of remanence; Js – J saturation.

Supplementary Data item II. 95% ellipse confidence of k_1 axes versus distance from fault planes. Red and blue circles mark fabrics characterized by well-grouped AMS axes and weakly grouped k_1 and k_2 axes, respectively.

Supplementary Data item III, Table 1. XRD data in sites MM and MP.

Supplementary Data item IV. %CaCO$_3$ versus Sr content of 13 selected samples from sites MM and MP. Red diamonds and blue circles represent ‘deformation fabrics’ and ‘deposition fabrics’, respectively.

Supplementary Data item V. k_{m0} values of the three studied sites and the reference outcrops in Ami’az Plain. Red and blue circles represent ‘deformation fabrics’ and ‘deposition fabrics’, respectively. Numbers in squares indicate the average k_{m0} values of the ‘deformation fabrics’ and ‘deposition fabrics’ in individual studied sites.

Supplementary Data item VI. Static stress condition presented by the Coulomb criterion (Jaeger & Cook 1979) during rupturing under the Lisan lake-water column. The values of relevant variables and calculated parameters are indicated. (http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggu300/-/DC1)

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.