The Gumbel pre-factor k for gapped local alignment can be estimated from simulations of global alignment

Sergey Sheetlin, Yonil Park and John L. Spouge*

National Center for Biotechnology Information, National Library of Medicine, Bethesda MD 20894, USA

Received May 12, 2005; Revised July 13, 2005; Accepted August 12, 2005

ABSTRACT

The optimal gapped local alignment score of two random sequences follows a Gumbel distribution. The Gumbel distribution has two parameters, the scale parameter λ and the pre-factor k. Presently, the basic local alignment search tool (BLAST) programs (BLASTP (BLAST for proteins), PSI-BLAST, etc.) use all time-consuming computer simulations to determine the Gumbel parameters. Because the simulations must be done offline, BLAST users are restricted in their choice of alignment scoring schemes. The ultimate aim of this paper is to speed the simulations, to determine the Gumbel parameters online, and to remove the corresponding restrictions on BLAST users. Simulations for the scale parameter λ can be as much as five times faster, if they use global instead of local alignment [R. Bundschuh (2002) J. Comput. Biol., 9, 243–260]. Unfortunately, the acceleration does not extend in determining the Gumbel pre-factor k, because k has no known mathematical relationship to global alignment. This paper relates k to global alignment and exploits the relationship to show that for the BLASTP defaults, 10 000 realizations with sequences of average length 140 suffice to estimate both Gumbel parameters λ and k within the errors required (λ, 0.8%; k, 10%). For the BLASTP defaults, simulations for both Gumbel parameters now take less than 30 s on a 2.8 GHz Pentium 4 processor.

INTRODUCTION

Local sequence alignment is an indispensable computational tool in modern molecular biology. It is frequently used to infer the functional, structural and evolutionary relationships of a novel protein or DNA sequence by finding similar sequences of known function in a database. Arguably, the most important sequence database search program available is BLAST (the Basic Local Alignment Search Tool) (1,2). Using a heuristic algorithm, BLAST implicitly performs a local alignment of a protein or DNA query against sequences in the corresponding database. The BLAST output then ranks each potential database match according to an E-value, which is derived from the corresponding local maximum score, given in bits. For each local maximum score y, the corresponding E-value E_y gives (under a random model) the expected number of false positives with a lower rank in the output. Thus, a small E-value indicates that the corresponding alignment is unlikely to occur by chance alone, whereas a large E-value indicates an unremarkable alignment. Without doubt, BLAST’s E-values contribute substantially to its popularity.

Let us discuss the BLAST E-value E_y further here. (The Materials and Methods section also continues the discussion.) BLAST assumes a random model in which each unrelated pair of sequences $A[1, m] = A_1 \cdots A_m$ and $B[1, n] = B_1 \cdots B_n$ consists of random letters chosen independently from a background distribution. BLASTP (BLAST for proteins), e.g. assumes that random proteins are composed of amino acids chosen independently from the Robinson and Robinson frequency distribution (3). BLAST also requires an input, a matrix $s(A_i, B_j)$ for scoring matches between the letters A_i and B_j. BLASTP, e.g. uses the BLOSUM62 scoring matrix (4) as its default, offering as alternatives a few other PAM (5) and BLOSUM matrices. BLAST also enhances its detection of remote sequence similarities by using gapped sequence alignment. The cost of introducing a gap into an alignment is given by the ‘gap penalty’ $\Delta(g)$, where g is the gap length. Practical gap penalties Δ are usually super-additive, i.e. $\Delta(g) + \Delta(h) \geq \Delta(g + h)$, so the concatenation of optimal subsequence alignments has a score no less than the sum of their scores. (However, our theory is not restricted to super-additive gap penalties.)
Equation 1, the tail probability database searches. We refer to the letter distribution, the scoring sequences. The corresponding global alignment graph follows. The vertices of Γ are $v = (i, j) \in \mathbb{Z}_+^2$, the non-negative two-dimensional integer lattice. Three sets of directed edges e come out of each vertex $v = (i, j)$: northward, northeastward and eastward. One northeastward edge goes into $(i + 1, j + 1)$ with weight $s(A_{i+1}B_{j+1})$. For each $g \geq 0$, one eastward edge goes into $(i + g, j)$ and one northward edge goes into $(i, j + g)$; both are assigned the same weight $-\Delta(g) < 0$. For simplicity, we assume $s(A_i, B_j)$ and $\Delta(g)$ are always integers, with greatest common divisor 1.

A directed path $\pi = (v_0, e_1, v_1, e_2, \ldots, e_k, v_h)$ in Γ is a finite, alternating sequence of vertices and edges that starts and ends with a vertex. We say that the path π starts at v_0 and ends at v_h. For instance, each gapped alignment of the subsequences $A[i+1, m] = A_{i+1} \ldots A_m$ and $B[j+1, n] = B_{j+1} \ldots B_n$ corresponds to exactly one directed path that starts at $v_0 = (i, j)$ and ends at $v_h = (m, n)$. The alignment’s score is the ‘path weight’ $W_\pi = \sum_{i=1}^k W(e_i)$, the sum of the weights $W(e_i)$ of the edges e_i. By convention, any trivial path $\pi = (v_0)$ consisting of a single vertex has weight $W_\pi = 0$.

Let Π_{ij} be the set of all paths π starting at $v_0 = (0, 0)$ and ending at $v_h = (i, j)$. Define the ‘global score’ $S_{ij} = \max\{W_\pi : \pi \in \Pi_{ij}\}$. The paths π starting at v_0 and ending at v_h with weight $W_\pi = S_{ij}$ are ‘optimal global paths’ and correspond to ‘optimal global alignments’ between $A[i, j]$ and $B[j, j]$. The Needleman–Wunsch algorithm computes the global scores S_{ij} (24).

Let $\Pi = \bigcup_{i,j \in \mathbb{Z}_+^2} \Pi_{ij}$ be the set of all paths π starting at $v_0 = (0, 0)$. Define the ‘global maximum’ $M = \max\{W_\pi : \pi \in \Pi\}$, which is also the maximum $M = \max\{S_{ij} : (i, j) \in \mathbb{Z}_+^2\}$ of all global scores. Let $N(y) = \#\{(i, j) \in \mathbb{Z}_+^2 : S_{ij} = y\}$ denote the number of vertices with global score y.

Define the lattice rectangle $[0, n] = \{0, 1, \ldots, n\}$. Our simulations involved a square subset $[0, n]^2$ of \mathbb{Z}_+^2. In particular single subscripts denote quantities for the square: $M_n = \max\{S_{ij} : (i, j) \in [0, n]^2\}$, the square’s global maximum; $E_n = \max\{\max_{0\leq i\leq n} S_{ij}, \max_{0\leq j\leq n} S_{ij}\}$, its edge maximum; and $N_n(y) = \#\{(i, j) \in [0, n]^2 : S_{ij} = y\}$, the number of its vertices with global score y.

The formula for k from global alignment

We can show heuristically that $k = \lim_{y \to \infty} k_y$, where

$$k_y = \frac{e^{\lambda y}}{1 - e^{-\lambda y}} \cdot \frac{P(M = y)^2}{E(N(y))}$$

(see our Appendix, online). Ultimately, the heuristics behind Equation 2 are based on two observations about random sequence matches. First, the two ends of a strong local alignment match are the mirrors of each other. Second, the right end of a strong alignment match looks the same for both local and global alignment.

Equation 2 computes k_y from three components: the scale parameter λ, the probability $P(M = y)$ of a global maximum y, and the expected number $E(N(y))$ of vertices with global score $S_{ij} = y$. We now describe how our simulations determined the three components.

Numerical scheme for λ

First, we estimated λ from random global alignments (23). All simulations used to affine gap penalties $\Delta(g) = a + bg$ and

MATERIALS AND METHODS

Notation for global sequence alignment

We denote the non-negative integers by $\mathbb{Z}_+ = \{0, 1, 2, 3, \ldots\}$. Throughout the paper, the letters g, h, l, j, m, n and the letter y are the integers.

Consider a pair $A = A_1A_2 \ldots$ and $B = B_1B_2 \ldots$ of infinite sequences. The corresponding global alignment graph Γ is a directed and weighted lattice graph in two dimensions, as follows. The vertices of Γ are $v = (i, j) \in \mathbb{Z}_+^2$, the non-negative two-dimensional integer lattice. Three sets of directed edges e come out of each vertex $v = (i, j)$: northward, northeastward and eastward. One northeastward edge goes into $(i + 1, j + 1)$ with weight $s(A_{i+1}B_{j+1})$. For each $g \geq 0$, one eastward edge goes into $(i + g, j)$ and one northward edge goes into $(i, j + g)$; both are assigned the same weight $-\Delta(g) < 0$. For simplicity, we assume $s(A_i, B_j)$ and $\Delta(g)$ are always integers, with greatest common divisor 1.

A directed path $\pi = (v_0, e_1, v_1, e_2, \ldots, e_k, v_h)$ in Γ is a finite, alternating sequence of vertices and edges that starts and ends with a vertex. We say that the path π starts at v_0 and ends at v_h. For instance, each gapped alignment of the subsequences $A[i+1, m] = A_{i+1} \ldots A_m$ and $B[j+1, n] = B_{j+1} \ldots B_n$ corresponds to exactly one directed path that starts at $v_0 = (i, j)$ and ends at $v_h = (m, n)$. The alignment’s score is the ‘path weight’ $W_\pi = \sum_{i=1}^k W(e_i)$, the sum of the weights $W(e_i)$ of the edges e_i. By convention, any trivial path $\pi = (v_0)$ consisting of a single vertex has weight $W_\pi = 0$.

Let Π_{ij} be the set of all paths π starting at $v_0 = (0, 0)$ and ending at $v_h = (i, j)$. Define the ‘global score’ $S_{ij} = \max\{W_\pi : \pi \in \Pi_{ij}\}$. The paths π starting at v_0 and ending at v_h with weight $W_\pi = S_{ij}$ are ‘optimal global paths’ and correspond to ‘optimal global alignments’ between $A[i, j]$ and $B[j, j]$. The Needleman–Wunsch algorithm computes the global scores S_{ij} (24).

Let $\Pi = \bigcup_{i,j \in \mathbb{Z}_+^2} \Pi_{ij}$ be the set of all paths π starting at $v_0 = (0, 0)$. Define the ‘global maximum’ $M = \max\{W_\pi : \pi \in \Pi\}$, which is also the maximum $M = \max\{S_{ij} : (i, j) \in \mathbb{Z}_+^2\}$ of all global scores. Let $N(y) = \#\{(i, j) \in \mathbb{Z}_+^2 : S_{ij} = y\}$ denote the number of vertices with global score y.

Define the lattice rectangle $[0, n] = \{0, 1, \ldots, n\}$. Our simulations involved a square subset $[0, n]^2$ of \mathbb{Z}_+^2. In particular single subscripts denote quantities for the square: $M_n = \max\{S_{ij} : (i, j) \in [0, n]^2\}$, the square’s global maximum; $E_n = \max\{\max_{0\leq i\leq n} S_{ij}, \max_{0\leq j\leq n} S_{ij}\}$, its edge maximum; and $N_n(y) = \#\{(i, j) \in [0, n]^2 : S_{ij} = y\}$, the number of its vertices with global score y.

The formula for k from global alignment

We can show heuristically that $k = \lim_{y \to \infty} k_y$, where

$$k_y = \frac{e^{\lambda y}}{1 - e^{-\lambda y}} \cdot \frac{P(M = y)^2}{E(N(y))}$$

(see our Appendix, online). Ultimately, the heuristics behind Equation 2 are based on two observations about random sequence matches. First, the two ends of a strong local alignment match are the mirrors of each other. Second, the right end of a strong alignment match looks the same for both local and global alignment.

Equation 2 computes k_y from three components: the scale parameter λ, the probability $P(M = y)$ of a global maximum y, and the expected number $E(N(y))$ of vertices with global score $S_{ij} = y$. We now describe how our simulations determined the three components.

Numerical scheme for λ

First, we estimated λ from random global alignments (23). All simulations used to affine gap penalties $\Delta(g) = a + bg$ and
the corresponding global alignment algorithms for computing S_{ij} (25).

Recall the edge maximum E_n (defined at the end of the notation for global sequence alignment). As shown elsewhere (23), its cumulant generating function satisfies

$$\ln \left[\mathbb{E} \exp (\lambda E_n) \right] = \beta_0 + \beta_1(\lambda)n + O(\delta^n), \quad \text{Equation } 3$$

where $0 \leq \delta < 1$. The root $\lambda = \lambda_0$ of $\beta_1(\lambda) = 0$ is our estimate for λ.

To estimate $\mathbb{E}\exp(\lambda E_n)$ efficiently, we used Bundschuh’s importance sampling methods (21), which apply if the gap penalty is affine. Briefly, importance sampling is a variance-reduction technique for simulating rare events. In global alignment simulations, e.g. a large edge maximum is a rare event. By simulating optimal subsequence pairs in ‘hybrid alignment’ (a type of optimized Bayesian local alignment) (26), we ensured that our realizations frequently generated a large edge maximum E_n. Accordingly, we simulated a pair of sequences of some ‘base length’ $n = l$. After correcting for biases induced by the importance sampling distribution, we estimated $\mathbb{E}\exp(\lambda E_l)$.

Equation 3 corresponds to an asymptotic equality with two free parameters β_0 and $\beta_1(\lambda)$, which we estimated with robust regression. Robust regression was originally developed as an antidote to outliers (27), which badly skew least-square regression, because it ignores points that well in asymptotic regression, because it ignores points that obviously lie outside the asymptotic regime (23).

Accordingly, we applied robust regression to Equation 3. To solve $\beta_1(\lambda) = 0$, let λ_u be the scale parameter for ungapped local alignment, which can be determined analytically. Because $0 \leq \lambda \leq \lambda_u$, with repeated bisection of the interval [0, λ_u] yielded an estimate λ for the root of the equation $\beta_1(\lambda) = 0$. In practice, multiple roots did not occur.

Numerical scheme for k

Next, we estimated $\mathbb{P}(M = y)$ and $\mathbb{E}N(y)$. Importance sampling has already generated sequence-pairs of base length l for estimating λ. The bias in importance sampling tends to yield large global scores S_{ij}, ascending toward the global maximum M. To determine $N(y)$, we needed to simulate and count all vertices with global scores $S_{ij} = y$. Therefore, we extended the sequence pair beyond the base length l using random letters with the unbiased Robinson and Robinson frequencies. The global scores S_{ij} beyond the base length l became progressively smaller, thereby permitting determination of $N(y)$.

Given $\varepsilon > 0$, we simulated a random number L of unbiased letters in each sequence, until we found some total length $L = l + L$ such that

$$2L + 1 \exp \{-\lambda(M_L - E_L)\} \leq \varepsilon. \quad \text{Equation } 4$$

The edge maximum E_L is a maximum over $2L + 1$ vertices. Therefore, for small enough stringencies $\varepsilon > 0$, if the edge maximum E_L of the contributing $2L + 1$ vertices satisfies Equation 4, it is probable that $M = M_L$, because elongating the sequences is unlikely to increase the estimate of M. Similarly, the elongation does not increase the estimate of $\mathbb{E}N(y)$ much. After appropriate averaging, our simulations therefore yielded estimates $\hat{\mathbb{P}}(M = y) \approx \mathbb{P}(M_L = y)$ and $\hat{\mathbb{E}}N(y) \approx \mathbb{E}N_L(y)$ for $\mathbb{P}(M = y)$ and $\mathbb{E}N(y)$.

With the simulation estimates $\hat{\lambda}$, $\hat{\mathbb{P}}(M = y)$ and $\hat{\mathbb{E}}N(y)$ in hand, we found that errors in $\hat{\lambda}$ were negligible in practice. In contrast, the standard deviations sample (32) of $\hat{\mathbb{P}}(M = y)$ and $\hat{\mathbb{E}}N(y)$, denoted by s_M and s_N, were not.

We calculated an estimate \hat{k}_y, for k_y, by substituting $\hat{\lambda}$, $\hat{\mathbb{P}}(M = y)$, and $\hat{\mathbb{E}}N(y)$ into Equation 2. We estimated the error $\hat{s}(\hat{k}_y)$ in k_y from the equation

$$s(\hat{k}_y) = \max \left[\exp(\hat{\lambda}_y), \left(\frac{\mathbb{P}(M = y) \pm s_M}{\mathbb{E}N(y)} \right)^{\frac{1}{2}} - \hat{k}_y \right]. \quad \text{Equation } 5$$

Note that Equation 5 explicitly neglects the error in the estimate $\hat{\lambda}$.

Finally, we used robust regression to extract a summary estimate k_y from the estimates \hat{k}_y, $\pm s(\hat{k}_y)$ for individual y. To begin with, consider a constant regression model $\eta = 10 + e$, where η is a column vector consisting of the values k_y, 1 is a column vector whose elements are all 1, the constant α is the summary estimate \hat{k}, and e is the column vector consisting of the errors $s(\hat{k}_y)$. Our ultimate aim is to compute \hat{k} rapidly, with as few realizations as possible. Unfortunately, for small numbers of realizations, the errors s_M and s_N are correlated with the corresponding estimates $\mathbb{P}(M = y)$ and $\mathbb{E}N(y)$. The correlations propagate to $s(\hat{k}_y)$, noticeably biasing the summary estimate \hat{k}, with $\mathbb{E}k < k$ (see Figure 1).

To avoid the bias, we applied the constant regression model $\eta = 10\alpha + e$ to the errors $s(\hat{k}_y)$ themselves. The elements of the column vector η were the errors $s(\hat{k}_y)$, with errors in each $s(\hat{k}_y)$ taken to be a constant s derived though a standard formula (27), p. 387), $\epsilon = 10\alpha$.

Robust regression thus gave a constant estimate $\alpha = \hat{\alpha}$, and $s(\hat{k}_y)$. We substituted the constant error estimate $e = 10\alpha + e(\hat{k})$ back into the constant regression $\eta = 10\alpha + e$, to derive a robust regression estimate \hat{k} for k. Although somewhat ad hoc, the constant regression of the errors successfully reduced biases (see Figure 3).

For large simulations (e.g. 10^6 realizations), however, sampling of the event $[M = y]$ was inadequate for many large y, with $\mathbb{P}(M = y)$ likely being underestimated. Although the corresponding average was unbiased (in theory, at least), we suspect that it had a distribution whose skewing increased with y. Consequently, for large y, k_y often slightly underestimated the true k, with improbable but substantial overestimations maintaining a correct expectation $\mathbb{E}k_y = k$ (see Figure 2). The putative skewing also made the anticipated relation $\mathbb{P}(M = y) \approx e^{k_y} \mathbb{P}(M = y + 1)$ fail for large y. To avoid skewing, we therefore restricted robust regression of k_y to the range $[a, b]$ of y that minimized the function

$$f(a, b) = \frac{1}{b - a + 1} \sum_{y=a}^b \mathbb{P}(M = y) - \frac{1}{2} \left(1 - e^{-\lambda} \right). \quad \text{Equation } 6$$
The dotted line $k = 0.036$ represents the previous best estimate of the Gumbel pre-factor λ for the under-sampled asymptotic regime $y \in [4, 40]$. The range $y \in [0, 3]$ is also asymptotic, but it is not adequately sampled, so the k_y fluctuate randomly around the true k. The range $y > 40$ is also asymptotic, but it is not adequately sampled, so the k_y usually underestimate the true k.

Figure 2 plots the estimates \hat{k}_y against global score y, up to $y = 25$. Each point represents 10^6 realizations. The horizontal thick line represents the previous best estimate $\lambda = 0.041$ and the dotted line, the biased summary estimate \hat{k} from the robust regression, which we ascribe to the correlation between $s(k_y)$ and k_y.

Figure 3 plots the relative errors of the summary estimate \hat{k}, with their standard error bars $s(\hat{k}_y)$ for the under-sampled asymptotic regime $y \in [41, 100]$ are large and are omitted.

Software and Hardware

Computer code was written in C++ and compiled with the Microsoft® Visual C++® 6.0 compiler. The computer had a single Intel® Pentium® 4 2.8 GHz processor with 0.5 GB RAM and employed the Microsoft® Windows® 2000 operating system.

RESULTS

Tables 1 and 2 give estimates of the Gumbel parameters λ and k for all online options of the BLASTP parameters. They therefore confirm that our simulations and our formulas for k produced correct results. Other figures show results for the BLASTP default parameters, namely, the Robinson and Robinson amino acid frequencies (3), the BLOSUM62 scoring matrix and the gap cost $\Delta(g) = 11 + g$. Other BLASTP parameters tested gave comparable results, unless indicated otherwise (data not shown).

Empirically, simulations using BLASTP default parameters needed a base length of $l = 50$ and a stringency $\epsilon = 10^{-2}$ for the accuracies required for ($\lambda < 1%$; $k < 10\%$). For scoring matrices with more dominant diagonals than BLOSUM62, shorter base lengths sufficed, (e.g. for PAM30, $l = 15$ sufficed).

Table 1. Estimates of λ for all online options of the BLASTP parameters

<table>
<thead>
<tr>
<th>Scoring matrix</th>
<th>Gap cost $\Delta(g)$</th>
<th>λ</th>
<th>Average l</th>
<th>Standard error λ</th>
<th>Relative error λ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOSUM45</td>
<td>15 + 2g</td>
<td>0.203</td>
<td>0.2039</td>
<td>0.00061</td>
<td>0.30</td>
</tr>
<tr>
<td>BLOSUM62</td>
<td>11 + g</td>
<td>0.267</td>
<td>0.2678</td>
<td>0.00088</td>
<td>0.33</td>
</tr>
<tr>
<td>BLOSUM80</td>
<td>10 + g</td>
<td>0.299</td>
<td>0.3000</td>
<td>0.00056</td>
<td>0.19</td>
</tr>
<tr>
<td>PAM30</td>
<td>9 + g</td>
<td>0.294</td>
<td>0.2931</td>
<td>0.00035</td>
<td>0.12</td>
</tr>
<tr>
<td>PAM70</td>
<td>10 + g</td>
<td>0.291</td>
<td>0.2914</td>
<td>0.00037</td>
<td>0.13</td>
</tr>
</tbody>
</table>

All results used 100 simulations of 30,000 realizations each. In Table 1, the first and second column give the BLASTP parameter options. The third column gives the corresponding λ, from the online BLASTP documentation. The fourth column gives the average error estimate λ, from 100 simulations. The fifth column gives the corresponding standard error in λ. The sixth column gives the percent relative error in λ, as calculated from the fourth and fifth columns.

Table 2. Estimates of k for all online options of the BLASTP parameters

<table>
<thead>
<tr>
<th>Scoring matrix</th>
<th>Gap cost $\Delta(g)$</th>
<th>k</th>
<th>Average k</th>
<th>Standard error k</th>
<th>Relative error k (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOSUM45</td>
<td>15 + 2g</td>
<td>0.041</td>
<td>0.0401</td>
<td>0.0024</td>
<td>5.99</td>
</tr>
<tr>
<td>BLOSUM62</td>
<td>11 + g</td>
<td>0.041</td>
<td>0.0410</td>
<td>0.0027</td>
<td>6.59</td>
</tr>
<tr>
<td>BLOSUM80</td>
<td>10 + g</td>
<td>0.071</td>
<td>0.0706</td>
<td>0.0044</td>
<td>6.23</td>
</tr>
<tr>
<td>PAM30</td>
<td>9 + g</td>
<td>0.110</td>
<td>0.1051</td>
<td>0.0108</td>
<td>10.27</td>
</tr>
<tr>
<td>PAM70</td>
<td>10 + g</td>
<td>0.091</td>
<td>0.0899</td>
<td>0.0079</td>
<td>8.79</td>
</tr>
</tbody>
</table>

All results used 100 simulations of 30,000 realizations each. Table 2 has the same format as Table 1.
DISCUSSION

BLAST programs (BLASTP, PSI-BLAST, etc.) are restricted to specific scoring schemes, because time-consuming local alignment simulations for estimating the corresponding Gumbel parameters must be done offline. However, simulations of global alignment can estimate the Gumbel scale parameter λ for local alignment (6). Some global alignment methods are as much as five times faster than the best local alignment methods (21,23), so global alignment has considerable potential for online estimation of the Gumbel parameter λ.

This paper surmounts an obstacle to online estimation by demonstrating that simulations of global alignment can determine the Gumbel pre-factor k. Table 2 displays the results of global alignment simulations over a wide range of BLAST parameters, all of which gave correct estimates of the corresponding k and supported the validity of our methods for computing k.

Global alignment simulation therefore appears a feasible method for estimating both Gumbel parameters, λ and k. (The BLASTP default parameters provide a standard for quantifying speed, so the following results apply to the BLASTP defaults, unless stated otherwise.) With local alignment, estimates of λ required 40 000 sequence-pairs of minimum length 600 (21); with our methods, 5000 sequence-pairs of maximum length 50 (23). In fact, our methods attained 1.3% accuracies in λ with only 1000 sequence-pairs of maximum length 50. In our hands, k was more difficult to estimate than λ, with 10% relative errors requiring 10 000 sequence-pairs of average length 140. In summary, the methods presented here for estimating the Gumbel parameters λ and k represent at least a 3-fold improvement in speed over local alignments.

Online computation of the BLAST P-value requires more than the Gumbel parameters. It also requires an estimate of the ‘finite-size effect’ (10,13,33,34). Global alignment (or some variant of it) can indeed produce the required estimate (manuscript in preparation). Without the finite-size estimate in hand, however, we were not strongly motivated to incorporate technical improvements or heuristics into our methods. Bundschuh, e.g. implemented a diagonal-cutting heuristic to remove irrelevant off-diagonal elements in the global alignment matrix (21); we did not. The heuristic could probably speed our computation by a further factor of at least three.

Online BLAST estimation of the Gumbel parameters is likely just a few years away.

ACKNOWLEDGEMENTS

We would like to acknowledge helpful discussions with Dr Ralf Bundschuh and Dr Stephen Altschul. This work was supported in whole by the Intramural Research Program of the National Library of Medicine at National Institutes of Health/ DHHS. Funding to pay the Open Access publication charges for this article was provided by National Library of Medicine at National Institutes of Health/DHHS.

Conflict of interest statement. None declared.

REFERENCES

Figure 3. Plot of relative errors of estimate k obtained via robust regression using $k_s \pm \sigma(k)$ and $k_y \pm \sigma(k_y)$ against different numbers of simulations. Each bar represents an average over 20 relative errors. The previous best estimate $k = 0.041$ is used as a basis for the relative error calculation. The relative errors from $k_y \pm \sigma(k)$ are shown with white bars; the one from $k_s \pm \sigma(k)$ with black bars.

computed relative to the approximation $k \approx 0.041$. Each error plotted is the average of the absolute relative error for 20 independent simulations, each using the indicated number of realizations. White bars show the results for $k_s \pm \sigma(k)$; black bars, for $k_y \pm \sigma(k_y)$. For 10 000 realizations, the constant error estimate \hat{k} reduces the relative errors dramatically. As the number of realizations increases, the difference in efficiency of estimation between $k_s \pm \sigma(k_s)$ and $k_y \pm \sigma(k_y)$ decreases. Figure 3 shows that 10 000 realizations estimated k with less than 10% relative error. The same 10 000 realizations also estimated λ with less than 0.8% relative error (data not shown).

The simulations of Figure 3 estimated \hat{k} from 10 000 realizations, in less than 30 s. For comparison, the same simulations could have estimated λ in less than 7 s. For the PAM 30 matrix with $\Delta(g) = 9 + g$, they estimated λ and k in less than 4 s.
APPENDIX

In the Appendix, we give a heuristic derivation of Equation 2.

Notation for local sequence alignment

For local alignment, consider a pair \(\hat{A} = \ldots \hat{A}_1 \hat{A}_0 \hat{A}_1 \ldots \) and \(\hat{B} = \ldots \hat{B}_1 \hat{B}_0 \hat{B}_1 \ldots \) of doubly-infinite sequences. Their local alignment graph \(\hat{\Gamma} \) is a directed, weighted lattice graph in two dimensions, as follows. The vertices \(v \) of \(\hat{\Gamma} \) are \(v = (i, j) \in \mathbb{Z}^2 \), the entire two-dimensional integer lattice. In other respects, particularly with respect to the edges between its vertices, \(\hat{\Gamma} \) has the same structure as the global alignment graph \(\Gamma \).

We base the graph \(\hat{\Gamma} \) on the entire two-dimensional integer lattice \(\mathbb{Z}^2 \) because of our interest in the Gumbel distribution. In intuitive terms, the BLAST E-value \(E \) follows the Gumbel distribution, only if the local alignment does not ‘see’ the ends of the sequences, so finite-size effects can be neglected (13,33).

Let \(\Pi_{ij} \) be the set of all paths \(\pi \) ending at \(v_h = (i, j) \), regardless of their starting vertex. Define the ‘local score’ \(S_{ij} = \max \{ W_{\pi} : \pi \in \Pi_{ij} \} \). The paths \(\pi \) ending at \(v_h = (i, j) \) with local score \(W_{\pi} = S_{ij} \) are ‘optimal local paths’ corresponding to ‘optimal local alignments’ matching subsequences of \(A \) and \(B \) up to and including the letters \(A_i \) and \(B_j \).

Unlike the singly-infinite sequences \(A \) and \(B \), the doubly-infinite sequences \(A \) and \(B \) correspond to the entire lattice \(\mathbb{Z}^2 \). The lattice \(\mathbb{Z}^2 \) is invariant under translation (i.e. it appears the same from each of its vertices). Thus, if \(A \) and \(B \) are sequences with independent random letters, the corresponding local scores \(S_{ij} \) are ‘stationary’ (i.e. their joint distribution is invariant under translation). Stationary scores carry a prime elsewhere (i.e. \(S'_{ij} \) (35), which we drop here for brevity. For many purposes, translation invariance renders all vertices in \(\mathbb{Z}^2 \) equivalent, so it usually suffices to define quantities below solely at the origin, \((0,0) \). The definition at other vertices is usually left implicit.

If the sequences \(A \) and \(B \) were singly-infinite, the Smith–Waterman algorithm could compute the corresponding local scores \(S_{ij} \) (36). Although the algorithm is unable to compute \(S_{ij} \) for \(A \) and \(B \), a rigorous treatment shows that doubly-infinite sequences pose no essential difficulties in the logarithmic regime (35).

For efficiency, many simulations of random local alignments partition the vertices in \(\mathbb{Z}^2 \) into ‘islands’ (described below). To avoid technical nuisances, each vertex must belong to exactly one island, so we define the following strict total order on \(\mathbb{Z}^2 \) : \((i', j') < (i, j) \), if and only if either \(i' + j' < i + j \) or else, \(i' + j = i + j \) and \(i' < j \).

Let us say that a vertex \((i, j) \in \mathbb{Z}^2 \) ‘belongs to’ the origin if \((0,0) \) is the greatest vertex \(v_0 = (i', j') \) (under the total order \(< \)) such that \(S_{ij} = W_{\pi} \) for some path \(\pi \) starting at \(v_0 = (i', j') \) and ending at \(v_h = (i, j) \). The ‘island’ belonging to \((0,0) \) is the set \(\mathbb{B}_{00} \subseteq \mathbb{Z}^2 \) of all vertices \((i, j) \) belonging to \((0,0) \), and we say that \((0,0) \) ‘owns’ the island. [Equation 12 below uses the translate \(\mathbb{B}_{i-j} \) of the set \(\mathbb{B}_{00} \), where \(\mathbb{B}_{i-j} \) is the set of all vertices belonging to \((i-j) \)].

By the following reasoning, \(\mathbb{B}_{00} \) is empty if and only if \(S_{00} > 0 \). First, if \(S_{00} > 0 \), there is some path \(\pi' \) ending at \((0,0) \) with a positive score. If \((0,0) \) owned any vertex \((i, j) \), there would be a path \(\pi \) starting at \((0,0) \) and ending at \((i, j) \) with \(S_{ij} = W_{\pi} \). Then, the path concatenating \(\pi \) and \(\pi' \) would have a weight exceeding \(S_{ij} = W_{\pi} \), contrary to the definition of \(S_{ij} \). Thus, if \((0,0) \) owns some vertex, \(S_{00} = 0 \). Conversely, if \(S_{00} = 0 \), then by deliberate construction, the definition of the total order \(< \) implies that \((0,0) \) owns itself [because the weight of the trivial path containing only \((0,0) \) is 0].
Accordingly, define the ‘local maximum’ [implicitly, on the island B_{00} belonging to $(0,0)$] as $M = \max \{S_{ij} : (i,j) \in B_{00}\}$, with the default $M = -\infty$, if B_{00} is empty (i.e. if $S_{00} > 0$). Let $N(y) = \#\{(i,j) \in B_{00} : S_{ij} = y\}$ denote the number of island vertices with local score y.

To connect our quantities explicitly to the Gumbel parameters, define $M_{mn} = \max \{S_{ij} : 0 \leq i \leq m, 0 \leq j \leq n\}$, the maximum local score in the lattice rectangle $[0, m] \times [0, n]$. Let ρ_y the density of islands yielding a local score $S_{ij} = y$, or equivalently, the density of their owners in Z^2. Under certain conditions in the logarithmic regime, $P(M_{mn} \geq y) = r_y \approx 1 - \exp (-E_y)$, where as $m, n \to \infty$,

$$E_y = r_{mn} \approx kmn e^{-ky}.$$

Simulations indicate that to a good approximation, islands yielding a large local score $S_{ij} = y$ or equivalently, the density of their owners in Z^2 is the set of all paths $\{S_{ij} \geq y\}$ from global alignment, the density of island vertices yielding a local score $S_{ij} = y$. In other words, $P(M \geq y) = \rho_y \approx ke^{-ky}$. Thus, the limit

$$k = \lim_{y \to -\infty} e^{ky} P(M \geq y)$$

exists and equals the pre-factor k.

Path reversal identity

To determine k from global alignments, we first relate the global maximum M to the local scores S_{ij} with a path reversal identity. Recall the global maximum $M = \max \{W_{\pi} : \pi \in \Pi\}$, where Π is the set of all paths π in Z_+^2, starting at $v_0 = (0, 0)$. Recall also the local score $S_{ij} = \max \{W_{\pi} : \pi \in \Pi_{ij}\}$, where Π_{ij} is the set of all paths π in Z_+^2 ending at $v_{ij} = (i,j)$. It is believable that for any fixed $(i,j) \in Z^2$, each path in Π_{ij} with random edge-weights corresponds to a reversal of a path in Π with the same random edge-weights. Thus, for every $(i,j) \in Z^2$, $P(S_{ij} = y) = P(M = y)$, i.e. the local score and the global maximum have the same distribution. (Note: the equality is solely distributional. In any particular instance, the local score S_{ij} and global maximum score M are unlikely to be related.)

Because the distributional equality holds for every $(i,j) \in Z^2$, we drop the subscript ij on S_{ij} and write

$$P(S = y) = P(M = y).$$

A formal proof of Equation 9 can be found elsewhere (35).

The Poisson clumping heuristic

Consider the Poisson clumping heuristic (37)

$$P(S = y) = P(M \geq y)E[N(y) | M \geq y].$$

Equation 10 states that at any fixed vertex $(i, j) \in Z^2$, the probability that $S_{ij} = y$ is the density of vertices with a local score y. This density equals $\rho_y = P(M \geq y)$, the density of islands where some local score is at least y, multiplied by $E[N(y) | M \geq y]$, the expected number $N(y)$ of island vertices (i, j) where the local score $S_{ij} = y$, is given $M \geq y$.

Equation 10 can be demonstrated as follows. First, $\hat{N}(y) = P(M \geq y)E[N(y)|M \geq y]$, 11 because if $M < y$, then $\hat{N}(y) = 0$. Equation 11 follows, because the event $[M < y]$ contributes nothing to the expectation on the left.

Next, define the indicator $\mathbb{I}A = 1$ if the event A occurs and $\mathbb{I}A = 0$ otherwise. Then,

$$\hat{N}(y) = \mathbb{E} \sum_{(i,j) \in Z^2} \mathbb{I}(S_{ij} = y \text{ and } (i,j) \in B_{00})$$

$$= \mathbb{E} \sum_{(i,j) \in Z^2} \mathbb{I}(S_{00} = y \text{ and } (0,0) \in B_{i-j-j})$$

$$= \mathbb{P}(S_{00} = y).$$

The first equality is essentially the definition of $\hat{N}(y)$, which counts the number of vertices belonging to $(0,0)$ with local score $S_{ij} = y$. The second equality exploits the translation invariance of the probabilities associated with S_{ij}. The third inequality merely notes that in the logarithmic regime, $(0,0)$ must belong to some vertex (35). Equation 10 follows.

Our speculations

Based on the success of our simulation results, we speculate. First,

$$\lim_{y \to \infty} \mathbb{E}[N(y)|M \geq y] = 1.$$

In fact, $\lim_{y \to \infty} \mathbb{E}[N(y)|M \geq y]$ and $\lim_{y \to \infty} \mathbb{E}[N(y)|M \geq y]$ are likely to exist as a common finite limit, but Equation 13 suffices for present purposes.

Equation 13 can be justified intuitively, as follows. As $y \to \infty$, any vertices satisfying $S_{ij} = y$ become likely to cluster on a single island that has a large maximum local score. Thus, given $M \geq y$, the vertices with $S_{ij} = y$ have a comparable structure to vertices with $S_{ij} = y$ on the island belonging to $(0,0)$, given that the island satisfies $M \geq y$. In particular, given $M \geq y$, the number $N(y)$ of vertices with $S_{ij} = y$ has a similar random behaviour to the number $\hat{N}(y)$ of vertices with $S_{ij} = y$, given $M \geq y$. Thus, the expectations approximate each other: $\mathbb{E}[N(y)|M \geq y] \approx \mathbb{E}[\hat{N}(y)|M \geq y]$.

Though hardly a ‘speculation’, we assume that $c = \lim_{y \to \infty} e^{ky} P(M \geq y)$ exists. Unfortunately, still there is no rigorous proof of the limit’s existence.

The formula for k from global alignment

Equation 11 has an analog for global alignment, with a similar demonstration:

$$\mathbb{E}[N(y) = \mathbb{E}[N(y)|M \geq y] \mathbb{P}(M \geq y).$$

14
Together, Equations 8–10, 13 and 14 yield

\[
k = \lim_{y \to \infty} e^{k_y} P(M \geq y) = \lim_{y \to \infty} \frac{e^{k_y} P(M = y)}{E[N(y) | M \geq y]}
\]

\[
= \lim_{y \to \infty} \frac{e^{k_y} P(M = y)}{E[N(y) | M \geq y]} = \lim_{y \to \infty} \frac{e^{k_y} P(M = y) P(M \geq y)}{E[N(y)]}.
\]

Recall our assumption that \(s(A_i, B_j) \) and \(\Delta(g) \) are always integers:

\[
\lim_{y \to \infty} \frac{P(M = y)}{P(M \geq y)} = \lim_{y \to \infty} \frac{P(M \geq y) - P(M \geq y + 1)}{P(M \geq y)} = 1 - e^{-\lambda}.
\]

Let \(k_y = e^{k_y} P(M \geq y) \). From Equations 15 and 16, \(k = \lim_{y \to \infty} k_y \), where \(k_y \) is given by Equation 2.