SAM-T08, HMM-based protein structure prediction

Kevin Karplus*

Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA

Received January 30, 2009; Revised April 20, 2009; Accepted May 2, 2009

ABSTRACT

The SAM-T08 web server is a protein structure prediction server that provides several useful intermediate results in addition to the final predicted 3D structure: three multiple sequence alignments of putative homologs using different iterated search procedures, prediction of local structure features including various backbone and burial properties, calibrated E-values for the significance of template searches of PDB and residue–residue contact predictions. The server has been validated as part of the CASP8 assessment of structure prediction as having good performance across all classes of predictions. The SAM-T08 server is available at http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html

STRUCTURE PREDICTION SERVER

The SAM-T08 web server is a protein structure prediction server, the latest in a series of servers that started in 1999 with SAM-T99, (1–5). The input to the server is an amino acid sequence in FASTA format (limited to ≤700 residues), and the primary output is a 3D model in PDB format. In addition to providing 3D models, the SAM-T08 web site provides a large number of intermediate results, which are often interesting in their own right: multiple sequence alignments (MSAs) of putative homologs, prediction of local structure features, lists of potential templates of known structure, alignments to templates and residue–residue contact predictions.

The example sequence used in this article, and provided by the server if the user does not supply one, is T0437, one of the CASP8 prediction targets. An ensemble of NMR structures for T0437 is now available in PDB file 2k3i (6). The figures in this article are taken from our CASP8 prediction made on 6 June 2008, before the NMR structures were released. Full details of the prediction can be found at http://www.soe.ucsc.edu/~karplus/casp8/T0437/decoys/SAM_T08/

MSAs AND SEQUENCE LOGOS

Before starting to make MSAs and hidden Markov models (HMMs), the web site first does a quick blastp search of a non-redundant version of the PDB dataset (downloaded weekly from Dunbrack’s PISCES server) (7,8). This search is not used in subsequent steps, but can be useful for determining whether there are any very close templates and whether those templates are subsequently used in the model building.

The process proper starts by doing three different iterated searches to find and align putative homologs from NR, NCBI’s non-redundant database of protein sequences (9). The first search, T06 from CASP7 in 2006, is the most sensitive, but can become contaminated with unrelated sequences ≤0.5% of the time. The next search, T04 from CASP6 in 2004, is slightly less sensitive, but has about the same probability of contamination. The T04 and T06 searches use similar iterations and usually produce similar results, but occasionally come up with different alignments or different sets of homologs, due to differences in parameter settings. The T2K search, from CASP4 in 2000, is the least sensitive, and so includes mainly closely related homologs. The less sensitive search is often useful for help in choosing templates when there are many homologous proteins of known structure.

The MSAs are provided in machine-readable format [A2M (10)], and in a somewhat more human-readable HTML format (We use NCBI Entrez Utilities to retrieve taxonomy information about the sequences when making the HTML files. Because the XML files we retrieve are truncated by Entrez Utilities when they get too long, crashing the standard perl XML parser we are using to read them, our HTML files are sometimes not created. This is the most obvious known bug in the server.) Because there are often over 20 000 sequences in the multiple alignment, trying to view the alignments in traditional ways is often not very illuminating. To alleviate this problem, the server provides sequence logos for the alignments (Figure 1), where the height of each bar indicates how conserved

*To whom correspondence should be addressed. Tel: +1 831 459 4250; Email: karplus@soe.ucsc.edu

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
the residues are and the letters in the bar give the probability distribution for the amino acids at that position. The pattern of conserved residues is often of use for making conjectures about function and binding sites, even when no confident tertiary structure prediction can be made.

All three searches are provided separately, so that the sequence logos can be examined for contamination and results checked for consistency. The searches are combined later in the process.

LOCAL STRUCTURE PREDICTION

After the iterated searches, the MSAs are used as inputs to neural networks that predict various local structure properties: 12 backbone structure alphabets and three burial structure alphabets. The 12 backbone alphabets are str4, str2, alpha, bys, pb, n_notor, n_notor2, n_sep, o_notor, o_notor2, o_sep and dssp_ehl2. Many of these alphabets have been described previously (11–13), but some are new and are so far described in detail only on the Frequently Asked Questions (FAQ) page for the web site. The most familiar is the dssp_ehl2 alphabet, which has just three letters (E for beta strands and bridges, H for helices and L for everything else), which is a reduction of the DSSP alphabet (14). The str2 alphabet, which has been our most valuable backbone alphabet, is an extension of DSSP to distinguish between different types of beta strands (Figure 2). The str4 alphabet is an attempt to use different ways of classifying loop residues and strand residues, but turned out to be somewhat less useful than str2. The alpha alphabet classifies residues according to their $C_\alpha-C_\alpha-C_\alpha$ torsion angles, the bys alphabet is a classification of residues by ϕ and ψ angles by Bystroff (15), and the pb alphabet is de Brevern’s protein blocks (16).
The notor and sep alphabets classify residues according to the hydrogen bond at the N or O atom. The notor and notor2 alphabets classify the Hbonds according to the $(C_{i-1} - N_i - O_j - N_{j+1})$ torsion angle for donor N_i and acceptor O_j with special cases for alpha helices $(i = j + 4)$ and 3–10 helices and turns $(i = j + 3)$. The notor2 alphabets have a few more special cases for $i = j + 5$) and common multiple hydrogen bond patterns. The sep alphabets classify the Hbonds according to the separation $i - j$.

The three burial alphabets predict the number of C_{β} atoms within 14Å (seven classes), the number of (C_{β}) atoms within 8Å at least nine residues apart along the chain (14 classes), and a somewhat more complicated count of nearby residues [near-backbone-11 (13), 11 classes]. The near-backbone-11 measure has been the most useful of these burial predictions (Figure 3). The burial alphabets are organized so that ‘A’ is the least buried class with increasing burial as the letters go through the alphabet.

For each MSA and each structure alphabet, several outputs are provided: a table of the probability vector over the alphabet for each position in the sequence; a sequence logo summarizing the probability vectors, showing the prediction and strength of prediction at each position of the sequence (Figures 2 and 3); and a summary sequence giving the most probable letter at each position. For users wanting a quick approximate view of the local structure prediction, a consensus prediction of the three-state alphabet (E = strand, H = helix and L = loop) is provided. To aid in viewing the local structure predictions in the final tertiary prediction, rasmol scripts for coloring the model according to the predicted local structure are provided.

TEMPLATE SELECTION AND ALIGNMENT

Our templates come mainly from our template library, a large representative subset of PDB chains, for which we have precomputed a set of HMMs. We have separate template libraries for the different iterated search methods. As of 28 January 2009, the template libraries contained 19 621, 17 732 and 15 967 chains for T2K, T04 and T06, respectively, while a non-redundant PDB set contained 36 643 chains.

After the local structure predictions are done, the SAM (Sequence Alignment and Modeling) tool suite (17) is used to build HMMs from the MSAs and predicted local structures. The HMMs are used to search PDB for potential templates for structure prediction. HMMs in the template library are used to score the target sequence, and all the resulting scores are merged into a best-scores-all.html file that summarizes the best hits, sorted by E-values. The table also includes links to the PDB (18) and Proteopedia (19) web sites for each template, as well as links to the Structural Classification of Proteins [SCOP (20)] website, when available.

The E-values are moderately well calibrated (off by no more than a factor of 10 in cross-validation tests, unpublished data), so that E-values <0.01 indicate that a good structural template is available for at least part of the target protein and E-values >1 indicate that the method will be using mainly ab initio and fragment methods to generate the structure and that the tertiary structure is thus much less reliable.

It is important for users to check the E-values, as the method always produces a full-length model, even when no good template is available. For T0437, the target 2jz5A has an E-value of 8.6e-12, indicating a very
confident similarity. Even the initial blastp over PDB finds this template, though the E-value is only ~0.1, so the confidence is not as high. For longer multi-domain proteins, the server may have a good template-based model for one domain, and poor, ab initio models for the others. In those cases, it is often wise to split the target into separate domains and predict them separately. The server does not do this automatically.

For each of the top templates, the server provides several alignments between the target and the template, which are used in subsequent tertiary prediction, but which could also be useful for transferring information (such as binding site residues) from the templates to the target. Of the various alignments, the t06-local-str2 + near-backbone-11-0.8 + 0.6 + 0.8-adpstyle5 alignments are generally the most reliable. These are constructed by local alignment to a three-track HMM that has an amino acid profile, str2 predictions, and near-backbone-11 predictions as the three tracks, with track weights 0.8, 0.6 and 0.8 respectively, and using posterior decoding alignment (SAM parameter adpstyle = 5). Although there are often better alignments in the pool, they do not come consistently from the same method.

Crude models are generated from the top alignments, and superimposed in a pdb file. The undertaker-align.pdb.gz file can be viewed with any molecular modeling software to see what parts of the protein are coming from the templates and whether the templates agree on the structure of that portion of the protein.

After the major alignments have been made, short gapless alignments (fragment lists) are made to provide reasonable local structures for building the final model.

CONTACT PREDICTION

We have two distinct ways of predicting what residues may be in contact: ab initio contact prediction using neural networks and information about correlated mutations in the MSAs (21), and distance constraints extracted from the best alignments, for use in constraining the tertiary structure prediction (22).

The neural network predictions are most useful when there are no templates found with E-value ≤1. The server presents three different neural network predictions. The 647.47 prediction is the network validated at CASP7 (21). The 730_47 prediction does not use any paired column statistics, but just local structure prediction at the individual residues. The 648.17.730_47 prediction is a two-stage one that filters the 730_47 predictions using paired column statistics. In our testing, the two-stage method works best when the T06 MSA has enough diversity of sequences for correlated mutations to be detected. For ORFans and target sequences for which only very similar sequences are aligned in the T06 MSA, the 730_47 predictions are somewhat better (unpublished data).

The constraints extracted from alignments are most useful when templates are found with low E-values, as the constraints are used in model generation for selecting templates and to keep the models from drifting too far from the templates. The constraints have also been used for model quality assessment in evaluating models from other servers (22,13), but that application is not provided by the web server.

MODEL GENERATION

Finally, the undertaker program is run to generate an all-atom model using the templates, the local structure
experimental models to determine which methods are really working.

Detailed results of the testing can be found on the CASP8 web page http://predictioncenter.org/casp8/results.cgi as well as on several unofficial evaluation sites (list available at http://www.reading.ac.uk/bioinf/CASP8).

Several different metrics have been used to evaluate the quality of predictions, and rankings of servers depend heavily on which metrics are used, what set of targets are compared, and whether whole-chain comparisons or domain-based comparisons are made.

Although the SAM-T08 server was not the best server on the commonly used metrics that measure just the positions of the (Cα) atoms (GDT_TS and TM-score, for example), it did quite well (ranking 2–21 out of 70 servers overall, depending on the evaluation used).

In Zhang’s ranking of the servers by TM score of domains on the hard targets, (http://zhang.bioinformatics.ku.edu/casp8/13D.html), the SAM-T08-server ranks third, after Zhang-Server and BAKER-ROBETTA, while on the easy targets (where differences are smaller and many servers produce almost identical models), SAM-T08-server ranks 21st. If hydrogen bond scoring is included, SAM-T08-server moves to second place overall, and fourth on the easy targets.

Using a contact-based measure, Nick Grishin ranked SAM-T08 server fifth or sixth on all targets (http://prodata.swmed.edu/CASP8/evaluation/Domains All.First.html).

In the official evaluations, the SAM-T08 models were seen to have unusually good stereochemistry for homology models, even though the (Cα) traces were not the best (based on assessor’s presentations at CASP8 conference, not published yet). On the common backbone accuracy measures, the SAM-T08 server ranked 9th through 14th among servers (http://predictioncenter.org/casp8/groups_analysis.cgi), except on the ‘high-accuracy’ server targets, where it was in the middle of the pack (31st out of 70).

The SAM-T08 server generally ranked less well on the very easy targets (where most of the methods produced almost indistinguishable results) and better on the harder targets. Performance relative to other servers seemed to peak for those targets that had templates available, but for which finding and aligning the template was difficult, as we have focused our efforts most on fold recognition and alignment.

The SAM-T08 server uses the same protocol for all targets, whether they have highly similar templates available or not, but the method is tuned for the difficult targets, rather than the easy ones.

With a few notable exceptions (such as target T0442 domain 2), the SAM-T08 server did substantially better than the older SAM-T06 server in all evaluations. The older SAM-T02 server does not produce models, just alignments, and had substantially poorer performance than either of the more recent servers. The selection of templates and alignments by the HMMs has not improved substantially—the models built directly from the top alignment: SAM-T08-server_TS3, SAM-T06-server_TS2 and SAM-T02-server_AL1 are of variable quality, but not showing consistent improvement. The selection and
optimization of models by undertaker, however, is showing substantial improvement from SAM-T02 to SAM-T06 to SAM-T08.

ACKNOWLEDGEMENTS

Over the years, dozens of people have contributed to the tools of the SAM-T08 servers. Some of the more notable contributors (in alphabetical order) include John Archie, Bret Barnes, Christian Barrett, Sugato Basu, Jonathan Casper, Melissa Cline, Mark Diekhans, Chris Dragon, Birong Hu, Richard Hughey, Rachel Karchin, Sol Katzmann, Firas Khatib, Anders Krogh, Martin Madera, Yael Mandel-Gutfreund, Martin Paluszewski, George Shackelford, Kimmen Sjölander, Don Speck, Grant Thiltgen and Spencer Tu. Comments on drafts of the paper by John Archie, Richard Hughey, Thomas Juettemann, Josue Samayoa, and Chirag Sharma are particularly appreciated.

FUNDING

National Institutes of Health (Grant 1 R01 GM068570-01).

Conflict of interest statement. None declared.

REFERENCES