Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

Jia Sheng1, Abdalla E. A. Hassan1,2, Wen Zhang1, Jianfeng Zhou3, Bingqian Xu3, Alexei S. Soares4 and Zhen Huang1,*

1Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA, 2Applied Nucleic Acids Research Center, Zagazig University, Zagazig, Egypt, 3Faculty of Engineering and NanoSEC, University of Georgia, Athens, GA 30602 and 4Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA

Received October 20, 2010; Revised November 26, 2010; Accepted November 30, 2010

ABSTRACT

We report here the first synthesis of 5-phenyl–telluride–thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

INTRODUCTION

Well-behaved base pair recognitions and duplex structures of DNAs and RNAs have stimulated extensive research investigations, such as DNA nano-structure construction and self-assembling (1–4), disease and pathogen detection at single molecule level (5), oligonucleotide drug discovery (6) and nanoelectronic device design based on DNA conductivity and charge migration (7–12). Moreover, chemical modifications of nucleobases have been widely used to selectively tailor the chemical and biophysical properties of DNAs and RNAs and to probe their chemical and biochemical functions, including base pairing specificity, polymerase recognition, DNA damaging and repairing (13–19) and DNA current/conductivity imaging, including metallization and conjugating with conductive nanoparticles or polymers through scanning tunneling microscopy (STM) to image DNA (20–24).

Tellurium, which was recently introduced to the sugar moiety of the nucleosides and nucleotides (25,26), is a non-metal element with a much larger atomic size (atomic radius: 1.40 Å) (27) in the same elemental family of oxygen (0.73 Å), sulfur (1.02 Å) and selenium (1.16 Å) (28). Tellurium has much higher metallic property and stronger electron delocalizability than the other ones in the same elemental family. Since DNA duplexes are relatively electron deficient, we hypothesize that an electron-rich tellurium atom will likely donate electron and facilitate electron delocalization and DNA imaging, when it is introduced into DNA duplexes via the nucleobases.

Herein, we report the first synthesis of a tellurium-nucleobase-derivatized nucleoside (Te-thymidine or TeT), the Te-phosphoramidite and Te-DNAs. We found that the TeT-DNA duplex has the thermo-stability similar to the corresponding native duplex. Furthermore, our X-ray crystal structure studies of the Te-derivatized DNAs indicate that the Te-derivatized and native structures are virtually identical, and that TeT and A interact as well as the native T–A pair. Moreover, our STM imaging study reveals that the Te-DNAs show strong characteristic current peaks on graphite surface, suggesting a useful DNA imaging strategy without perturbation of the local and global structures.

MATERIALS AND METHODS

Synthesis of 5-TePh-thymidine phosphoramidite

3′-O-tert-butyldimethylsilyl-5′-O-(4,4-dimethoxytrityl)-2′-deoxy-5-iodouridine (2). Tert-butyldimethylsilyl chloride
(TBDMScI) (0.344 g, 2.3 mmol) was added to a mixture of 5'-O(4,4-dimethoxytrityl)-2'-deoxy-5-iodouridine (1, 1 g, 1.52 mmol) and imidazole (0.3 g, 4.6 mmol) in anhydrous DMF (10 ml). The mixture was stirred at room temperature for 1.5 h, and then quenched with MeOH. The mixture was diluted with EtOAc (30 ml) and washed with H2O (3 × 10 ml) and brine. The organic phase was dried over anhydrous MgSO4 (s) and the solvents were evaporated under reduced pressure. The residue was purified by a flash silica gel column (eluent: 20% EtOAc in hexanes) to give 2 (1.15 g, 98%): 1H-NMR (CDCl3, δ): 9.21 (1H, br, NH, exchangeable with D2O), 8.22 (1H, s, H-6), 7.46–7.35 (9H, m, Ar), 6.89–6.86 (4H, m, Ar), 6.31 (1H, dd, H-1', J = 5.9, 7.5 Hz), 4.49 (1H, m, H-3'), 4.15 (1H, m, H-4'), 3.82 (6H, 2s, CH3O), 3.45 (1H, dd, H-5'a, J = 2.7, 10.8 Hz), 3.32 (1H, dd, H-5'b, J = 3.1, 10.8 Hz), 2.42 (1H, ddd, H-2'a, J = 2.7, 5.8, 13.3 Hz), 2.20 (1H, m, H-2'b), 0.87 (9 H, 3s, SiMe3), 0.05–0.02 (6H, 2s, SiMe2); 13C-NMR (CDCl3) δ 160.41 (C4), 158.67 (Ar), 150.23 (C2), 144.37 (C-6), 144.33 (Ar), 135.54 (Ar), 135.46 (Ar), 130.13 (Ar), 130.08 (Ar), 128.10 (Ar), 120.07 (Ar), 115.39 (Ar), 87.29 (C4'), 86.96 (Ar), 85.85 (C-1'), 72.43 (C-3'), 68.66 (C-5'), 63.03 (H5'), 55.27 (OMe), 42.00 (C2'), 25.78 (CCH3), 17.97 (CCH3), −4.63 (SiH3), −4.84 (SiH3); HRMS (ESI-TOF): molecular formula: C36H42N2O10Si2; [M+H+]: 769.1800 (Figure S5; calcd 769.1804).

3',5'-Di-O-tert-butylmethyisyll-2'-deoxy-5-iodouridine (4). TBDMScI (1.28 g, 8.43 mmol) was added to a mixture of 5-iodo-2'-deoxyuridine (3, 1 g, 2.81 mmol) and imidazole (1.3 g, 8.5 mmol) in anhydrous DMF (10 ml) and brine. The organic phase was stirred at room temperature for 2 h, and then quenched with MeOH. The mixture was diluted with EtOAc (30 ml) and washed with H2O (3 × 10 ml) and brine. The organic phase was dried over anhydrous MgSO4 (s) and the solvents were evaporated under reduced pressure. The residue was purified by a flash silica gel column (eluent: 30% EtOAc in hexanes) to give 4 (1.34 g, 99%) as white foam: 1H-NMR (CDCl3, δ): 9.35 (1H, br, NH, exchangeable with D2O), 8.06 (1H, s, H-6), 6.26 (1H, dd, H-1', J = 5.7, 9.7 Hz), 4.38 (1H, m, H-3'), 3.97 (1H, m, H-4'), 3.86 (1H, dd, H-5'a, J = 2.2, 11.5 Hz), 3.76 (1H, m, H-5'b, J = 2.4, 11.5 Hz), 2.30 (1H, ddd, H-2'a, J = 2.3, 5.7, 13.1 Hz), 1.98 (1H, m, H-2'b), 0.93 (9 H, s, SiMe3), 0.88 (9 H, s, SiMe3), 0.14–0.06 (12 H, 4s, SiMe2); 13C-NMR (DMDO-d8) δ 160.50 (C4), 150.34 (C2), 144.51 (C-6), 88.49 (C4'), 88.13 (C-3'), 72.60 (C-5'), 68.69 (C5), 63.14 (C-5'), 41.70 (C2'), 26.47 (CMe2), 25.89 (CMe2), 18.95 (CMe3), 18.12 (CMe3), −4.50 (SiMe2), −4.70 (SiMe2), −4.83 (SiMe2), −4.96 (SiMe3); HRMS (ESI-TOF): molecular formula: C33H40N2O5Si2; [M+H+]: 1080.2512 (Figure S5; calcd 1080.2512).

3'-O-tert-Butyldimethylsilyl-5'-O(4,4-dimethoxytrityl)-2'-deoxy-5-phenylethyllurourdine (5). NaH 95% (0.67 mmol) was added portion wise to a solution of 2 (0.516 g, 0.67 mmol) in dry THF (2 ml) at room temperature in dry glove box. The mixture was stirred for 30 min until complete cease of hydrogen gas evolution, then cooled down to −78°C and treated with n-BuLi (1.0 ml, 2.3 M solution in hexane; 2.3 mmol) dropwise over 10 min. The mixture was stirred for 30 min, and then treated with (Ph3)2Te2 (0.75 g, 1.8 mmol). The mixture was further stirred for 1 h at the same temperature (−78°C). NaCl (10 ml, saturated aqueous solution) was added, the reaction flask was placed at room temperature and allowed to warm up naturally to the room temperature. Water (10 ml) was added to the flask and EtOAc (3 × 20 ml) was used to extract the crude product. The organic phase was dried over MgSO4, and evaporated under reduced pressure. The residue was purified by flash silica gel chromatography (eluent: 40% EtOAc in hexane containing 1% Et3N) to give 5 (0.106 g, 64%) as a colorless foam. Elution with 50% EtOAc in hexane gave 9 (33 mg, 29%) as a colorless foam. Spectral data for 7: 1H-NMR (CDCl3, δ): 8.64 (1H, br, NH, exchangeable with D2O), 7.82 (1H, s, H-6), 7.81–7.78 (2H, m, Ar), 7.33–7.24 (3H, m, Ar), 6.25 (1H, dd, H-1', J = 5.6, 8.0 Hz), 4.31 (1H, m, H-3'), 3.92 (1H, m, H-4'), 3.63–3.54 (2H, m, H-5'a,b), 2.50 (1H, ddd, H-2'a, J = 2.4, 5.6, 13.2 Hz), 1.91 (1H, m, H-2'b), 0.90 (9 H, s, SiMe3), 0.88 (9 H, s, SiMe3), 0.09–0.07 (12 H, 4s, SiMe2); 13C-NMR (DMDO-d8) δ 162.65 (C4), 150.21 (C2), 149.77 (C-6), 136.62 (Ar), 129.56 (Ar), 128.41 (Ar), 113.08 (C-5), 89.12 (Ar), 88.48 (C4'), 85.85 (C-1'), 72.57 (C-3'), 63.16 (C-5'), 42.04 (C2'), 26.18 (CMe2), 26.08 (CMe2), 18.42 (CMe3), 18.42 (CMe3), −4.48 (SiMe2), −4.66 (SiMe3); HRMS (ESI-TOF): molecular formula: C27H39N2O5Si2Te; [M+H+]: 661.1775 (Figure S6; calcd 661.1773).
5'-O-(4,4-dimethoxytrityl-2-deoxy-5-phenyltellurouridine (7). TBAF (0.5 ml, 1 M solution in THF) was added to a solution of 6 (0.26 g, 0.33 mmol) in THF (5 ml) at 0°C. The mixture was stirred for 3 h at room temperature. The solvent was evaporated and the residue was partitioned between EtOAc and H2O. The organic phase was dried over anhydrous MgSO4 (s) before evaporation. The residue was purified by silica gel column chromatography (the silica gel was pre-equalized with 1% Et3N in CH2Cl2; eluent: 4% MeOH in CH2Cl2) to give (0.2 g, 84%) of seven as pale yellow foam (Figure S7).

1H-NMR (CDCl3, δ): 9.25 (1H, br, NH, exchangeable with D2O), 7.83 (1H, s, H-6), 7.62–7.01 (15 H, m, Ar), 6.86–6.82 (4H, m), 6.23 (1H, dd, H-1', J = 6.4, 6.8 Hz), 4.34 (1H, m, H-3'), 3.98 (1H, m, H-4'), 3.76 (6H, 2s, CH3O), 3.29 (1H, dd, H-5’a, J = 4.4, 10.4 Hz), 3.18 (1H, dd, H-5'b, J = 4.4, 10.8 Hz), 2.40 (1H, ddd, H-2, J = 3.6, 6.0, 13.6 Hz), 2.16 (1H, m, H-2'b); 13C-NMR (DMSO-d6): δ 163.40 (C4), 159.33 (Ar), 151.06 (C2), 147.64 (C-6), 145.31 (Ar), 138.41 (Ar), 136.30 (Ar), 136.67 (Ar), 130.64 (Ar), 130.02 (Ar), 128.67 (Ar), 128.60 (Ar), 128.57 (Ar), 128.54 (Ar), 113.95 (C-5), 113.81 (Ar), 89.62 (Ar), 87.33 (Ar), 86.44 (C4), 85.72 (C-1'), 72.82 (C-3'), 64.26 (C-5'), 55.81 (OME), 41.35 (C2'); HRMS (ESI-TOF): molecular formula: C36H33N2O7Te; [M]+: 735.1342 (Figure S2; calcd 735.1350).

Synthesis of the 5-Te-functionalized DNA

All the DNA oligonucleotides were chemically synthesized in a 1.0 μmol scale using an ABI392 or ABI3400 DNA/RNA Synthesizer. The ultra-mild nucleoside phosphoramidite reagents were used in this work (Glen Research). The concentration of the Te-uridine phosphoramidite was identical to that of the conventional ones (0.1 M in acetonitrile). Coupling was carried out using a 5-(benzylmercapto)-1H-tetrazole (5-BMT) solution (0.25 M) in acetonitrile. The coupling time was 25 s for both native and modified samples. Trichloroacetic acid (3%) in methylene chloride was used for the 5'-deityrination. Synthesis were performed on control pore glass (CPG-500) immobilized with the appropriate nucleoside through a succinate linker. All the oligonucleotides were prepared with DMTr-on form. After synthesis, the DNA oligonucleotides were cleaved from the solid support and fully deprotected by the treatment of 0.05 M K2CO3 solution in methanol for 8 h at room temperature. The 5'-DMTr deprotection was performed in a 3% trichloroacetic acid solution for 2 min, followed by neutralization to pH 7.0 with a freshly made aqueous solution of triethylamine (1.1 M) and extraction by petroleum ether to remove DMTr-Oh.

HPLC analysis and purification

The Te-DNA oligonucleotides were analyzed and purified by reverse phase high performance liquid chromatography (RP-HPLC) both DMTr-on and DMTr-off. Purification was carried out using a 21.2 × 250 mm Zorbax, RX-C8 column at a flow rate of 10 ml/min. Buffer A consisted of 20 mM triethylammonium acetate (TEAAc, pH 7.2), while buffer B contained 50% aqueous acetonitrile and 10 mM TEAAc, pH 7.1. Similarly, analysis was performed on a Zorbax SB-C18 column (4.6 × 250 mm) at a flow rate of 1.0 ml/min using the same buffer system. The DMTr-on oligonucleotides were eluted with up to 100% buffer B in 20 min in a linear gradient, while the DMTr-off oligonucleotides were eluted with up to 70% of buffer B in a linear gradient in the same period of time. The collected fractions were lyophilized; the purified compounds were re-dissolved in water. The pH was adjusted to 7.0 after the final purification of the Te-oligonucleotides without the DMTr group.

Thermodenaturization of duplex DNAs

Solutions of the duplex DNAs (2 μM) were prepared by dissolving the DNAs in a buffer containing NaCl (50 mM), sodium phosphate (10 mM, pH 7.2), EDTA (0.1 mM) and MgCl2 (2 mM). The solutions were then heated to 90°C for 3 min, cooled slowly to room temperature and stored at 4°C overnight before measurement. Prior to thermal denaturation, argon was bubbled through the samples. Each denaturizing curves were acquired at 260 nm by heating and cooling for four times in a rate of 0.5°C/min using Cary-300 UV-visible spectrometer equipped with temperature controller system.

Crystallization

The purified oligonucleotides (1 mM) were heated to 70°C for 2 min, and cooled slowly to room temperature. The 2'-Se-dU was incorporated into the Te-DNA for the crystallization facilitation. Both native buffer and Nucleic Acid Mini Screen Kit (Hampton Research) were applied to screen the crystallization conditions with 1 mM of DNA sample at different temperatures using the hanging drop method by vapor diffusion.

Data collection

Glycerol (30%), PEG 400 or the perfluoropolyether was used as a cryoprotectant during the crystal mounting, and data collection was taken under nitrogen gas at 99°C. The Te-DNA-8-mer crystal data were collected at beam line.
X12C in NSLS of Brookhaven National Laboratory. A number of crystals were scanned to find the one with strong anomalous scattering at the K-edge absorption of selenium. The distance of the detector to the crystals was set to 150 mm. The wavelengths of 0.9795 Å was chosen for data collection. The crystals were exposed for 10-15 s per image with 1° oscillation, and a total of 180 images were taken for each data set. All the data were processed using HKL2000 and DENZO/SCALEPACK (29).

Structure determination and refinement

The crystal structure of Te-DNA-8-mer was solved by molecular replacement with Phaser (30) using the automated search mode, followed by the refinement of selenium and tellurium atom positions in both CNS (31) and Refmac 5.0 (32). The refinement protocol includes simulated annealing, positional refinement, restrained B-factor refinement and bulk solvent correction. The stereo-chemical topology and geometrical restrain parameters of DNA/RNA (33) have been applied. The topologies and parameters for modified dU with 2′-SeMe (UMS) and 5-tellurium (TTE) were constructed and applied. After several cycles of refinement, a number of highly ordered waters were added. Final, the occupancies of selenium and tellurium were adjusted. Cross-validation (34) with a 5–10% test set was monitored during the refinement. The σA-weighted maps (35) of the \(2mF_o - DF_{o}^c\) and the difference \(mF_o - DF_{c}^c\) density maps were computed and used throughout the model building.

Mass analysis of Te–C bond breaking caused by X-ray irradiation

In our work, a few crystals were analyzed by MALDI-TOF MS before X-ray irradiation. As a comparison, a few crystals were analyzed by MALDI-TOF MS after X-ray irradiation. This Te-functionality is relatively stable in the absence of X-ray irradiation, and no significant decomposition was observed in 2 months under air. The Te-DNA was also heated at 90°C over 1 h without significant decomposition.

STM experiment

In this work, highly oriented pyrolytic graphite (HOPG) was used as a support substrate to study DNA molecules (36). The HOPG was freshly cleaved with Scotch tapes prior to each experiment, and treated with UV Surface Decontamination System (Novascan Technologies Inc.) for 20 min before modifying the surface of the hydrophobic HOPG to the hydrophilic surface. The bare HOPG surface did not show obvious structure changes even at the atomic level. Both the native and \(^{15}\)T-DNA samples (100 μl, 0.03 μM) were dissolved in PBS solution, and the sample solutions were then loaded on the HOPG surface. After 20 min, the DNA samples were scanned with STM in the PBS buffer. To reduce the influence of the leakage current, the newly cut Au STM tip was coated with Apiezon W Wax (SPI Supplies Division of Structure Probe Inc.), and only the top of the tip was exposed as reported by Lindsay (37).

RESULTS AND DISCUSSION

Synthesis of 5-TePh-thymidine phosphoramidite

 Aryl-chalcogenides (S and Se), such as phenyl sulfenyl and phenyl selenyl moieties, have been tethered to the 5-position of pyrimidine nucleosides and been incorporated into DNA (38–41). Methods, which are available in the literature for the introduction of the alkyl or aryl chalcogenides (S and Se) at the 5-position of pyrimidines, include the electrophilic addition–elimination on the C5–C6 double bond (42), the palladium-catalyzed naphthol nucleophilic substitution of 5-mercurur derivatives (39,43), and the lithiation of 5-halo derivatives in the presence of the electrophilic species (44). However, no literature report can be found on the corresponding 5-aryl- or alkyl-tellurides. Incorporation of the tellurium functionality to the 5-position is a long-standing challenge. We have attempted, without success, to introduce an alkyltellurio or aryltellurio moiety at the 5-position of pyrimidines under several conditions. However, by applying the lithium–halogen exchange strategy (45) on a protected 5-iodo-2′-deoxyuridine, we have successfully incorporated the Te-functionality to the 5-position. We found that the key steps are the transient protection of 5-iodo-2′-deoxyuridine derivative 2 as a sodium salt, and the treatment with n-BuLi and (PhTe)₂. To the best of our knowledge, we have established the first synthesis of the 5-Te-pyrimidine derivatives.

The synthesis of the 5-TePh-deoxyuridine and 5-TePh-deoxyuridine phosphoramidite is showed in Scheme 1, starting from the silylation of commercially available 5-iodo-2′-deoxyuridine derivative 1. After purification, this intermediate (2) was treated with NaH/n-BuLi, followed by adding diphenyltelluride (PhTe₂). This reaction generated an inseparable mixture of the desired 5-PhTe derivative (6) and the tentative 6-PhTe derivative (in 10:1 ratio, with 72% yield), along with the reduced byproduct (8, in 25% yield). After several failed trials to separate the isomers, such as re-crystallization and very-slow column chromatography, we switched the starting compound to the 3′,5′-di-O-silyl derivatives. Unfortunately, this 5-isomer was still difficult to be purified from the 6-regio-isomer. Later, various concentrations of the reactant (3′-O-silyl-5′-DMTr derivative 2) were tested (Scheme 1). Finally, it was found that when the concentration of the reactant was increased to as high as 0.15 or 0.18 M in THF solution, the 6-TePh isomer could indeed be completely eliminated. Desired 5-Te-isomer 6 was formed as the major product, while 8 was formed as a minor byproduct. Then the desilylation of 6 with TBAF/THF was carried out, generating 7 quantitatively, which was finally converted into 5-phenyltellurio thymidine (\(^{15}\)T) phosphoramidite (10) for solid phase synthesis of the Te-DNA. The characteristic distributions of the tellurium isotopes in mass spectra of 6, 7 and 10 were observed and confirmed the incorporation of the Te-functionality.
Synthesis of the 5-Te-functionalized DNA

Considering that the Te-functionality is electron rich, its oxidative removal might happen during solid-phase synthesis and purification. Fortunately, this Te-phosphoramidite is well compatible with the solid-phase synthesis conditions, thereby being incorporated into several designed DNA sequences. After K$_2$CO$_3$ (0.05 M in MeOH) cleavage and deprotection, the crude DNA solution was analyzed by analytical RP-HPLC. As showed in Figure 1, the coupling yield is over 95%.

The synthesized Te-DNAs were then purified in a preparative RP-HPLC system in trityl-on form. After treated with 3% trichloroacetic acid for 2 min, the solution was neutralized with triethylamine and extracted with petrol ether, followed by the second purification in trityl-off form. All the Te-modified DNA oligonucleotides were characterized by MALDI-TOF, and several Te-DNA oligonucleotides were listed in Table 1.

Thermodenaturization study of oligonucleotide duplexes containing the 5-Te derivatization

To evaluate the potential structure perturbation caused by this bulky tellurium moiety (Ph–Te), we conducted the UV–thermal denaturation studies. Our experimental
Table 2. UV-melting study of the Te-DNA duplexes

<table>
<thead>
<tr>
<th>Entry</th>
<th>DNA duplex</th>
<th>(T_m) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5'-ATGG((^{15})T)GCTC-3'</td>
<td>40.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>3'-TACCAGGAG-5'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5'-ATGGTGTCG-3'</td>
<td>39.8 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>3'-TACCAGGAG-5'</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5'-CT((^{15})T)CTTGTCG-3'</td>
<td>44.1 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>3'-GAAGAAGGAGGC-5'</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5'-CTTCTTGTCG-3'</td>
<td>44.0 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>3'-GAAGAAGGAGGC-5'</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Normalized thermal-denaturation curves of the native and Te-modified DNA duplexes. The Te-DNA duplex, 5'-ATGG(\(^{15}\)T)GCTC-3' and 3'-TACCAGGAG-5', and the corresponding native duplexes with 40.3 ± 0.2 and 39.8 ± 0.3°C as their melting temperatures, respectively.

Table 3. X-ray data collection: the data collected at selenium K-edge

<table>
<thead>
<tr>
<th>Data collection</th>
<th>(\lambda) = 0.9795 Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution range, Å (last shell)</td>
<td>18.89–1.50 (1.55–1.50)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>3659</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>94.4</td>
</tr>
<tr>
<td>(R_{merge}) (%)</td>
<td>7.5 (42.7)</td>
</tr>
<tr>
<td>((I/\langle I \rangle))</td>
<td>14.9 (2.4)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>8.63 (5.30)</td>
</tr>
<tr>
<td>Reduced chi-squared</td>
<td>0.93 (0.42)</td>
</tr>
</tbody>
</table>

\(R_{merge} = \Sigma |I – \langle I \rangle| / \Sigma I\)

results indicated that the Te-derivatized duplex structures are as stable as the corresponding natives (Table 2 and Figure 2). Clearly, the bulky tellurium substitution does not significantly change the melting temperatures and alter the duplex structure.

Crystallization and data collection of Te-DNA

To further confirm that this 5-TePh modification does not cause obvious structure perturbations, we have carried out the crystallization by using our 2'-Se modification strategy to facilitate the crystal growth (46–48). The modified DNA (5'-G-2'-Se-dU-G-\(^{15}\)T-ACAC-3') was designed, synthesized and purified. Its crystallization conditions were screened with the Hampton Mini-Screening kit. As a result, the Te-DNA crystals were formed in all the 24 buffer conditions of the kit. Moreover, crystals with high-diffraction quality and reasonable sizes were generated in 2 days. Crystals, which formed in buffer #7 of the kit (10% v/v MPD, 40 mM sodium cacodylate pH 6.0, 12 mM spermine tetra-HCl, 80 mM potassium chloride and 20 mM magnesium chloride), were shown in Figure 3 as an example. By the crystal diffraction screening, the crystals formed in buffer #7 were identified to give the highest diffraction resolution (up to 1.50 Å). In addition, several data sets with high diffraction resolution were also collected for further refine purpose. The data collection and refine parameters are listed in Tables 3 and 4.

Crystal structure of the Te-DNA 8-mer

This Te-DNA crystal has the same tetragonal space group P4\(_2\)2\(_1\)2 as the corresponding native one (49). The occupancy of Se and Te are 1.0 and 0.35, respectively. The refined B-factor of Se and Te are 28.55 and 23.64, respectively, comparing with other atoms in the structure. The Te-DNA structure (1.50 Å resolution) revealed that both global and local structures of this Te-DNA are virtually identical to the native one (Figure 4A and B), indicating the Te-moiety does not cause significant perturbation. The structure result is also consistent with our biophysical study, suggesting that \(^{15}\)T and A (Figure 4B and C) pair exactly, comparing with other atoms in the structure. The Te-DNA was heated at 90°C for 1 h without significant decomposition (<2%). However, since the Te–C bond is sensitive to X-ray irradiation, the occupancy of tellurium (~40%) in the crystal structure is expected. The low electron density of the phenyl group (~16% of expected density) is consistent with cleavage of these two Te–C bonds [Te–C5 and Te–C(Ph)] by the X-ray irradiation. To verify this, the mass analysis of the Te-DNA crystals was carried out. The Te-functionality is stable in the absence of X-ray irradiation, our MS analysis indicated no significant decomposition of the Te-DNA crystals in the crystallization droplet after 3 weeks (Figure 6A). However, after X-ray irradiation, the MALDI-TOF-MS spectra (Figure 6B) showed the loss
of 78 (the phenyl group) and 203.9 mass units (the phenyltelluro group), indicating the partial cleavage of both Te–C bonds by X-ray irradiation.

STM imaging study

Since tellurium atom has the metallic property, we expect that the Te-modified DNA has higher visibility and conductivity under STM imaging than the corresponding native DNA. To investigate this, we synthesized the Te-DNA [9 nt, 5′-ATGG(TeT)-GCTC-3′, Figure 7], which is complementary to a native DNA [54 nt, 5′-(GA GCACCAT)6-3′] by six repeats, and conducted the STM studies. Interestingly, our experiments revealed that the Te-modified DNA duplex showed much stronger topographic and current peaks (Figure 7A and B) than the corresponding native duplex (Figure 7C and D). Clearly, both the topographic and current images of the Te-duplex showed that the Te-derivatization allowed better

Table 4. Refinement statistics in Te-8-mer

<table>
<thead>
<tr>
<th>Refinement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution range, Å (last shell)</td>
<td>25–1.50 (1.55–1.5)</td>
</tr>
<tr>
<td>Number of reflections</td>
<td>6859 (424)</td>
</tr>
<tr>
<td>(R_{\text{work}} (%))</td>
<td>19.3</td>
</tr>
<tr>
<td>(R_{\text{free}} (%))</td>
<td>21.5</td>
</tr>
<tr>
<td>Number of atoms</td>
<td>162</td>
</tr>
<tr>
<td>Nucleic Acid (single)</td>
<td>2 (Se, Te)</td>
</tr>
<tr>
<td>Water</td>
<td>28</td>
</tr>
<tr>
<td>RMSD</td>
<td>0.010</td>
</tr>
<tr>
<td>Bond angle</td>
<td>1.73</td>
</tr>
<tr>
<td>Average B-factors, Å²</td>
<td>22.3</td>
</tr>
<tr>
<td>All atoms</td>
<td>19.6</td>
</tr>
<tr>
<td>Wilson plot</td>
<td></td>
</tr>
<tr>
<td>Overall anisotropic B-values</td>
<td>0.6/0.6/1.2</td>
</tr>
<tr>
<td>Bulk solvent correction</td>
<td></td>
</tr>
<tr>
<td>Solvent density, e/Å³</td>
<td>0.44</td>
</tr>
<tr>
<td>B-factors, Å²</td>
<td>59.6</td>
</tr>
<tr>
<td>Coordinates error (c.-v.), 5 Å</td>
<td>0.17</td>
</tr>
<tr>
<td>Esd. from Luzzatt plot, Å</td>
<td>0.15</td>
</tr>
<tr>
<td>Esd. from SIGMAA, Å</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. The global and local structures of the Te-DNA duplex \([5′-G(2′-SeMe-dU)G(TeT)ACAC-3′]\). The red and yellow balls represent Te and Se atoms, respectively. (A) The Te-dsDNA structure (in cyan; 1.50 Å resolution; PDB ID: 3FA1) is superimposed over the native one (in magenta; PDB ID: 1DNS). (B) The local structure of the \(^{13}\text{T}/\text{A} \) base pair (in cyan) is superimposed over the native \(
\text{T}/\text{A} \) base pair (in magenta). (C) The experimental electron density \((2|\text{F}_{o}| - |\text{F}_{c}| \) map) of the \(^{13}\text{T}/\text{A} \) base pair (\(\sigma = 1.0 \)). The green ball represents approximately one-sixth of phenyl group (one carbon).

Figure 5. The Te-DNA thermal stability and HPLC analysis. Buffer A: 20mM TEAAc; buffer B: 50% acetonitrile in buffer A. HPLC conditions: Welchrom C18-XB column (4.6 × 250 mm, 5 μ), 25°C, 1 ml/min, gradient from buffer A to 50% buffer B in 15 min. HPLC profiles of Te-DNA [5′-G(2′-SeMe-dU)G(TeT)ACAC-3′] thermal analysis: the solid line (without heating), the dashed line (heated in 10 mM Na-PO₄ buffer, pH 7.3, at 90°C for 1 h).
visualization of the 54-bp DNA duplex (calculated length: 18 nm) with ~20 nm in measured length. Our result also suggested that the native and Te-modified duplexes can assemble with different orientations on the graphite surface, indicated by the topographic and current images of the native and Te-modified duplexes.

CONCLUSIONS

In summary, we have first incorporated the Ph–Te-functionality (5-Te) to the 5-position of a pyrimidine, and successfully synthesized the Te-nucleobase-modified nucleoside, phosphoramidite and DNA oligonucleotides. The Te-modified DNA is stable, and the native and modified duplexes have the similar stability. Our biophysical and structural studies indicate that the Te-modified T and A interact as well as native T and A pair, and that the structures of the Te-derivatized and native duplexes are virtually identical. Furthermore, the Te-DNA duplex is readily visible under STM, suggesting a potential strategy to directly image DNA without the structural perturbation. This Te-modification will open a novel research avenue for nucleic acids, including mechanism and function studies, STM imaging and nano-electronic materials.

ACCESSION NUMBER

3FA1.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
ACKNOWLEDGEMENTS

The authors thank Dr Robert Sweet, Dr Anand Saxena and all the staffs working for the 2008 Rapidata course in Brookhaven National Laboratory for their help in crystal data collection and processing. Also thank Dr Thomas Terwilliger in Los Alamos National Laboratory, Dr Jianhua Gan in Georgia State University and Dr Maehigashi Tatsuya for their helps in structure determination. The structure pictures are prepared using PyMol (DeLano Scientific LLC, http://www.pymol.org).

FUNDING

Georgia Cancer Coalition Distinguished Cancer Clinicians and Scientists Award and the US National Science Foundation (MCB-0824837). Funding for open access charge: US National Science Foundation (MCB-0824837).

Conflict of interest statement. None declared.

REFERENCES