Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes

Corey M. Hudson, Britney Y. Lau and Kelly P. Williams*

Sandia National Laboratories, Department of Systems Biology, Livermore, CA 94550, USA

Received September 15, 2014; Revised October 13, 2014; Accepted October 16, 2014

ABSTRACT

Genomic islands are mobile DNAs that are major agents of bacterial and archaean evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islands in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.

INTRODUCTION

Genomic islands are horizontally transferred DNA segments integrated into prokaryotic chromosomes. They came into especially sharp view when the second Escherichia coli genome (O157:H7) was sequenced and could be compared to the E. coli K-12 genome, revealing many large islands unique to O157:H7, some unique to K-12 and even alternative strain-specific islands found at the same chromosomal locus (1,2). Many such islands bear clues to their own mechanisms for their two most basic properties: integration and mobility. Like the prototypical genomic island, prophage lambda, many islands contain (i) an integration module including an integrase gene and (ii) the phage structural and regulatory genes that provide a ready hypothesis for the cross-bacterial mobility of the island, through phage particles. One major class of genomic islands can thus be identified as site-specifically integrated prophages. A second major class of islands displays an integration module together with genes for a Type IV secretion system (T4SS), suggesting that they move through conjugation pili like many plasmids; these are termed integrative conjugative elements (3,4).

Islands need not encode their own mobility or integration functions to be mobile and integrative. Islands with neither phage nor T4SS genes may nonetheless contain a mobilization signal, as do satellite phages and mobilizable plasmids, that accesses the mobility vehicles encoded by helper elements. Not all islands encode an integrase; some rely on the integrase-family host enzyme Xer, which is normally responsible for resolving dimeric chromosomes (5).

In addition to the island-selfish functions of mobility and integration, islands can also carry cargo genes benefitting the host bacterium, promoting for example virulence (as conveyed by the term pathogenicity island (6)), symbiosis or catabolic pathways, (7,8). Cargo-bearing islands are major agents of bacterial evolution.

A hypothetical pre-integration or post-excision circular form for genomic islands can be reconstructed from the genome sequence if the precise endpoints of the island can be determined. These circles have a ~250 bp DNA segment termed attP, where integrase acts to promote recombination with a specific target site attB in the chromosome. For a large fraction of integrative islands (~30-50%) (9,10), attB lies within a tRNA or tmRNA gene (together termed tDNAs). In these cases the island attP contains a fragment of the tDNA target, such that integration restores a functional tDNA despite disrupting the original tDNA. This leaves a bioinformatically detectable island signature in chromosomes: a tDNA and a tDNA fragment, with the island in between. Although some islands use integrases of the serine recombinase family, only those of the tyrosine recombinase family are known to target tDNAs; in what follows, we restrict the term integrase to members of the tyrosine recombinase family only.

Our algorithm Islander (11) searches for the above island signature, to find genomic islands that contain an integrase gene and target a tDNA attB and our website (http://bioinformatics.sandia.gov/islander) presents its results. Al-

*To whom correspondence should be addressed. Tel: +1 925 294 4730; Fax: +1 925 294 3020; Email: kwilli@sandia.gov

© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
through this misses some islands, those that it finds are mapped with single-nucleotide precision. They are moreover putatively active, with an integrase gene and both att sites intact. Archaea, despite their many differences from bacteria, also carry genomic islands, many meeting our criteria.

Genomic islands are multigene mobile DNA units found in prokaryotic chromosomes (12). Some contain viral structural gene sets or conjugation gene sets that indicate their mode of mobility between cells. Chromosome site-specificity is determined by an integrase, overwhelmingly from the tyrosine recombinase family, whose gene is usually found on board the island. For approximately half of islands the integration target site is within a tRNA gene (9,10). Integrase sequences of the serine recombinase family are not known to specify tRNA genes, and so we restrict the term ‘integrase’ in what follows to members of the tyrosine recombinase family only.

In addition to the selfish genes of mobility and integration, islands can carry cargo genes that benefit the host, contributing to phenotypes such as pathogenicity and metabolic repertoire (8). The target DNA genes specified by integrase genes have switched frequently during integrase evolution (10), facilitating the combinatorial accumulation of diverse islands in a given host genome. We describe our current algorithm for identifying tDNA-integrated, integrase-encoding genomic islands and present its results along with other such islands from the literature at the Islander Website.

SEARCH STRATEGY

The Islander website collects (m)RNA-targeted genomic islands, identified using the Islander.pl software package (http://bioinformatics.sandia.gov/software/). Changes from the previously described algorithm (13) include: six-frame translation and Pfam domain annotation; more precise identification of island integrases; and changing the Coding DNA Sequence (CDS) filter from using all proteins called at RefSeq to only those encoding Pfam domains (Figure 1).

The algorithm proceeds through each replicon as follows:

(i) **Find tDNAs.** tRNA and tmRNA genes are identified using tRNAscan-SE (tRNA), BRUCE (tmRNA), ARAGORN (both) and rFind.pl (two-piece tmRNA) (14–17). tFind.pl orchestrates implementation of these tools, corrects endpoints as necessary and sorts tDNAs with CAT anticodons into isoleucine, initiator and elongator methionine classes (18).

(ii) **Find integrases, excluding Xer and integron subclasses.** The replicon is six-frame translated, with amino acid
sequences extending from stop-codon to stop-codon. Genes for candidate integrases are identified using HMMER with the hidden Markov model (HMM) PF00589 from Pfam (19). The Xer proteins act at dif sites to resolve dimeric chromosomes. They can also act as integrases for islands but in these cases are not encoded within the island and specify integration into dif sites not tDNA sites. Xer proteins are excluded, using pfscan (20) with strict cutoffs on HAMAP (21) profiles for XerC, XerD, XerS and XerD-like subfamilies. Integron integrases mobilize cassettes within integrons, but not canonical islands. They were excluded using an HMM prepared from a MUSCLE (22) alignment of sequences from the ACLAME family Famint8 (23). Testing with all integrases from the ACLAME database, it was found that a threshold of 1.2e-24 was sufficient to segregate integron integrases from other integrases.

(iii) **Find tDNA fragments.** Each tDNA is used as a query in a BLASTN search of its source replicon (parameters: task, blastn; gapopen, 0; gapextend, 2.5; word_size, 7). The hit and query gene define the endpoints of a candidate island, which is passed through several filters sequentially.
Figure 3. Island overlap. (A) DNA length overlap for the outputs from Islander, PHAST (prophage finder) and Alien_Hunter (anomalous composition finder). (B) Size profile of Islander islands. For each island, overlap by at least 10% with PHAST regions was determined. The peak at 13.6 kbp has both PHAST and non-PHAST components, while that at 39.9 kbp is primarily from the PHAST-labeled islands. (C) Size profile of RefSeq prokaryotic viruses, broken down by high-level taxonomic group, matching both peaks of panel (B).

(iv) Integrate filter. Candidate islands that do not contain or overlap an integrase open reading frame are rejected.

(v) CDS filter. Since true tDNAs and their island-split fragments should not overlap conserved portions of protein coding genes, Pfam-A domains are found among six-frame translated sequences and candidate tDNA fragments overlapping the domain portions of CDSs are excluded. As an exception, overlap of integrase domains is allowed, since some integrases (e.g. those from the viruses Mx8 and SSV) are known to extend across attP (24, 25).

(vi) tDNA filter. BLAST hits that fall within a known full-length tRNA gene are rejected.

(vii) Length filter. Candidates shorter than 2 kb or longer than 200 kb are rejected. Some legitimate islands, e.g. the 611 kb symbiosis island of *Mesorhizobium loti* (26), are lost through this filter.

(viii) Internal tDNA fragment filter. Integration splits off tDNA end fragments. Candidate islands where the tDNA fragment is internal to the full tDNA are therefore rejected. An exception was made at the 3′ end because certain islands have a small deletion in the tDNA fragment, 3 bp upstream of the discriminator position (27). To detect such damaged tDNA fragments, we allowed BLAST hits that extended only until this deletion site.

(ix) Configuration filter. Integration displaces the tDNA fragment to one side. Candidate islands with a 5′ fragment downstream or with a 3′ fragment upstream of the tDNA are rejected.

(x) Orientation filter. Candidate islands with the tRNA gene in the opposite orientation from the fragment are rejected. This rejection step, coming late in the analysis, serves as a measure of the false positives among the candidates who should appear with equal frequency in each orientation.

(xi) Resolve. Finally, cases where multiple remaining candidate islands share the same tDNA are resolved to single candidate islands, except when tandem arrays can be discerned where each member of the array has its own integrase and tDNA fragment.

ISLANDER WEBSITE DESCRIPTION

The Islander Website was generated from 2031 whole bacterial genomes (that included 1640 plasmids and six phages) and 137 whole archaeal genomes (that included 75 plasmids), and from 1711 additional bacterial plasmids and 543 phages, and 44 additional archaeal plasmids and 38 archaeal viruses, downloaded from four directories at RefSeq (archaea, bacteria, plasmid, and viruses) in November 2012, rejecting eukaryotic viruses and plasmids. The Islander algorithm yielded 3927 unique islands, although all seven that were found in viruses and one in the smallest island-flagged plasmid were excluded after finding evidence that each was a false positive. Some statistics on the 3919 final genomic islands are shown in Table 1. In the majority of genomes at least one island was found; the highest number found in any genome was 19 (*Desulfouvibrio magneticus* RS-1). As noted before (11), the tmRNA gene was more highly en-
riched among integration targets than any tRNA isoacceptor type. Drop down menus become awkward with thousands of genomes and islands. We use a search text box and have also modified the javascript for an interactive metagenome taxonomy viewer, Krona (28), to enable navigation to individual island pages, while also providing a visual depiction of the phylogenetic distribution of islands in the database (Figure 2).

COMPARISON WITH ORTHOGONAL METHODS

Our algorithm detects islands primarily by their target site, while other orthogonal methods look for phage-like genome content or for anomalous nucleotide composition. We evaluated the whole genomes in our study with Alien Hunter (30) to find regions with biased composition. We overlapped RefSeq CDS called ‘hypothetical’ and Tandems >= 2 to identify prophage-like regions and with PHAST (29) to identify prophage-like regions and with Alien Hunter (30) to find regions with biased composition. Figure 3A shows base-pair coverage of the genomes by Islander (2.34% of the total genome length), PHAST (1.70%) and Alien_Hunter (19.3%), and their considerable overlaps. A key overlap is the 17.6% of the DNA of Islander islands that is covered by PHAST calls; the remaining PHAST regions may indicate prophages in sites other than tDNAs, or having lost an integrase gene or the tDNA fragment. As an example the 49 591 bp island in E. coli O157:H7 str. Sakai (Eco661) integrated into a tRNA-Ser gene is named Eco661_50S.

Additionally the updated website marks islands that are putative prophages overlapping with PHAST calls, reports all the integrases in the replicon, additional matching tDNA fragments, a gene list for the island and the island sequence.

ACKNOWLEDGEMENTS

This research was fully supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04–94AL85000.

FUNDING

Funding for open access charge: Laboratory Directed Research and Development program at Sandia National Laboratories, grant number 14-1155.

Conflict of interest statement. None declared.

REFERENCES
