The aging of the world’s population is a large challenge facing government health and welfare agencies (1). Policy makers recognize that the promotion of healthy active aging could help relieve the social and economic costs of an aging population (2,3). Older women consistently make up a larger portion of the disabled population than older men because of lower mortality, higher incidence of disability, and lower recovery rates from disability (4,5). Functional limitations, or restrictions in the performance of a person (6), have been shown to be good predictors of the onset of disability later in life and, hence, a good point in the disease process to intervene (7,8). Gender differences in functional limitations have been observed in older populations (9), but no study has examined whether these differences are present at midlife.

Additionally, the Marmot Review of health inequalities in England (10) reports that people in manual occupations have declines in physical functioning that begin on average 12 years earlier than those in non-manual occupations. Most studies have documented that adult socioeconomic position (SEP) is inversely related to functional limitations (11–13). A few studies (14–16), including two from the same cohort examined in this paper (14,16), have shown that childhood SEP was independently associated with functional limitations in midlife when genders were combined. Only one study that we are aware of has investigated both childhood and adult SEP on functional limitations with analyses stratified on gender but may not be comparable to previous studies as it was conducted in an elderly Latin American population (17). Questions remain as to whether gender differences can be explained by SEP differences of men and women or whether the actual effects of SEP are different by gender.

Using data from the MRC National Survey of Health and Development, we examined gender, childhood, and adulthood...
SEP differences in the prevalence of functional limitations at ages 43 and 53 years and evaluated whether these differences widened between the two ages and whether they were mediated by educational attainment. The repeated prospective collection information on SEP across the life course and repeat measures of functional limitations in midlife make this cohort well suited to address these research questions.

Methods

Study Population

The original National Survey of Health and Development cohort (N = 5,362) has been followed up 23 times since birth. At 43 years, this sample consisted of 3,262 men and women (85% of the cohort) still alive and residing in England, Scotland, and Wales (18); of these, 3,238 provided information on functional limitations. At 53 years, 2,989 cohort members agreed to a home interview and all but 2 provided information on functional limitations. Overall, 2,786 (1,354 men and 1,432 women) provided information at both 43 and 53 years. Of the remainder, 106 had died and 345 were lost to follow-up over the 10 years. Those who were lost to follow-up were more likely to be male, had a manual childhood SEP, or adult SEP but differences were small (eg, 16.2% of men compared with 11.4% of women were excluded). The responding population at ages 43 or 53 years was in most respects representative of the national population of similar age (18,19).

Measures of Functional Limitations

Comparable information on reported functional limitations were collected at the home visits at age 43 and 53 years. Cohort members were asked whether, due to a long-term health problem, they had difficulties with walking one-quarter mile on the level, walking up and down 12 stairs in a normal manner, gripping or turning lids or holding something heavy, or using arms to reach and stretch for things (20). Participants were classified as having an upper body limitation if they reported difficulties with gripping and/or using arms and classified as having a lower body limitation if they reported difficulties walking and/or using stairs. Results will be presented for upper and lower body limitations only since analysis of components separately produced similar results.

Socioeconomic Position

Childhood SEP was based on father’s occupation recorded when the cohort member was aged 4 years, and adult SEP was based on the cohort member’s head of household occupation at age 43 years (based on male social class if present). If childhood SEP was missing, then the SEP of the closest age was imputed. For SEP at age 4 years, 54 were imputed from age 11 years and 14 from age 15 years. For age 43 years, 47 were imputed from age 36 years and 20 from age 53 years. Occupational class was assigned using the Registrar General’s six-group classification (21) with binary indicators of manual (classes III manual, IV, and V) and non-manual (classes I, II, and III non-manual) used as indicators of SEP. Of the 3,238 with information on functional limitations at 43 years, 163 were missing data on childhood SEP, 25 on adult SEP, and 2 on both, leaving a total sample for inclusion in analyses of 3,048 (1,530 men and 1,518 women). As a validity check, analyses were also performed with non-imputed adult and childhood SEP, and results were similar (not shown).

Education

Educational qualifications were classified by the Burnham Scale (22) and grouped into no qualifications, up to O-level or equivalent (secondary qualifications usually achieved at 16 years), or A-level (advanced secondary qualifications usually achieved at 18 years) and above.

Statistical Methods

Generalized linear models with a binomial distribution (23) were used to model the prevalence of upper and lower body functional limitations. Because functional limitations could potentially be measured twice (n = 2,595), generalized estimating equations with independent correlation matrices were used to account for within-person correlations over time. The generalized estimating equations method also allowed inclusion of persons who were lost to follow-up at age 53 years (died = 70, refusal = 43, missing functional limitations data = 29, lost to follow-up = 280) and hence improved power to detect differences.

The first aim was to examine whether there were gender differences in the prevalence of functional limitations at age 43 years and whether these differences widened significantly between the ages of 43 and 53 years. Generalized linear models with a binomial regression were used to fit models containing gender, age (coded 0 for age 43 years and 1 for age 53 years), and gender by age interaction terms. The second aim was to examine the separate role of childhood SEP and adult SEP on functional limitations, fitting similar models including the SEP measure, age and SEP by age interaction. The third aim was to explore whether any SEP differences observed were apparent in both men and women by fitting sex-stratified models. In these models, childhood and adult SEP were first modeled separately in relation to functional limitations and then fitted in the same model to examine the independent effects of each SEP variable. The fourth aim was to investigate whether educational attainment explained any SEP differences observed by adjusting for this in our models. In addition, to test whether the effect of adult SEP was modified by childhood SEP, the interaction between childhood SEP and adult SEP was added to the regression models. Weights...
were applied to all models to allow for the initial sampling design.

RESULTS

At age 43 years, 4.2% of the study sample reported a lower body limitation and 4.4% reported an upper body limitation. In the subsequent 10 years, cohort members reported four times as many lower body limitations (15.9%) and five times as many upper body limitations (20.6%). The childhood manual SEP group (42.1%) was larger than the adult manual SEP group (37.9%), but this difference was similar in men and women. More than a third of cohort members did not attain any qualifications by the age of 26 years, a quarter obtained up to O-levels, and a third A-levels or higher with significant educational differences by gender. The proportion of men who obtained “A-levels or greater” was larger than that of women (42.5% vs 27.9%), whereas approximately 35% of both genders did not attain any educational qualifications (Table 1).

Aim 1: Functional Limitations by Gender

Figure 1 shows the prevalence of both upper and lower body limitations at ages 43 and 53 years by gender. At age 43 years, women had slightly higher prevalence than men for both limitations. For example, 5.1% (95% confidence interval [CI] 4.0–6.2) of women and 3.7% (95% CI 1.2–6.3) of men reported an upper body limitation (p value for gender difference = .07). The prevalence of lower body limitations was similar to that of upper body limitations in both sexes (women 4.9% [95% CI 3.9–6.0] and men 3.5% [95% CI 1.0–6.0]).

In addition, limitations increased faster in women from age 43 to 53 years. Lower body limitations in men increased to 10.8% (95% CI 2.8–18.9) at age 53 years, whereas in women, they increased to 20.8% (95% CI 17.2–24.3), resulting in a widening of the gender difference to 10.0% (95% CI 5.4–14.4; test for gender by age interaction, p < .01). The widening of gender differences from 43 to 53 years was even more extreme for upper body limitations, resulting in a gender gap of 16.0% (95% CI 11.1–20.7) at age 53 years (prevalence [95% CI]: men 12.4% [3.9–21.0], women 28.4% [24.6–32.1]; test of gender by age interaction, p < .01).

Aim 2: Functional Limitations by Childhood and Adult SEP

Small prevalence differences of both upper and lower body limitations were reported at age 43 years by SEP in

![Figure 1. Prevalence (95% confidence interval) of upper and lower body functional limitations at ages 43 and 53 years by gender (men = 1,530, women = 1,518).](https://academic.oup.com/biomedgerontology/article-abstract/66A/12/1350/627016)
both childhood and adulthood (Figure 2). For example, cohort members with a manual childhood SEP reported 2.4% (95% CI 1.0–3.8) higher prevalence of lower body limitations at age 43 years than those with non-manual childhood SEP (prevalence manual 5.2% [95% CI 2.9–7.5]; non-manual 2.8% [95% CI 1.9–3.7]). Those from a manual SEP in adulthood had greater increases in reported limitations from age 43 to 53 years than those from a non-manual SEP (ASEP by age interaction p value < .01 for lower body limitations and <.01 for upper body limitations). Those from a manual SEP in childhood showed a greater increase in the prevalence of lower body limitations (CSEP by age interaction p < .01), but the increase in prevalence of upper body limitations did not differ by CSEP (CSEP by age interaction p = .37).

Aims 3 and 4: Functional Limitations by SEP and Education, Stratified on Gender

In Table 2, unadjusted models (Model 1) demonstrate that at age 43 years, the relationship between SEP and lower body limitations was similar in men and women. For example, men from manual childhood SEP backgrounds reported a prevalence of lower body limitations at age 43 years that was 2.2% (95% CI 0.5–4.0) higher than those from a non-manual childhood SEP. Among women, there was a similar childhood SEP difference of 2.6% (95% CI 0.5–4.7; p value for gender by childhood SEP interaction = .48). Higher educational achievement was also associated with a higher prevalence of lower body limitations at age 43 years, but associations were similar in both genders (p value for gender by education interaction = .38). Although both genders showed a widening of SEP and educational differences from age 43 to 53 years, the widening was larger in women than in men (tests for gender by SEP by age and for gender by education by age interactions; p values all <.01).

For both genders, when the effects of childhood and adult SEP were assessed simultaneously (Model 2), only adult SEP remained significantly associated with lower body functional limitations. The associations of lower body limitations with childhood SEP were no longer significant. There was no evidence of interactions between childhood and adult SEP, suggesting that the effects of SEP at the two different time periods were additive. Figure 3 shows the prevalence estimates of lower body limitations for the four possible combinations of life course SEP: both childhood and adult SEP non-manual, manual in childhood or adult, and both periods manual (estimates from Table 2, Model 2). Each additional period spent in a manual occupation increased the prevalence at age 43 years and the widening of SEP differences by age, so that at age 53 years, the prevalence of limitations in women in a manual class at both time points is 17% higher than the that of those in a non-manual class at both time points (compared with a difference of only 5% at 43 years). The stronger influence of adult SEP compared with childhood SEP can be seen as those in a manual SEP only in adulthood have greater prevalence at both ages than those in a manual SEP in childhood only, with the difference getting wider with age. Further adjustment for educational qualifications reduced the associations between both childhood and adult SEP and in particular the effects of SEP on change in prevalence from age 43 to 53 years (Table 2, Model 3).

Effects of adult SEP on upper body limitations were similar to those on lower body limitations, with both genders showing similar small differences at age 43 years and
Table 2. Prevalence Difference Between Manual and Nonmanual Occupational Social Class (SEP) During Childhood and Adulthood and Educational Achievement for Lower Body Functional Limitations at Age 43 Years (95% confidence interval [CI]) and Change in Prevalence From 43 to 53 Years (n = 3,048; men = 1,530, women = 1,518)

<table>
<thead>
<tr>
<th>Lower Body Limitations</th>
<th>Model 1. Unadjusted (SEP measure + age by SEP interaction)</th>
<th>Model 2. Adjusted (childhood SEP + adult SEP + age by SEP interaction)</th>
<th>Model 3. + Education</th>
<th>Change in SEP or Education Difference 43–53 y (SEP/education by age interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prevalence Difference for Nonmanual vs Manual (95% CI)</td>
<td>Change in SEP or Education Difference 43–53 y (SEP/education by age interaction)</td>
<td>Prevalence Difference for Nonmanual vs Manual (95% CI)</td>
<td>Change in SEP or Education Difference 43–53 y (SEP/education by age interaction)</td>
</tr>
<tr>
<td>Childhood SEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>2.2 (0.5–4.0)</td>
<td>3.9 (0.7–7.1)</td>
<td>1.2 (–0.6 to 2.9)</td>
<td>1.5 (–1.8 to 4.8)</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>.01</td>
<td>.36</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>2.6 (0.5–4.7)</td>
<td>6.5 (2.4–10.7)</td>
<td>1.7 (–0.4 to 3.8)</td>
<td>3.9 (–0.3 to 8.1)</td>
</tr>
<tr>
<td></td>
<td><.01</td>
<td></td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>Adult SEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>4.0 (1.9–6.1)</td>
<td>5.9 (2.2–9.6)</td>
<td>3.6 (1.4–5.9)</td>
<td>5.1 (1.3–9.0)</td>
</tr>
<tr>
<td></td>
<td><.01</td>
<td></td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>3.8 (1.3–6.2)</td>
<td>9.5 (4.9–14.1)</td>
<td>3.3 (0.8–5.8)</td>
<td>8.1 (3.5–12.7)</td>
</tr>
<tr>
<td></td>
<td><.01</td>
<td></td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-level (vs A-level)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>1.6 (–0.9 to 4.1)</td>
<td>6.6 (2.1–11.0)</td>
<td>—</td>
<td>0.5 (–1.8 to 2.8)</td>
</tr>
<tr>
<td></td>
<td><.01</td>
<td></td>
<td>—</td>
<td>5.9 (1.7–10.1)</td>
</tr>
<tr>
<td>Women</td>
<td>2.3 (–0.3 to 4.8)</td>
<td>5.7 (0.9–10.5)</td>
<td>—</td>
<td>1.2 (–1.3 to 3.7)</td>
</tr>
<tr>
<td></td>
<td>.02</td>
<td></td>
<td>—</td>
<td>4.1 (–1.0 to 9.1)</td>
</tr>
<tr>
<td>None (vs A-level)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>2.2 (0.0–4.4)</td>
<td>8.1 (4.2–12.0)</td>
<td>—</td>
<td>–0.2 (–2.2 to 1.8)</td>
</tr>
<tr>
<td></td>
<td><.01</td>
<td></td>
<td>—</td>
<td>6.0 (1.5–10.6)</td>
</tr>
<tr>
<td>Women</td>
<td>2.7 (0.1–5.2)</td>
<td>11.6 (6.6–16.7)</td>
<td>—</td>
<td>0.8 (–2.3 to 3.9)</td>
</tr>
<tr>
<td></td>
<td><.01</td>
<td></td>
<td>—</td>
<td>6.4 (0.6–12.2)</td>
</tr>
</tbody>
</table>

Note: Generalized linear models with a binomial distribution were used to model the prevalence of limitations. For each gender, models include age (code as 0 for age 43 years and 1 for age 53 years), SEP, and SEP × Age interaction. Where multiple SEP measures are included all SEP × Age interactions are also included. The estimates presented in the table are the coefficients from the main effect of SEP (difference at age 43 years) and the SEP × Age interaction.
the SEP differences widening at 53 years to a greater extent in women than in men (Table 3, Model 1). In contrast, childhood SEP had less impact with only the effect on limitations at age 43 years in men being significant (manual vs non-manual childhood SEP: 2.7% [95% CI 0.9–4.5]). Educational differences at age 43 years were also stronger in men than in women (p value for gender by education interaction = .03). In neither gender did childhood SEP influence change in the prevalence of upper body limitations from 43 to 53 years.

As only adult SEP was related to upper body limitations in women, adjustment for childhood SEP did not substantially alter the associations between adult SEP and functional limitations (Table 3, Model 2). In men, in the mutually adjusted model, the associations between both measures of SEP and change in prevalence were attenuated. There remained small and similar differences in prevalence by both childhood and adult SEP at age 43 years after adjustment for education (Table 3, Model 3). Figure 4 shows these different patterns of inequalities for men and women. Among women, those in a manual social class in adulthood have very similar estimated prevalence to those in a manual class at both time points. Those in a manual social class in childhood and a non-manual class in adulthood showed no increased risk in functional limitations over those in a non-manual class at both time points. The increase in limitations was much less in men compared with women in all SEP groups (Figure 4). In contrast to women, the influences of adult and childhood social class are almost equal. Further adjustment for education did not alter disparities in upper body limitations at age 43 years and only slightly reduced the widening adult SEP disparities in women (Table 3, Model 3).

DISCUSSION

We have documented for the first time that small gender differences in functional limitations exist at age 43 years and that these differences widen over a 10-year period. Only a small proportion of men and women reported functional limitations at age 43 years, but there was an increase in the prevalence of these limitations from age 43 to 53 years, which was greater in women than in men. In general, SEP differences in functional limitations occurred for both genders at both ages, although the widening of SEP disparities increased more in women. The exception was that childhood SEP differences in men’s upper body limitations at age 43 years did not widen over the next 10 years. Effects of adult SEP were stronger than childhood SEP and only partially explained by education.

Strengths and Weaknesses

A strength of this study is the repeated collection of self-reported functional limitations in midlife, allowing us to examine when in the life course gender and social differences emerge. Although socioeconomic characteristics have been collected across the life course, cohort members are not old enough for us to be able to assess whether the differences observed will translate into differentials in disability (6) with old age. That gender and SEP differences in prevalence were detected when the overall prevalence of limitations was only 3%–4% suggests that processes related to development of disability are already occurring at relatively early ages in midlife.

Multiple points of prospectively collected SEP were also utilized to reduce the risk of recall bias, particularly with
Table 3. Prevalence Difference Between Manual and Nonmanual Occupational Social Class (SEP) During Childhood and Adulthood and Educational Achievement for Upper Body Functional Limitations at Age 43 Years (95% confidence interval [CI]) and Change in Prevalence From 43 to 53 Years (n = 3,048; men = 1,530, women = 1,518)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prevalence Difference for Nonmanual vs Manual (95% CI)</td>
<td>Change in SEP Difference 43–53 y (SEP by age interaction)</td>
<td>Prevalence Difference for Nonmanual vs Manual (95% CI)</td>
</tr>
<tr>
<td></td>
<td>43 y</td>
<td>Change 43–53 y</td>
<td>p Value</td>
</tr>
<tr>
<td>Childhood SEP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>2.7 (0.9–4.5)</td>
<td>3.0 (−0.5 to 6.5)</td>
<td>.09</td>
</tr>
<tr>
<td>Women</td>
<td>1.5 (−0.7 to 3.7)</td>
<td>0.2 (−4.8 to 5.2)</td>
<td>.94</td>
</tr>
<tr>
<td>Adult SEP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>3.0 (0.9–5.1)</td>
<td>4.1 (0.2–7.9)</td>
<td>.04</td>
</tr>
<tr>
<td>Women</td>
<td>3.3 (0.8–5.7)</td>
<td>9.4 (4.0–14.7)</td>
<td><.01</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-level (vs A-level)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>1.6 (−0.9 to 4.1)</td>
<td>4.0 (−0.1 to 8.8)</td>
<td>.11</td>
</tr>
<tr>
<td>Women</td>
<td>1.0 (−1.7 to 3.7)</td>
<td>10.6 (4.6–16.6)</td>
<td><.01</td>
</tr>
<tr>
<td>None (vs A-level)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>2.2 (0.0–4.4)</td>
<td>6.2 (2.1–10.3)</td>
<td><.01</td>
</tr>
<tr>
<td>Women</td>
<td>1.2 (−1.4 to 3.9)</td>
<td>8.9 (3.0–14.7)</td>
<td><.01</td>
</tr>
</tbody>
</table>

Note: Generalized linear models with a binomial distribution were used to model the prevalence of limitations. For each gender, models include age (code as 0 for age 43 years and 1 for age 53 years), SEP, and SEP × Age interaction. Where multiple SEP measures are included, all SEP × Age interactions are also included. The estimates presented in the table are the coefficients from the main effect of SEP (difference at age 43 years) and the SEP × Age interaction.
GENDER AND LIFE COURSE OCCUPATIONAL SOCIAL CLASS DIFFERENCES

respect to father’s occupational social class. SEP data were collected at other time points in childhood and adulthood, but with each additional data point presentation of results becomes exponentially more complex and sample size reduced. Head of household SEP was used instead of a cohort member’s own SEP to minimize bias in coding men’s versus women’s occupations (18). Repeating these analyses with own social class produced minor reductions of estimates in women, but interpretation of findings did not change.

Men in this cohort were more likely to have been lost to follow-up than women from age 43 to 53 years (data not shown). If those lost to follow-up also had a higher prevalence of limitations, our prevalence estimates at age 53 years are underestimated and associations in men may be more underestimated than those in women. There were no gender differences in loss to follow-up in those with and without functional limitations at age 43 years (data not shown), but the small number of limitations at age 43 years may have led to a lack of power to detect differences. When models were re-run using only those that had not been lost to follow-up, only small changes occurred in estimates (mostly in men), making it unlikely that widening gender inequalities are entirely due to differential loss to follow-up.

Comparisons With Other Studies

It is well documented that at older ages, women have a higher incidence of functional limitations (5,24) and lower mortality than men (25), which leads to a longer duration of life spent with disability (26–28) and a higher prevalence of disability. The current study suggests that gender differences in functional limitations begin to emerge early in midlife.

Possible explanations given in the literature for these differences are that women have a higher prevalence of disabling pain (29), chronic conditions and comorbidities (8,9), and lower levels of physical activity (30–35). In previous analyses in this cohort, women did have a higher proportion of osteoarthritis at age 53 years than men (12) and were less likely to be physically active at age 43 years (36) but did not differ by disabling or life-threatening health conditions (12). Further research is needed to investigate whether better lifetime assessments of these factors or additional factors related to gender roles could explain the remaining limitation differences.

The stronger effect for adult SEP compared with childhood SEP suggests that functional limitations may be more a consequence of factors which affect functional decline rather than those that adversely affect functional development.

Figure 4. Prevalence (95% confidence interval) of upper body functional limitations at ages 43 and 53 years for combinations of manual (M) compared with non-manual (NM) occupational social class during childhood (CSEP) and adulthood (ASEP) by gender (men = 1,530, women = 1,518). Calculated from model that included CSEP, ASEP, age, CSEP × Age interaction (Table 2, Model 2).
Previous literature has documented that education predicts incident and prevalent mobility disability (38,39), and yet adult SEP effects were reduced but still apparent after adjustment for educational achievement. We do, however, observe associations with childhood SEP before adjustment for adult SEP. It may therefore be that SEP is important at all ages but that effects of adult SEP appear stronger simply because the exposure was more proximate to the assessment of functional status.

Only one study that we are aware of examined both childhood and adult socioeconomic conditions on functional limitations, stratified on gender. This study found that a respondent’s childhood “family economic situation” (good/average/poor) and own current education and lifelong occupation were independently related to lower extremity limitations, with stronger effects in women (17), similar to our findings. However, the participants in their study were aged 60 years and older. Our study goes further by showing that the associations are already present in both upper and lower body extremities at the age of 43 years and continue to widen in the next decade. A Dutch study of middle-aged twin men found that neither childhood nor adult SEP (both: composite of employment, education, and number of subordinates) were associated with limitations in running 100 m. However, running may be measuring a different construct than walking or using stairs, as in our study (40).

Policy Implications and Conclusions

Our findings provide the first evidence that processes determining gender and social inequalities of disability in older people begin in early midlife. Further research is required to elucidate the pathway between social conditions across the life course and physical limitations at older ages. Identifying what aspects of gender contribute to women’s greater limitation burden will allow for the development of better-targeted strategies for disability prevention.

Funding

The manuscript is funded by MRC Unit for Lifelong Health and Ageing in UK and supported in part by the Intramural Research Program, National Institutes of Health in the United States. The funders of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

Ethics Committee Approval

The study received Multicentre Research Ethics Committee (MREC) approval.

Conflicts of Interest

None.

References

