Dynamic regulation of glutamic acid decarboxylase 65 gene expression in rat testis

Haixiong Liu†, Shifeng Li†, Yunbin Zhang, Yuanchang Yan, and Yiping Li*

Shanghai Key Laboratory for Molecular Andrology, Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
†These authors contributed equally to this work.
*Correspondence address. Tel: +86-21-5492139; Fax: +86-21-54921415; E-mail: yipingli@sibs.ac.cn

Glutamate decarboxylase 65 (GAD65) produces γ-amino-butyric acid, the main inhibitory neurotransmitter in adult mammalian brain. Previous experiments, performed in brain, showed that GAD65 gene possesses two TATA-less promoters, although the significance is unknown. Here, by rapid amplification of cDNA ends method, two distinct GAD65 mRNA isoforms transcribed from two independent clusters of transcription start sites were identified in post-natal rat testis. RT–PCR results revealed that the two mRNA isoforms had distinct expression patterns during post-natal testis maturation, suggesting that GAD65 gene expression was regulated by alternative promoters at the transcription level. By using GAD65-specific antibodies, western blotting analysis showed that the 58-kDa GAD65, N-terminal 69 amino acids truncated form of full-length GAD65 protein, was developmentally expressed during post-natal testis maturation, suggesting that GAD65 gene expression in testis may also be regulated by post-translational processing. Confocal immunofluorescence microscopy revealed that GAD65 protein was presented in Leydig cells of Day 1 testis, primary spermatocytes and spermatids of post-natal of Day 90 testis. The above results suggested that GAD65 gene expression is dynamically regulated at multiple levels during post-natal testis maturation.

Keywords transcription; gene regulation; glutamate decarboxylase; testis

Received: February 16, 2009 Accepted: May 5, 2009

Introduction

Glutamate decarboxylase (GAD) is the key enzyme in the synthesis of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Encoded by separate genes, two isoforms of GAD, namely GAD65 (65 kDa) and GAD67 (67 kDa), are found in mammalian central nervous system (CNS). GAD has also been demonstrated in a variety of peripheral tissues, including pancreas and testis [1,2]. In pancreas, GAD65 is known to be a major autoantigen recognized by humoral and cellular immune components in both human and murine type 1 diabetes [3,4]. In testis, both GAD67 and GAD65 have been reported to present in Leydig cell, and GABA appeared to be linked to the regulation of steroid synthesis via GABA_A receptors [5,6]. GAD65 and GAD67 mRNAs have also been detected in testis germ cells [7,8], although the role of GABA in germ cell maturation and function remains to be established. Thus, further study of GAD65 gene expression pattern is important to understand the physiological significance of GABAergic system in testis.

Previous researches proved that GAD65 function can be regulated by multiple mechanisms [9,10]. For example, in CNS, the majority of GAD65 exists as inactive apoenzyme, and its activity can be regulated by interaction with its cofactor pyridoxal phosphate [11]. At post-translational level, a more active and stable 58-kDa truncated GAD65 can be produced by cleaving at arginine 69 from NH2-terminus of the full-length GAD65 [12]. However, whether and how GAD65 gene expression is regulated at the transcriptional level remains unclear. Recent genome-wide analysis revealed that many genes possess more than one promoter, and alternative promoters play important roles in regulating gene expression [13]. As for rat GAD65 gene, multiple transcription start sites (TSSs) transcribed from two independent TATA-less promoters were reported [14]; however, the functional significance of this finding is not known.
The regulation of gene expression is a critical, highly coordinated, and complex process, particularly in testis [15]. Whether and how GAD65 gene expression is regulated during testis maturation is not known. In this study, rapid amplification of cDNA ends (RACE) technology was used to analyze the expression pattern of GAD65 gene in post-natal Days 1 and 90 testis, from which two GAD65 mRNA isoforms transcribed from distinct TSSs were characterized. We found that utilization of these TSSs is related to specific post-natal ages in the rat testis, indicating that GAD65 gene expression was dynamically regulated by alternative promoters.

Materials and Methods

Materials
The following chemicals and reagents were purchased from Sigma (St Louis, MO, USA): rabbit anti-GAD65 antibody (G4913), mouse monoclonal anti-GAD65 antibody (GAD6), FITC-conjugated goat anti-rabbit IgG secondary antibody, HRP-conjugated goat anti-mouse, and goat anti-rabbit IgG secondary antibody. Trizol was from Invitrogen (Carlsbad, CA, USA). Smart RACE cDNA amplification kit was from Clontech (Mountain View, CA, USA). Oligo-dT primer, M-MLV reverse transcriptase, and pGEM T-Easy vector were from Promega (Madison, WI, USA). The synthetic peptide corresponding to the C-terminal region of human GAD65 (amino acids 514–530) was synthesized by GL Biochem Co. (Shanghai, China). All Sprague–Dawley rats used were obtained from Shanghai SLAC Laboratory Animal Co. Ltd (Shanghai, China). Testes of different age were obtained from 2-month-old male rats. Ovary was obtained from 2-month-old female rats. Other tissues were obtained from 2-month-old male rats.

Rapid amplification of cDNA ends polymerase chain reaction
The RACE experiments were performed using the Smart RACE cDNA amplification kit. The 5′ and 3′ RACE-ready cDNAs were prepared using mRNA isolated from post-natal Day 1 or 90 rat testis according to the procedure supplied by the manufacturer. Nested PCR procedures were performed to increase the specificity. For GAD65 5′ RACE, the external primer used in the two independent RACE experiments were 5′-GACTATGCTCCTGACGTGAATGGCGCATAGC-3′ and 5′-CTGGGAAAATCATCTTATAGCAGGGAATG-3′, and the internal was 5′-AAAGATTCCATCGCCAGAGCCCTCC TG-3′ and 5′-AGGTCAACGCTCCCGCCGCTCTTG-3′. For GAD65 3′ RACE, the external primer was 5′-CATGACATTCAAGTGAGGAGGGATGAGC-3′ and the internal primer was 5′-CTGGCAATGGTGCGCTCTCC TGGTCA-3′. The amplification products of 5′ and 3′ RACE were cloned into pGEM T-Easy vector and sequenced.

RNA extraction and RT–PCR
Total RNAs from Sprague–Dawley rat testis of different post-natal ages and various tissues were extracted using Trizol, and isolated according to the procedure supplied by the manufacturer. Transcription was performed according to the manufacturer’s instructions. Conditions for PCR amplifications were as follows: initial denaturation at 94°C for 4 min; followed by 25 cycles of 30 s denaturation at 94°C; 30 s annealing at 60°C; and 1 min extension at 72°C. To amplify GAD65B, the forward primer (65B-f) was 5′-CGAGGACTGGTCATGCAGCAGA C-3′ and the reverse primer (65B-r) was 5′-GCCCTTCTCCACCGGTTCCAG-3′. To analyze the total GAD65 expression, the forward primer (65-f) was 5′-GCCAGGCTCCTGATCACGATCA-3′ and the reverse primer (65-r) was 5′-AGTCATTAAATCTTGCC-3′. To assure that the results are semi-quantified estimates, β-actin was co-amplified in the system and taken as the internal control.

Cell culture and transfection
Human embryonic kidney (HEK293) cells were maintained in a growth medium composed of Dulbecco’s modified Eagle’s medium supplemented with 10% FBS, 25 μg/ml penicillin, and 100 μg/ml of streptomycin. Cells were incubated at 37°C under an atmosphere of 5% CO2. Transfection was performed at 20–24 h after subculturing with 10 μg of plasmids (pcDNA3.1) containing the cDNAs of GAD65 and NH2-terminal truncated GAD65 by calcium phosphate precipitation. The transfected cells were washed and incubated for 24–48 h before further study.

Western blotting analysis
Western blotting was performed as follows. To detect GAD65 expression in testis and brain tissues, lysates (60 μg protein per load) prepared from rat testis at different developmental ages and rat cerebellum (1 μg protein per load) were analyzed. To analyse GAD proteins expressed in HEK293 cells, cells were lysed with boiling sample buffer. The total proteins were then separated by SDS–PAGE and transferred to a nitrocellulose membrane, blocked with TBST buffer containing 5% fat-free
milk powder for 2 h at room temperature, and then incubated with the primary antibody overnight at 4°C. Rabbit anti-GAD65 antibody and mouse monoclonal anti-GAD65 antibody, GAD6, were diluted as 1:10 000 and 1:1000, respectively. For control experiments, the primary antibody was pre-incubated for 30 min at 4°C in blotting buffer with 100 ng/ml (final concentration) recombinant expressed full-length rat GAD65 protein or GAD65 (residues 514–530) peptide. After washing, the membrane was incubated with HRP-conjugated secondary antibody for 1 h at room temperature followed by staining of the immunoreactive proteins using Supersignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL, USA).

Immunohistochemical staining

Immunohistochemical localization of GAD was performed with cryostat sections of male Sprague-Dawley rat testis. The sections were fixed with 4% (w/v) paraformaldehyde, washed with PBS, and blocked with PBS plus 10% normal goat serum for 30 min at room temperature, then incubated with anti-GAD65 antibody (diluted 1:2000) for 1 h at room temperature. After thorough washing, the sections were incubated with FITC-conjugated goat anti-rabbit IgG secondary antibody, diluted as 1:300, for 45 min at 37°C. For the control, the first antibody was pre-absorbed with synthesized peptide used as immunogen. The sections were finally counterstained with DAPI to visualize the nuclei. The cellular localization of the staining was determined under a laser scanning confocal microscope (Leica TCS SP5).

Data analysis

All experiments were repeated at least three times. For semi-quantitative RT–PCR analysis, densitometric signals from individual bands were normalized to actin to correct for differences in gel loading of the mRNA changes, or of its selectivity, or both. The intensities of western blotting signals were quantified using ImageJ. Data are results from three independent experiments and are expressed as mean ± SD.

Results

GAD65 transcripts in rat testis

Full-length GAD65 gene sequences of post-natal Days 1 and 90 testis were characterized by RACE technology, respectively [Figs. 1(B) and 2]. And repetitive experiments confirmed only these mRNA isoforms exist in post-natal testis. GAD65A transcribed from TSSs located ∼100 bp upstream of the translation start site, under the regulation of the proximal promoter. GAD65B transcribed from TSSs located ∼470 bp upstream of the translation start site, under the regulation of the distal promoter. Thus, except for the large 5’-UTR, GAD65B is identical to GAD65A. And both GAD65A and GAD65B possess the same open reading frame with previous reported GAD65 transcript, and encoding the 65 kDa full-length GAD65 protein.

Tissue expression pattern of GAD65 transcripts

Tissue distribution of the GAD65 transcripts was determined by RT–PCR using cDNAs of various rat tissues (Fig. 3). PCR using primer set that amplify both independent clusters of TSSs were identified [Figs. 1(B) and 2]. And repetitive experiments confirmed only these mRNA isoforms exist in post-natal testis. GAD65A transcribed from TSSs located ∼100 bp upstream of the translation start site, under the regulation of the proximal promoter. GAD65B transcribed from TSSs located ∼470 bp upstream of the translation start site, under the regulation of the distal promoter. Thus, except for the large 5’-UTR, GAD65B is identical to GAD65A. And both GAD65A and GAD65B possess the same open reading frame with previous reported GAD65 transcript, and encoding the 65 kDa full-length GAD65 protein.
GAD65A and GAD65B showed that GAD65 was expressed in multiple tissues, including brain, heart, ovary, pancreas, and testis. When amplified with GAD65B-specific primer, similar expression pattern was observed for GAD65B, but not detected in heart. Because GAD65A is identical to GAD65B but with shorter 5'-UTR, it is difficult to synthesize GAD65A-specific primer and analyze its expression pattern directly. However, GAD65A should be expressed in heart, which may explain the expression of GAD65 in this tissue.

Developmental expression of GAD65 transcripts in post-natal rat testis

To establish the developmental expression patterns of GAD65 transcripts during post-natal testis maturation, semi-quantitative RT–PCR analysis was performed using rat testis cDNA obtained at different time periods after birth (1–90 days) (Fig. 4). Again, total GAD65 gene expression was analyzed by primer set that amplify both GAD65A and GAD65B. The results showed that GAD65 was expressed at all age points examined. From Days 1 to 30, its expression level was only slightly elevated and kept at relatively lower level. However, at Day 40, GAD65 expression was dramatically increased (~24 folds compared with that of 30-day-old rats. And this high expression level was maintained between Days 40 and 90 [Fig. 4(A)]. When amplified with GAD65B-specific primers, we found that its level was increased gradually from post-natal Days 1 to 15, thereafter sharply decreased, and almost undetectable on post-natal Day 40 [Fig. 4(B)]. Since without GAD65A-specific primer as mentioned above, its expression pattern cannot be analyzed directly.

Developmental expression of GAD65 protein in post-natal rat testis

To detect the protein, we first used a specific monoclonal anti-GAD65 antibody, GAD6. As anticipated, a 65-kDa band was found in brain. However, in testis, a 58-kDa band was found [Fig. 5(A)]. When pre-absorbed the antibody with the purified recombinant GAD65 protein, both bands disappeared [Fig. 5(B)]. Several lines of evidence indicate that 58-kDa band was the previously reported N-terminal truncated 58-kDa GAD65 resulted from post-translational process [12]. To verify these, HEK293 cells were transfected with transcripts of...
GAD65 or NH2-terminal 69 amino acids deleted GAD65, and analyzed by immunoblotting with a polyclonal anti-GAD65 antibody, which indicated molecular weight identical to the respective testis form [Fig. 5(C)].

Immunoblotting was then employed to further clarify the developmental changes in the expression of GAD65 protein using this polyclonal anti-GAD65 antibody. The 58-kDa band was consistently detected at each post-natal day, which showed an age-dependent increase [Fig. 6(A)]. Moreover, a faint, yet clear 65-kDa band corresponding to the one in cerebellum was also detected in all the testis samples [Fig. 6(A), arrow]. The specificity of the antibody was verified by the absence of staining when pre-absorbed the antibody with the synthesized peptide utilized for immunogen [Fig. 6(B)].

Localization of GAD65 protein in rat testis

The location of GAD65 in adult rat testis was further studied by immunofluorescence method. In post-natal Day 1 testis, GAD65 immunosignal located at the Leydig cells [Fig. 7(A), red arrow], whereas in post-natal Day 90 testis, GAD65 immunoreactivity was detected in primary spermatocytes [Fig. 7(B), yellow arrow] and the elongated spermatids [Fig. 7(B), red arrow]. No staining occurred when the primary antibody was pre-absorbed with synthesized peptide used as immunogen for anti-GAD65 antibody [Fig. 7(C)]. The sections were further counterstained with DAPI to visualize the nuclei [Fig. 7(D–F)]. And the corresponding merged pictures are also shown [Fig. 7(G–I)].

Discussion

GAD is the key enzyme responsible for the synthesis of GABA, the main inhibitory neurotransmitter in adult mammalian brain. Two isoforms of GAD, GAD65 (65 kDa) and GAD67 (67 kDa), are found in mammalian CNS. The present findings revealed that GABA-synthesizing enzyme GAD65 also existed in post-natal testis, and its expression was dynamically regulated at multiple levels during post-natal testis maturation.

Variant transcripts produced by alternative TSSs are a frequent occurrence in the testis, which is presumably due to the activation of alternative promoters [16,17].
Previous report showed that rat GAD65 gene possesses two active TATA-less promoters. The distal promoter directs transcription from TSSs at or around −396 bp upstream of translation start site, whereas the proximal promoter directs transcription from within the −2101 to −287 region [14]. Here, TSSs for GAD65 genes in rat post-natal Days 1 and 90 testis were separately mapped with 5′ RACE methods. By analyzing multiple clones of the 5′ RACE product, we found that in post-natal Day 1 testis, the TSSs located up to −2484 bp upstream of the translation start site. However, in post-natal Day 90 testis, TSSs mainly located within −102 bp. The resulting difference in sequence of the 5′ regions of the mRNAs may correlate with the specific translational regulation that occurs in testis [18]. And there are well-documented examples of post-transcriptional regulation that results in a critical delay between production of certain mRNAs and their subsequent translation [19,20]. This is likely, as we observed that total GAD65 mRNA level increased ~3 folds from post-natal Days 30 to 40 [Fig. 4(A)], whereas GAD65 protein increased only 40% at most [Fig. 6(A)].

Gene expression often shows stage-specific change during post-natal testis maturation [15,21]. Here, our RT–PCR results showed that GAD65 was expressed at each day examined. Total expression level of GAD65 mRNA was elevated slightly from Days 1 to 30; nevertheless from Day 40, its level dramatically increased ~3 folds [Fig. 4(A)]. Age-dependent increase in protein levels were also observed by western blotting analysis [Fig. 6(A)]. Since GAD65B expression level was down-regulated after post-natal Day 20, the elevation of total GAD65 mRNA and protein level after post-natal Day 20 should be due to the activation of the proximal promoter which transcribes GAD65A. Previous researches also showed that the minor, distal promoter was responsible for <20% of all initial events. And reporter gene analysis demonstrated that the distal promoter could be omitted without any significant reduction in activity [14]. Thus, the two tandemly arranged promoters probably have different strengths. Therefore, the use of the more active proximal promoter may account for the significant increasing of GAD65 transcription level from post-natal Day 40 [Fig. 4(A)]. All these observations indicated that GAD65 gene expression is regulated by alternative promoters at the transcription level.

Although GAD67 has long been found in testis, whether mammalian testis also possesses GAD65 is quite controversial. Tillakaratne et al. [1] failed to detect GAD65 expression by the immunoprecipitation method. Both in situ hybridization method and study of transgenic mouse with GAD65 promoter showed that GAD65 mRNA was confined primarily to the spermatocytes and spermatids of seminiferous tubule [7,22]. Here, by immunoblotting, a 58-kDa band and a faint 65-kDa band corresponding to the one in cerebellum was detected in all the testis samples (A, arrow). Bars represent the average of relative band intensity from three experiments ± SEM. (B) The control for the polyclonal anti-GAD65 antibody. No specific band was detected in each sample analyzed above when pre-absorbed the antibody with the synthesized peptide utilized for immunogen.

Figure 6 Western blotting analysis of GAD65 protein expression during post-natal testis maturation (A) Immunoblotting was performed using the polyclonal anti-GAD65 antibody. The number represented post-natal days. With rat cerebellum (lane B), a 65-kDa band was detected. In rat testis, a major band of 58-kDa was consistently detected at each developmental age. Moreover, a faint, yet clear 65-kDa band corresponding to the one in cerebellum was also detected in all the testis samples (A, arrow). Bars represent relative level of total GAD65 protein at each age point. Signals for GAD65 protein were standardized to the actin signal, and then normalized to the first day of age, which was arbitrarily designated as 1. Each bar represents the average of relative band intensity from three experiments ± SEM. (B) The control for the polyclonal anti-GAD65 antibody. No specific band was detected in each sample analyzed above when pre-absorbed the antibody with the synthesized peptide utilized for immunogen.
two proteins will not be easily distinguished by SDS–PAGE. This may explain why Tillakaratne et al. [1] failed to detect the 58-kDa GAD65. The existence and location of GAD65 in post-natal Days 1 and 90 testis was further studied by our immunofluorescence experiment. The results showed that in post-natal Day 1 testis, it was located in the Leydig cells; whereas in post-natal Day 90 adult testis, it was located in spermatocytes and elongated spermatids. The location difference indicates that GAD65 gene was possibly expressed in different cell types during post-natal testis maturation.

Here, by immunoblotting, the same 58-kDa band was consistently recognized by a monoclonal and a polyclonal anti-GAD65 antibody in post-natal testis [Figs. 5(A) and 6(A)]. As epitope locations of both antibodies are mapped in the C-terminal of GAD65, it can be inferred that the testis GAD65 C-terminus is intact, and truncation takes place in the NH₂-terminus. Previous research showed that 58-kDa GAD65 could be produced by cleavage at arginine 69 from NH₂-terminus of the full-length GAD65 both in vitro and in vivo [12,23]. And the resulted truncated GAD65 is more stable and active than the full-length form [12]. In brain, calpain, a calcium-dependent cysteine protease, is activated upon neuronal stimulation and could be responsible for the conversion of full-length GAD65 to truncated GAD65 [23]. Since calpain is an active enzyme in testis [24], the same proteolytic mechanism may take place which results in the 58-kDa GAD65 in testis. And the weak 65-kDa band should be the unproteolyzed full-length GAD65 [Fig. 6(A), arrow]. Although its level is relatively low, full-length GAD65 may also play an important role in testes GABA synthesis. The NH₂-terminus of GAD65 has been reported to be involved in membrane

Figure 7 Localization of GAD65 in rat testis by immunofluorescence microscopy In post-natal Day 1 testis, GAD65 immunostaining visible as green fluorescence occurred in the Leydig cells (A, red arrow). In post-natal Day 90 testis, GAD65 immunostaining occurred in the spermatocytes (B, yellow arrow) and testicular spermatids (B, red arrow). When the first antibody was pre-absorbed with immunogenic peptide, no staining occurred (C). Nuclei were stained blue with DAPI (D–F); the corresponding merged pictures (G–I).
anchoring of GAD65 and considered to be the site that confers and regulates the enzymatic activity [9,12,25]. Therefore, in rat testis, GAD65 function should be regulated at the post-translational level, and the resulted truncated GAD65 may play a role different from the full-length GAD65.

GABA is reported to modulate neuron progenitor cell proliferation, neuron differentiation, migration, and survival of neural cells during early CNS development [26–29]. GABA concentration in rat testis was measured by Erdo et al. [30] to be ~50 nmol/g wet tissue. GAD activity was detected in spermatocytes and spermatids of rat testis [1]. These observations indicated that testis GAD should be functional. Previous studies also showed that GABA receptors (GABA_A, GABA_B, and GABA_C), and GABA transporter (GAT-1) exist in rat testis Leydig cells and testicular germ cell [6,31–34]. And GABA appeared to be linked to the regulation of steroid synthesis by Leydig cells via GABA_A receptors [5,6]. Moreover, GABA may also play an as yet unrecognized role in the development of Leydig cells during testis maturation [35]. All these observations implied that a GABAergic system may function in testis. Here, we found that GAD65 was consistently expressed at each post-natal day examined. Since both GAD67 and GAD65 may participate in GABA synthesis, and the expression pattern of GAD67 during post-natal testis maturation was not clear, we cannot clarify to what level GAD65 participates in the GABA synthesis. Thus, further study of the expression pattern of GAD67 was required. In conclusion, our results showed that GAD65 gene expression has a distinct expression pattern during post-natal testis maturation, which indicated that it was regulated by multiple mechanisms. Thus, by dynamic regulation of GAD65 gene expression, GABA may precisely modulate testis maturation through autocrine or paracrine pathways.

Funding

This work was supported by the grants from the Major State Basic Research Development Program of China (no. 2007CB947100) and from the Shanghai Municipal Commission for Science and Technology (nos 074319111 and No 07DZ22919).

References

Acta Biochim Biophys Sin (2009) | Volume 41 | Issue 7 | Page 552

