Short Communication

Development of a vector and host system and characterization of replication of plasmid pSQ10 in moderately halophilic *Nocardiopsis*

Ana Zeng 1, Tao Wang 1, Haiyang Xia 1, Shiyuan Chen 1, Chenglin Jiang 2, Lihua Xu 2, Li Zhong 1, Meijuan Shen 1*, and Zhongjun Qin 1*

1Key laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
2Institute of Microbiology, Yunnan University, Kunming 650091, China
*Correspondence address. Tel: +86-21-54924171; Fax: +86-21-54924176; E-mail: qin@sibs.an.cn (Z.Q)/mjshen01@sibs.ac.cn (M.S.)

The genus of *Nocardiopsis* is a new source of antibiotics, chemicals, and enzymes. Here we reported the development of a vector and host system in moderately halophilic *Nocardiopsis* via an oriT-mediated conjugation. By screening about 80 *Nocardiopsis* strains, 6 of them harbored 8 plasmids (18–80 kb). The complete nucleotide sequence of pSQ10 consisted of 18,219 bp, with 71.9% G + C content, encoding 17 open reading frames, 5 of them resembled those of *Streptomyces* plasmids. A rep locus (iteron within the gene) was identified for replication in *Nocardiopsis* sp. YIM 90083, and rep protein bound to its iteron sequence. This system may be useful for gene cloning and expression in *Nocardiopsis*.

Keywords Nocardiopsis; plasmid; replication

Received: April 1, 2011 Accepted: April 22, 2011

Introduction

Meyer [1] first described a new genus *Nocardiopsis* as a non-streptomycte group of actinomycete. Its mode of sporulation, DNA G + C content (64%–73%) and chemotaxonomic characteristics (e.g. cell-wall chemotype III/C, phospholipid type PIII, menaquinone MK-10, and fatty acid type 3d) are characterized [2]. About 30 species and subspecies have validly published names [3]. Most of them are isolated from saline or alkaline habitats [4], while some species were also found in antarctic glacier, marine sediment, actinorhizal plant rhizosphere, and gut tract of animals [5–7]. Recently, Sun et al. [8] published the complete genome sequence of *Nocardiopsis* dassonvillei type strain (IMRU 509 T). The 6,543,312 bp genome consists of a 5.77 Mbp circular chromosome with 73% G + C and a 0.78 Mbp plasmid with 72% G + C content.

A number of new antibiotics, chemicals, and enzymes have been identified in *Nocardiopsis* species. Griseusin D, a pyranonaphthoquinone antibiotic, showed strong cytotoxicity against human leukemia cells [9]. Nocardiopsins A and B, new macrolide polyketides, exhibited low-micromolar binding to immunophilin FKBP12 [10]. Apoptolidins E and F are two new glycosylated-macrolactones [11]. Four 3-methyl-4-ethylideneproline-containing peptides, lucentamycins A–D, showed significant *in vitro* cytotoxicity against human colon carcinoma [12]. Fijiolides A and B displayed activities on inhibition of TNF-α-induced NF-κB [13]. The marine *Nocardiopsis lucentensis* MSA04 produces a glycolipid biosurfactant, potential for bioremediation processes [14]. *Nocardiopsis aegyptia* degraded poly(3-hydroxybutyrate) and its copolymers [15]. *Nocardiopsis* sp. F96 produced a novel β-1,3-glucanase [16]. However, lack of a gene cloning and expression system in *Nocardiopsis* has impeded further investigation of these novel genes/gene clusters.

Here, we report the development of a vector and host system in *Nocardiopsis*, and the characterization of replication and inheritance of plasmid pSQ10.

Materials and Methods

Bacterial strains, plasmids, and general methods

About 80 moderately halophilic *Nocardiopsis* strains designated YIM 90002, etc., isolated from varied saline soils of Xinjiang Uygur Autonomous Region of China, and identified by the standard procedures of actinomycete classification, were provided by Chenglin Jiang and Lihua Xu (Yunnan University, Kunming, China). *Nocardiopsis* strains were cultured on ISP5 medium supplemented with 10% NaCl [L-asparagine, 1 g; glycerol, 10 g; K2HPO4, 1 g; NaCl, 100 g; 1 ml of the trace element solution (FeSO4·7H2O, 1 g; MnCl2·4H2O, 1 g; ZnSO4·7H2O, 1 g;
11 of H2O); agar, 20 g; and 11 of H2O, pH 7.2. Pulsed-field gel electrophoresis, preparation of protoplasts and transformation of *Streptomyces lividans* ZX7 [17] followed Kieser et al. [18]. Electroporation of *Rhodococcus* sp. N1037 followed Shen et al. [19]. *Escherichia coli* strains DH5α [supE44, ΔlacU169 (φ80lacZΔM15), hsdR17, recA1, endA1, gyrA96, thi-1, relA1; Life Technologies, Carlsbad, USA] and ET12567 (*dam dcm hsdM cm kan*) was used as cloning hosts. Plasmids pSP72 (Life Technologies) and pHy1 were used as cloning vectors. Plasmid isolation and transformation followed Sambrook et al. [20].

Isolation of *Nocardiopsis* circular plasmids

Isolation of *Nocardiopsis* circular plasmids followed a protocol of preparation of *Streptomyces* plasmids [21] with slight modification. About 50 mg mycelium was suspended in 500 mL Tris-HCl, pH 8, and was centrifuged at 12,000 g twice with 250 mL neutral phenol/chloroform (in 0.1 M NaCl and 250 mL 1% NaCl and 25 mL 2% SDS solution). The pSQ10 gene (9867–10,944 bp) was cloned in an *E. coli* plasmid pET28b (Novagen, Gibbstown, USA) to obtain pAZ128 and then introduced into *E. coli* strain BL21 (DE3) (Novagen). Then, 0.5 mM of isopropyl-β-D-thiogalactopyranoside (IPTG) was added into a log-phase LB culture at 37°C and cultured for 12 h to induce overexpression of the cloned gene. The His6-tag repA protein was purified to ~90% homogeneity by Ni2+ column chromatography according to the supplier’s instructions (Qiagen, Hilden, Germany). The 240-bp DNA sequence (9961–10,200 bp) containing the pSQ10 iteron was amplified by PCR and inserted into the *XhoI* site of pSP72 to construct pAZ143. The 240-bp DNA was released by treatment of pAZ143 with *XhoI* and was end-labeled with [α-32P]dCTP using DNA polymerase Klenow fragment. The DNA-binding reaction was performed at room temperature for 10 min in the buffer (10 mM Tris-HCl, pH 7.5, 25 mM KCl, and 10% glycerol). The reaction complexes were separated on a 0.7% agarose gel in 0.5 × Tris-borate-EDTA buffer at 150 V for 2 h. The gel was dried and analyzed using the Phosphorimager (Fuji, Tokyo, Japan).

Results

Detection of plasmids among moderately halophilic *Nocardiopsis* strains

Eighty moderately halophilic actinomycete strains (growing on ISP5 media supplemented with 1%–10% NaCl and producing spores at 30°C) were isolated. By using a slightly modified protocol for isolation of *Streptomyces* plasmid, eight circular plasmids of six strains (YIM 90127, 90115, 90136, 90147, 90201, and 90035), ranged in sizes from 18–80 kb (*Table 1*) were detected on 0.7% agarose gels. By using the pulsed-field gel electrophoresis, no linear
conformation of DNA was observed, suggesting absence of linear plasmids among these strains.

To determine whether these plasmid-harboring strains were classified in a genus of Nocardiopsis, 16S rRNA genes were PCR-amplified and sequenced. The sequences displayed high similarity (99%) to those of known Nocardiopsis species. A phylogenetic tree was drawn by using a neighbor-joining method. As shown in Fig. 1, two strains (YIM 90115 and 90136) resembled Nocardiopsis dassonvillei sub sp. dassonvillei D21, and four strains (YIM 90127, 90147, 90035, and 90201) resembled Nocardiopsis terrae YIM 90022, Nocardiopsis exhalans XMU29, and Nocardiopsis quinghaiensis YIM 28A4.

The complete nucleotide sequence and analysis of plasmid pSQ10

About 18-kb pSQ10 of strain YIM 90127 was the smallest one among the detected plasmids. pSQ10 was treated with restriction endonucleases including BgIII, Clal, EcoRI, HindIII, KpnI, PstI, and SacI, and unique sites of BgIII and HindIII in plasmid were determined. The HindIII-digested DNA was cloned in an E. coli plasmid pSP72 and completely sequenced. The insert sequence in pSP72 consisted of 18,219 bp, with 71.9% G + C content, resembling that of typical Nocardiopsis genes (e.g. 73% for the Nocardiopsis dassonvillei IMRU 509T genome). Seventeen open reading frames (ORFs; pSQ10.1c–pSQ10.17c) were predicted by FramePlot 3.0 beta. Among them, 5 of them resembled genes of known functions, 1 was hypothetical and 11 were unknown genes (Table 2). Interestingly, pSQ10.10 resembled rep protein (identity 78/205; 38%) of Streptomyces plasmid pCQ3(NC_013449; [24]), and pSQ10.12c resembled ParA protein of Streptomyces plasmid pRL2 (expectation value is 4 × 10⁻¹⁹, identity 70/217; 32%), suggesting these loci for plasmid replication and inheritance. pSQ10.2c, containing a domain of DNA segregation ATPase FtsK/SpoIIE, resembled a major conjugation protein TraA (identity 168/557; 30%) of Streptomyces plasmid pZL12 (NC_013420, [24]). Additionally, pSQ10.13, containing a domain of DNA...
nickase or relaxase, resembled TraI of bacterial plasmid transfer genes (e.g., *Streptomyces*, *Mycobacterium*, and *Stackebrandtia*). These results suggested that the replication, inheritance, and transfer genes of *Nocardiopsis* plasmid pSQ10 resembled those of *Streptomyces* plasmids.

Development of a vector-host system via an oriT-mediated conjugation in Nocardiopsis

To develop a gene cloning system in *Nocardiopsis*, 12 well-sporulating strains were selected. Nine (YIM 90021, 90037, 90075, 90083, 90132, 90149, 90151, 90207, and 90233) of them could not grow on ISP5 medium supplied with 50 μg/ml of thiostrepton, while three (YIM 90107, 90114, and 90156) were resistant to this antibiotic. Full length of pSQ10 was cloned in an *E. coli* vector pHY1 [Fig. 2(A)] containing a tsr (thiostrepton resistant) gene and an initiation site oriT of plasmid transfer to obtain pSQ23, and was introduced by conjugation from *E. coli* ET12567 containing pUZ8002 to *Nocardiopsis* strains. Thiostrepton-resistant colonies were obtained for strains 90083 and 90149, and no transformant for seven other strains.

pSQ23 was also introduced by PEG-mediated transformation of protoplasts or electroporation of mycelia of strain 90083. However, no transformants were observed.

Characterization of replication and inheritance of pSQ10

Since pSQ10.10 resembled rep of *Streptomyces* plasmid pCQ3 (Table 2), its gene was cloned in pHY1 to obtain pSQ20 and introduced by conjugation into strain 90083. As shown in Fig. 2(B), like pSQ23, pSQ20 could also

Table 2 Predicted opening reading frames in plasmid pSQ10

<table>
<thead>
<tr>
<th>ORF</th>
<th>Position (bp)</th>
<th>Size (aa)</th>
<th>Expectation value</th>
<th>Similarity/functions (organisms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSQ10.1c</td>
<td>508–98</td>
<td>136</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.2c</td>
<td>2745–505</td>
<td>746</td>
<td>5×10^{-32}</td>
<td>TraA (Streptomyces plasmid pZL12)</td>
</tr>
<tr>
<td>pSQ10.3c</td>
<td>4470–2779</td>
<td>563</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.4c</td>
<td>4671–4483</td>
<td>62</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.5c</td>
<td>5153–4668</td>
<td>161</td>
<td>4×10^{-36}</td>
<td>Hypothetical protein (Nocardiopsis)</td>
</tr>
<tr>
<td>pSQ10.6c</td>
<td>6844–5189</td>
<td>551</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.7c</td>
<td>7582–6944</td>
<td>212</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.8c</td>
<td>8155–7853</td>
<td>100</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.9</td>
<td>8493–9269</td>
<td>258</td>
<td>6×10^{-39}</td>
<td>KorA (Streptomyces)</td>
</tr>
<tr>
<td>pSQ10.10</td>
<td>9499–10,944</td>
<td>481</td>
<td>2×10^{-24}</td>
<td>Rep (Streptomyces plasmid pCQ3)</td>
</tr>
<tr>
<td>pSQ10.11c</td>
<td>11,477–11,130</td>
<td>115</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.12c</td>
<td>12,100–11,477</td>
<td>207</td>
<td>4×10^{-19}</td>
<td>ParA (Streptomyces plasmid pRL2)</td>
</tr>
<tr>
<td>pSQ10.13</td>
<td>12,474–14,558</td>
<td>694</td>
<td>1×10^{-47}</td>
<td>Relaxase (Streptomyces plasmid pFP1)</td>
</tr>
<tr>
<td>pSQ10.14c</td>
<td>15,672–14,851</td>
<td>273</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.15c</td>
<td>16,284–15,688</td>
<td>198</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.16c</td>
<td>16,735–16,493</td>
<td>80</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>pSQ10.17c</td>
<td>17,953–17,405</td>
<td>182</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

c, complementary strand.
efficient transform strain 90083, while no transconjugants were obtained for pHY1 containing an iteron within pSQ10.10 (pSQ33) or its adjacent two genes (pSQ34). To investigate whether pSQ23 could also propagate in *Streptomyces* and other actinomycete species, transformation of protoplasts of *S. lividans* ZX7 and electroporation of *Rhodococcus* sp. N1037 were performed, but no transformants were obtained. Thus, pSQ10.10 (designed rep) was a replication gene in *Nocardiopsis*.

Inheritance of pSQ20 and pSQ23 were measured. After one round of growth (5 days) on MS medium (supplied with 2% NaCl) without antibiotic selection, inheritance of two plasmids in strain 90083 were 0.1 and 90%, respectively. Similar frequencies were obtained for the plasmids in strain 90149 (0.1% and 87%, respectively). These results suggested that a parA locus (pSQ10.11c–pSQ10.12c) might involve in inheritance of pSQ10. A ≏ 200-bp iteron sequence (three direct repeats and two inverted repeats) was predicted within rep of pSQ10 by ‘DNA Folder’ and ‘Clone Manager version 5’ [Fig. 3(A)]. To investigate the possible interaction between the rep protein and iteron sequence, electrophoretic mobility shift assay (EMSA) was performed. As shown in Fig. 3(B), the ‘super-shift’ DNA bands were visualized with adding rep protein, indicated that the rep protein could bind to the DNA probe and formed a large DNA-protein complex. Formation of this complex was inhibited completely by adding a 10- and 80-fold excess of unlabeled probe or a 300-fold excess of salmon sperm DNA as non-specific competitor, indicating that the specificity of the rep protein binding to the iteron DNA was low.

Discussion

A few genes have been isolated from *Nocardiopsis* species, and have to be confirmed in other bacterial hosts such as *Streptomyces* and *E. coli*. For examples, a chitinase B gene from *N. prasina* OPC-131 is expressed in *S. fradiae* SU-1 [25]; a β-1,3-glucanase gene from alkaliphilic *Nocardiopsis* sp. F96 is cloned and is functionally expressed in *E. coli* [16]. A thiopptide antibiotic, TP-1161, biosynthetic gene cluster from marine *Nocardiopsis* was confirmed through the targeted gene inactivation in the original host, but attempts at heterologous expression of the gene cluster in *S. coelicolor* failed [26]. A gene cluster for biosynthesis of K-252a (an unusual dihydrostreptose moiety cross-bridged to K-252c aglycone with two C–N linkages) from *Nocardiopsis* sp. K-252 (NRRL15532) is found, and has to be demonstrated by *in vitro* heterologous expression system of *E. coli* [27]. Here, we developed a vector and host system, which might help gene cloning and expression in *Nocardiopsis*, especially those useful antibiotic biosynthetic gene clusters and genes encoding alkaliphilic proteins.

Of nine *Nocardiopsis* strains, two (YIM 90083 and 90149) can be transformed with pSQ23, indicating a

![Figure 3](https://academic.oup.com/abbs/article/43/9/738/909)
narrow host range of this plasmid. More Nocardiopsis plasmids would be investigated to find a plasmid with a wide host range. Strain YIM 90083 can be transformed at a high frequency via an oriT-mediated conjugation, since single-stranded DNA act as an intermediate during this process, we still do not know if this strain could restrict entrance of double-stranded DNA, in which the processes of electroporation- or PEG-mediated transformation of protoplasts involve. The new method following in Streptomyces to establish a gene disruption and replacement system in Nocardiopsis is worth to be investigated in future [28]. Although the rep locus of Nocardiopsis plasmid pSQ10 resembles that of Streptomyces plasmid pCQ3, pSQ10-derived plasmid (e.g. pSQ23) cannot propagate in Nocardiopsis is worth to be investigated in future [28].

References