Efficacy and safety of statin treatment for cardiovascular disease: a network meta-analysis of 170,255 patients from 76 randomized trials

E.J. MILLS1, P. WU1, G. CHONG2, I. GHEMENT3, S. SINGH4, E.A. AKL5,6, O. EYAWO1, G. GUYATT6, O. BERWANGER7 and M. BRIEL6,8

From the 1Faculty of Health Sciences, University of Ottawa, K1H 8M5, Ottawa, 2Department of Biology, Langara College, Vancouver, V5Y 2Z6, 3Ghement Statistical Consulting, Vancouver, V6Y 1J5, Canada, 4Department of Medicine, Johns Hopkins Bloomberg School of Medicine, 7152, Baltimore, 5Department of Medicine, University of Buffalo, Buffalo, 14215, USA, 6Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, L8N 3Z5, Canada, 7Research Institute HCOR, Sao Paulo, Brazil and 8Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland

Address correspondence to E. Mills. Faculty of Health Sciences, University of Ottawa, Ottawa, Canada. Email: Edward.mills@uottawa.ca

Received 6 April 2010 and in revised form 23 August 2010

Summary

Background: Statins represent the largest selling class of cardiovascular drug in the world. Previous randomized trials (RCTs) have demonstrated important clinical benefits with statin therapy.

Aim: We combined evidence from all RCTs comparing a statin with placebo or usual care among patients with and without prior coronary heart disease (CHD) to determine clinical outcomes.

Design: We searched independently, in duplicate, 12 electronic databases (from inception to August 2010), including full text journal content databases, to identify all statin versus inert control RCTs. We included RCTs of any statin versus any non-drug control in any populations. We abstracted data in duplicate on reported major clinical events and adverse events. We performed a random-effects meta-analysis and meta-regression. We performed a mixed treatment comparison using Bayesian methods.

Results: We included a total of 76 RCTs involving 170,255 participants. There were a total of 14,878 deaths. Statin therapy reduced all-cause mortality, Relative Risk (RR) 0.90 [95% confidence interval (CI) 0.86–0.94, \(P \leq 0.0001, I^2 = 17\%\)]; cardiovascular disease (CVD) mortality (RR 0.80, 95% CI 0.74–0.87, \(P < 0.0001, I^2 = 27\%\)); fatal myocardial infarction (MI) (RR 0.82, 95% CI 0.75–0.91, \(P < 0.0001, I^2 = 21\%\)); fatal cardiovascular disease (CVD) mortality (RR 0.80, 95% CI 0.74–0.87, \(P < 0.0001, I^2 = 27\%\)); fatal myocardial infarction (MI) (RR 0.82, 95% CI 0.75–0.91, \(P < 0.0001, I^2 = 21\%\)); non-fatal MI (RR 0.74, 95% CI 0.67–0.81, \(P \leq 0.001, I^2 = 45\%\)); revascularization (RR 0.76, 95% CI 0.70–0.81, \(P \leq 0.0001\)); and a composite of fatal and non-fatal strokes (0.86, 95% CI 0.78–0.95, \(P = 0.004, I^2 = 41\%\)). Adverse events...
Discussion: Statin therapies offer clear benefits across broad populations. As generic formulations become more available efforts to expand access should be a priority.

Methods

Eligibility criteria
We included any RCT of atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin for CVD event prevention among both primary and secondary prevention populations. We did not include cerivastatin as it has been withdrawn from the market due to serious adverse events. Studies had to compare a statin to placebo, standard therapy or no-treatment and report on any of the following clinically important cardiovascular outcomes: All-cause mortality; CVD mortality; fatal myocardial infarction (MI); Non-fatal MI; major CV events (stroke, revascularization). We excluded studies only reporting on surrogate outcomes [e.g. LDL and high-density lipoprotein (HDL) levels] and follow-up studies where randomization had been subverted.16 We additionally excluded head–head statin evaluations.

Search strategy
In consultation with a medical librarian, we established a search strategy (available from authors upon request). We searched independently, in duplicate, the following 12 databases (from inception to August 2010): MEDLINE, EMBASE, Cochrane CENTRAL, AMED, CINAHL, TOXNET, Development and Reproductive Toxicology, Hazardous Substances Databank, Psych-info and Web of Science, databases that included the full text of journals, ScienceDirect and Ingenta, including articles in full text from ~1700 journals since 1993). In addition, we searched the bibliographies of published systematic reviews3,5,9–15 and health technology assessments.17–19 Finally, we searched our own comprehensive rolling database of statin trials, updated monthly. We also contacted the authors of all trials for study clarifications, where required, and the authors of the only individual patient data meta-analysis of statins, that included 14 trials.5,15 Searches were not limited by language, sex or age.

Study selection
Two investigators (E.M., P.W.) working independently, in duplicate, scanned all abstracts and...
obtained the full text reports of records, that indicated or suggested that the study was a RCT evaluating statin therapy on the outcomes of interest. After obtaining full reports of the candidate trials (either in full peer-reviewed publication or press article) the same reviewers independently assessed eligibility from full text papers.

Data collection
The same two reviewers conducted data extraction independently using a standardized pre-piloted form. The reviewers collected information about the statin and type of interventions tested, the population studied (age, sex, underlying conditions), the treatment effect on specified outcomes, absolute and proportion change in LDL, HDL and total cholesterol and the length of follow-up. Study evaluation included general methodological quality features, including sequence generation, blinding, use of intent-to-treat analysis, percentage follow-up and allocation concealment. We extracted data on the incidence of the following clinical outcomes: all-cause mortality, CVD mortality, MI mortality, stroke mortality, non-CVD mortality, major CVD, MI, strokes, revascularization, cancers, rhabdomyolysis, diabetes, aspartate and alanine aminotransferase (AST/ALT), and creatinine kinase (CK) increases beyond the upper limit of normal. We entered the data into an electronic database such that duplicate entries existed for each study; when the two entries did not match, we resolved differences through discussion and consensus.

Data analysis
In order to assess inter-rater reliability on inclusion of articles, we calculated the Phi (\(\phi \)) statistic, which provides a measure of inter-observer agreement independent of chance. We calculated the Relative Risk (RR) and appropriate 95% Confidence Intervals [CIs] of outcomes according to the number of events reported in the original studies or sub-studies intent-to-treat analyses. Where studies did not report intent-to-treat, we analyzed outcomes as all-patients randomized. In the case of an individual patient data meta-analysis of 14 trials, we included outcomes as reported by the meta-analysis, in correspondence with the study’s authors. In the event of zero outcome events in one arm of a trial, we applied the Haldane method and added 0.5 to each arm. We pooled studies as an analysis of all-statins combined using the DerSimonian–Laird random effects method, which recognizes and anchors studies as a sample of all potential studies, and incorporates an additional between-study component to the estimate of variability. We conducted a sensitivity analysis to determine if individual statins exerted differing effects using a mixed-treatment comparison and also on whether baseline population risks differed in treatment outcomes using a Breslow–Day test. For adverse events, we calculated event rates using Peto’s Odds Ratio (OR). Peto’s odds ratios appears to provide the least biased estimates and CI coverage with rare events. Forest plots are displayed for each all-statins analysis of our primary analyses and a combined forest plot for secondary outcomes, showing pooled estimates with 95% CIs, and the overall DerSimonian–Laird pooled estimate. We calculated the \(I^2 \) statistic for each all-statin analysis as a measure of the proportion of the overall variation that is attributable to between-study heterogeneity. We conducted a multivariable meta-regression analysis to examine the impact of the following co-variates, all chosen a priori: absolute LDL change; proportion of individuals in trials that were men; had a history of coronary heart disease (CHD), had baseline diabetes, or were hypertensive and current smokers.

In order to evaluate the relative effectiveness of each study drug on CVD mortality, we used the Lu-Ades method for combining indirect evidence in mixed-treatment comparisons. We estimated the posterior densities for all unknown parameters using MCMC (Markov chain Monte Carlo) for each model. Each chain used 20,000 iterations with a burn-in of 20,000, thin of 5 and updates varying between 80 and 110. We used the same seed number (SEED = 314 159, equivalent to 10 pi) for all chains. The choice of burn-in was chosen according to Gelman–Rubin approach. We applied the covariate of LDL-C change and also statin dosing (high or moderate determined by the Canadian Compendium of Pharmaceuticals and Specialties), using an approach developed by Cooper et al. We assessed convergence based on trace plots and time series plots. The accuracy of the posterior estimates was done by calculating the Monte Carlo error for each parameter. As a rule of thumb, the Monte Carlo error for each parameter of interest is less than ~5% of the sample standard deviation. All results for the mixed-treatment analysis are reported as posterior means with corresponding 95% credibility intervals (CrIs). CrIs are the Bayesian equivalent of classical CIs. We assessed the fit of our model using the Deviance Information Criterion (DIC), a measure of model fit that penalizes model complexity. This criterion advocates selecting the model with the lowest DIC value among a series of competing models for the same data, as this model is believed to provide the...
best fit to the data. DIC’s were not importantly differ-
ent across models.

Finally, we conducted a trial sequential analysis
to determine the strength of information for our
meta-analysis on the primary outcome of CVD mor-
tality to determine the conservative number of pa-
tients required to provide an authoritative answer of
therapeutic efficacy.35 We applied a Lan–DeMets
(LD) sequential monitoring boundary that assumes
a 4% control event rate, 20% relative risk reduction,
90% power and a two-sided α = 0.05. We plotted
the trial sequential analysis to display the
heterogeneity-corrected optimal information size
(HOIS). Analyses were conducted using StatsDirect
(version 2.5.2, www.statsdirect.com), Stata (version 9,
www.stata.com) and in WinBUGS version 1.4
(Medical Research Council Biostatistics Unit, Cam-
bidge).

Role of the funding source
No funding sources had a role in study design, data
collection, data analysis, data interpretation or wir-
ing of the report. The writing group had full access to
all the data in the study and had final responsibility
for the decision to submit for publication.

Results
We included a total of 76 RCTs meeting our inclu-
sion criteria (Figure 1). Data were available on
170 255 participants. Women represented ~26%
of trial participants. The average age of included
participants was 59.6 [standard deviation (SD)
5.93], ranging from 38 to 75. Trials used four distinct
controls as an inert control. These included placebo
(52 RCTs),1,36–85 usual care (18 RCTs),8,86–102 no
treatment (four RCTs)103–106 and conventional ther-
apy (2 RCTs).89,107 Trials followed patients for an
average of 2.7 years (SD 1.60), ranging from 0.5
years to 6.1 years.40 The mean pre-treatment LDL
cholesterol was 4.61 mmol/l (179.79 mg/dl) and
ranged from 2.43 mmol/l 105 (94.77 mg/dl) to
5 mmol/l (195 mg/dl).51 Table 1 displays the study
characteristics.

Methodological quality of included studies
We found that the reporting quality of studies varied.
Twenty-six studies reported how randomization
sequence was generated in their primary publica-
tion.1,8,37,44,45,50,52,58–60,63,64,67,71,75,76,80,82,83,85,94,
96,98,99,104,105 Eighteen studies reported on how
allocation to groups was concealed.38,59,60,63,64,
66,67,70,73,75,76,83,91,93,97,99,105,106 Most of the studies
(64) reported on at least one specific group being
blinded in the trial, typically patients and care-
and only four studies37,49,78,80 reported that the pri-
mary results were based on a per-protocol analysis
rather than intent to treat. Sixty-one studies re-
ported on at least one specific group being
blinded in the trial, typically patients and care-

All cause and cause-specific mortality
There were a total of 14 878 deaths including a total
of 7864 from confirmed vascular causes (Figure 2).
In all trials combined, there were a total of 7004
(8.1%) deaths among the 86 328 patients receiving
a statin and 7713 (9.5%) deaths among 80 365 pa-
tients receiving a control intervention. Combined,
this represents a 10% reduction in all-cause mortal-
ity (RR 0.90, 95% CI 0.86–0.94, P ≤ 0.0001,
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Patient status/condition</th>
<th>Treatment comparisons (mg/day)</th>
<th>Follow-up, years</th>
<th>Randomized Individuals</th>
<th>Age, mean, years</th>
<th>Men (%)</th>
<th>Prior CHD (%)</th>
<th>Diabetes (%)</th>
<th>Hypertension (%)</th>
<th>Current smokers (%)</th>
<th>baseline, mean mg/dl (change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCAIT86</td>
<td>1994</td>
<td>CHD</td>
<td>L20–80 vs. placebo</td>
<td>2</td>
<td>331</td>
<td>53</td>
<td>81</td>
<td>100</td>
<td>14</td>
<td>37</td>
<td>27</td>
<td>172</td>
</tr>
<tr>
<td>CLAPT86</td>
<td>1999</td>
<td>CHD</td>
<td>L20–80 vs. usual care</td>
<td>2</td>
<td>226</td>
<td>54</td>
<td>100</td>
<td>100</td>
<td>14</td>
<td>42</td>
<td>11</td>
<td>182</td>
</tr>
<tr>
<td>FATS statin87</td>
<td>1990</td>
<td>CHD</td>
<td>L40 vs. usual care</td>
<td>2.5</td>
<td>98</td>
<td>47</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>36</td>
<td>24</td>
<td>185</td>
</tr>
<tr>
<td>MARS87</td>
<td>1993</td>
<td>CHD</td>
<td>L73 vs. placebo</td>
<td>2.2</td>
<td>270</td>
<td>58</td>
<td>91</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>156</td>
</tr>
<tr>
<td>ACAPS88</td>
<td>1994</td>
<td>Atherosclerotic–carotid stenosis</td>
<td>L10–40 vs. placebo</td>
<td>3</td>
<td>919</td>
<td>61</td>
<td>76</td>
<td>100</td>
<td>15</td>
<td>42</td>
<td>21</td>
<td>139</td>
</tr>
<tr>
<td>EXCEL81</td>
<td>1991</td>
<td>Primary prevention</td>
<td>L20–80 vs. placebo</td>
<td>0.9</td>
<td>8245</td>
<td>56</td>
<td>59</td>
<td>33</td>
<td>82</td>
<td>40</td>
<td>18</td>
<td>180</td>
</tr>
<tr>
<td>AHEROMA85</td>
<td>2005</td>
<td>CHD</td>
<td>P10–20 vs. usual care</td>
<td>3</td>
<td>37</td>
<td>59</td>
<td>83</td>
<td>100</td>
<td>15</td>
<td>42</td>
<td>20</td>
<td>142</td>
</tr>
<tr>
<td>CARE86</td>
<td>1996</td>
<td>CHD</td>
<td>P40 vs. placebo</td>
<td>5</td>
<td>4159</td>
<td>59</td>
<td>83</td>
<td>100</td>
<td>15</td>
<td>42</td>
<td>20</td>
<td>142</td>
</tr>
<tr>
<td>GISSIP statin89</td>
<td>2000</td>
<td>CHD</td>
<td>P20 vs. usual care</td>
<td>2</td>
<td>4271</td>
<td>60</td>
<td>86</td>
<td>100</td>
<td>14</td>
<td>37</td>
<td>12</td>
<td>151</td>
</tr>
<tr>
<td>HARF89</td>
<td>1994</td>
<td>CHD</td>
<td>P40 vs. placebo</td>
<td>2.5</td>
<td>79</td>
<td>58</td>
<td>89</td>
<td>100</td>
<td>10</td>
<td>49</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>L-CAD90</td>
<td>1998</td>
<td>CHD</td>
<td>P40 vs. placebo</td>
<td>6.1</td>
<td>9014</td>
<td>56</td>
<td>83</td>
<td>100</td>
<td>9</td>
<td>42</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>Makuuchi H91</td>
<td>2005</td>
<td>CHD</td>
<td>P10–20 vs. usual care</td>
<td>4.5</td>
<td>335</td>
<td>59</td>
<td>84</td>
<td>100</td>
<td>33</td>
<td>52</td>
<td>42</td>
<td>141</td>
</tr>
<tr>
<td>PCS92</td>
<td>2003</td>
<td>CHD</td>
<td>P40 vs. placebo</td>
<td>3</td>
<td>1519</td>
<td>59</td>
<td>80</td>
<td>100</td>
<td>18</td>
<td>59</td>
<td>68</td>
<td>128</td>
</tr>
<tr>
<td>PREDICT93</td>
<td>1995</td>
<td>CHD</td>
<td>P40 vs. placebo</td>
<td>3</td>
<td>799</td>
<td>59</td>
<td>84</td>
<td>100</td>
<td>10</td>
<td>49</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>REGRESS94</td>
<td>1995</td>
<td>CHD</td>
<td>P40 vs. placebo</td>
<td>2</td>
<td>848</td>
<td>56</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>166</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Patient status/condition</th>
<th>Treatment comparisons (mg/day)</th>
<th>Follow-up, years</th>
<th>Randomized Individuals</th>
<th>Age, mean, years</th>
<th>Men (%)</th>
<th>Prior CHD (%)</th>
<th>Diabetes (%)</th>
<th>Hypertension (%)</th>
<th>Current smokers (%)</th>
<th>baseline, mean mg/dl (change)</th>
<th>LDL</th>
<th>HDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPEN 65</td>
<td>2006</td>
<td>Diabetics</td>
<td>A10 vs. placebo</td>
<td>4.25</td>
<td>2411</td>
<td>61</td>
<td>66</td>
<td>21</td>
<td>100</td>
<td>55</td>
<td>12</td>
<td>113 (–33)</td>
<td>47 (1.1)</td>
<td></td>
</tr>
<tr>
<td>CARDS 67</td>
<td>2004</td>
<td>Diabetics</td>
<td>A10 vs. placebo</td>
<td>4</td>
<td>2838</td>
<td>61.6</td>
<td>68</td>
<td>0</td>
<td>100</td>
<td>84</td>
<td>22</td>
<td>116 (–43)</td>
<td>54 (1.9)</td>
<td></td>
</tr>
<tr>
<td>4D 53</td>
<td>2005</td>
<td>Diabetics</td>
<td>A20 vs. placebo</td>
<td>4</td>
<td>1255</td>
<td>65.7</td>
<td>54</td>
<td>29</td>
<td>100</td>
<td>9</td>
<td>125 (–29)</td>
<td>36 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stegmayr 501</td>
<td>2005</td>
<td>Renal disease patients</td>
<td>A10 vs. usual care</td>
<td>2.8</td>
<td>143</td>
<td>69</td>
<td>67</td>
<td>28</td>
<td>33</td>
<td>65</td>
<td>65</td>
<td>135 (–18)</td>
<td>44 (0)</td>
<td></td>
</tr>
<tr>
<td>SPARCL 57</td>
<td>2006</td>
<td>Previous stroke (without peripheral artery disease)</td>
<td>A80 vs. placebo</td>
<td>4.9</td>
<td>4731</td>
<td>63</td>
<td>60</td>
<td>0</td>
<td>17</td>
<td>62</td>
<td>19</td>
<td>133 (–55)</td>
<td>50 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Sola 78</td>
<td>2006</td>
<td>Congestive heart failure not secondary to CHD</td>
<td>A20 vs. placebo</td>
<td>1</td>
<td>108</td>
<td>54</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>121 (–25)</td>
<td>43 (1)</td>
<td></td>
</tr>
<tr>
<td>FLARE 67</td>
<td>1999</td>
<td>CHD</td>
<td>F80 vs. placebo</td>
<td>0.8</td>
<td>834</td>
<td>61</td>
<td>82</td>
<td>100</td>
<td>4</td>
<td>33</td>
<td>29</td>
<td>152 (–47)</td>
<td>41 (0.77)</td>
<td></td>
</tr>
<tr>
<td>FLORIDA 48</td>
<td>2002</td>
<td>CHD</td>
<td>F80 vs. placebo</td>
<td>1</td>
<td>540</td>
<td>61</td>
<td>83</td>
<td>100</td>
<td>11</td>
<td>24</td>
<td>52</td>
<td>137 (–41)</td>
<td>46 (2.1)</td>
<td></td>
</tr>
<tr>
<td>LCAS 59</td>
<td>1997</td>
<td>CHD</td>
<td>F40 vs. placebo</td>
<td>2.6</td>
<td>429</td>
<td>59</td>
<td>81</td>
<td>100</td>
<td>4</td>
<td>82</td>
<td>20</td>
<td>145 (–29)</td>
<td>44 (1.6)</td>
<td></td>
</tr>
<tr>
<td>LIPS 56</td>
<td>2002</td>
<td>CHD</td>
<td>F80 vs. placebo</td>
<td>3.9</td>
<td>1677</td>
<td>60</td>
<td>84</td>
<td>100</td>
<td>12</td>
<td>39</td>
<td>27</td>
<td>131 (–40)</td>
<td>38 (0)</td>
<td></td>
</tr>
<tr>
<td>LiBa 31</td>
<td>1999</td>
<td>CHD</td>
<td>F40–80 vs. placebo</td>
<td>1</td>
<td>365</td>
<td>60</td>
<td>62</td>
<td>100</td>
<td>6</td>
<td>29</td>
<td>10</td>
<td>195 (–38)</td>
<td>55 (1.6)</td>
<td></td>
</tr>
<tr>
<td>O’Rourke 52</td>
<td>2004</td>
<td>Transplant patients</td>
<td>F40 vs. placebo</td>
<td>1</td>
<td>79</td>
<td>52</td>
<td>85</td>
<td>100</td>
<td>NR</td>
<td>80</td>
<td>0</td>
<td>177 (–45)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>HYRIM 66</td>
<td>2004</td>
<td>Atherosclerotic - carotid stenosis</td>
<td>F40 vs. placebo</td>
<td>4</td>
<td>568</td>
<td>57.3</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>18</td>
<td>3.87 (0.76)</td>
<td>1.27 (0.30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALERT 73</td>
<td>2003</td>
<td>Transplant patients</td>
<td>F40–80 vs. placebo</td>
<td>5.1</td>
<td>2102</td>
<td>50</td>
<td>66</td>
<td>10</td>
<td>19</td>
<td>75</td>
<td>18</td>
<td>180 (–68)</td>
<td>46 (3.9)</td>
<td></td>
</tr>
<tr>
<td>BCAPS 72</td>
<td>2001</td>
<td>Atherosclerotic - carotid stenosis</td>
<td>F40 vs. placebo</td>
<td>3</td>
<td>793</td>
<td>62</td>
<td>46</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>31</td>
<td>161 (–37)</td>
<td>53 (0)</td>
<td></td>
</tr>
<tr>
<td>AS 54</td>
<td>1994</td>
<td>CHD</td>
<td>S20 vs. placebo</td>
<td>5.4</td>
<td>4444</td>
<td>59</td>
<td>81</td>
<td>100</td>
<td>4</td>
<td>26</td>
<td>26</td>
<td>188 (–68)</td>
<td>46 (3.9)</td>
<td></td>
</tr>
<tr>
<td>Christensen 73</td>
<td>2001</td>
<td>CHD</td>
<td>S20–40 vs. placebo</td>
<td>2</td>
<td>77</td>
<td>63</td>
<td>80</td>
<td>100</td>
<td>11</td>
<td>49</td>
<td>46</td>
<td>166 (–38)</td>
<td>52 (3.5)</td>
<td></td>
</tr>
<tr>
<td>CIS 54</td>
<td>1997</td>
<td>CHD</td>
<td>S20–40 vs. placebo</td>
<td>2.3</td>
<td>254</td>
<td>49</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>84</td>
<td>165 (–57)</td>
<td>44 (2.8)</td>
<td></td>
</tr>
<tr>
<td>MAAS 55</td>
<td>1994</td>
<td>CHD</td>
<td>S20 vs. placebo</td>
<td>4</td>
<td>381</td>
<td>55</td>
<td>88</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>170 (–54)</td>
<td>43 (4.2)</td>
<td></td>
</tr>
<tr>
<td>SCAT 56</td>
<td>2000</td>
<td>CHD</td>
<td>S10–40 vs. placebo</td>
<td>4</td>
<td>460</td>
<td>61</td>
<td>89</td>
<td>100</td>
<td>11</td>
<td>36</td>
<td>15</td>
<td>129 (–45)</td>
<td>38 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Petronio A 106</td>
<td>2005</td>
<td>CHD</td>
<td>S20 vs. no statin</td>
<td>1</td>
<td>71</td>
<td>61</td>
<td>75</td>
<td>100</td>
<td>0</td>
<td>70</td>
<td>46</td>
<td>114 (–20)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>HPS 60</td>
<td>2002</td>
<td>Primary prevention</td>
<td>S40 vs. placebo</td>
<td>5</td>
<td>20536</td>
<td>75</td>
<td>65</td>
<td>29</td>
<td>41</td>
<td>14</td>
<td>131 (–39)</td>
<td>41 (1.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beishuizen 80</td>
<td>2004</td>
<td>Diabetics</td>
<td>S40 vs. placebo</td>
<td>2</td>
<td>250</td>
<td>59</td>
<td>47</td>
<td>0</td>
<td>100</td>
<td>51</td>
<td>24</td>
<td>134 (–42)</td>
<td>47 (0.39)</td>
<td></td>
</tr>
<tr>
<td>Krum H 77</td>
<td>2007</td>
<td>CHD</td>
<td>R10–40 vs. placebo</td>
<td>0.5</td>
<td>86</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>124.8 (–39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORONA 48</td>
<td>2007</td>
<td>CHD</td>
<td>R10 vs. placebo</td>
<td>3</td>
<td>5011</td>
<td>73</td>
<td>76</td>
<td>100</td>
<td>29</td>
<td>63</td>
<td>9</td>
<td>138 (–36)</td>
<td>48 (1.4)</td>
<td></td>
</tr>
<tr>
<td>GISSI-HF85</td>
<td>2008</td>
<td>CHF</td>
<td>R10 vs. placebo</td>
<td>3.9</td>
<td>4574</td>
<td>67</td>
<td>82</td>
<td>100</td>
<td>26</td>
<td>55</td>
<td>14</td>
<td>123 (–40)</td>
<td>122 (–2)</td>
<td></td>
</tr>
<tr>
<td>JUPITER 76</td>
<td>2008</td>
<td>Primary prevention</td>
<td>R20 vs. placebo</td>
<td>4</td>
<td>17802</td>
<td>66</td>
<td>61</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>108 (1.5)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>AURORA 82</td>
<td>2009</td>
<td>Renal disease patients</td>
<td>R10 vs. placebo</td>
<td>3.2</td>
<td>2773</td>
<td>64</td>
<td>62</td>
<td>40</td>
<td>26</td>
<td>NR</td>
<td>15</td>
<td>100 (35)</td>
<td>45 (15)</td>
<td></td>
</tr>
<tr>
<td>MUSASHI-AMI 57</td>
<td>2006</td>
<td>CHD</td>
<td>S vs. usual care</td>
<td>1.1</td>
<td>486</td>
<td>64</td>
<td>79</td>
<td>100</td>
<td>30</td>
<td>60</td>
<td>54</td>
<td>133 (–28)</td>
<td>46 (0.5)</td>
<td></td>
</tr>
<tr>
<td>SALTIRE 53</td>
<td>2005</td>
<td>Primary prevention</td>
<td>A80 vs. placebo</td>
<td>2</td>
<td>155</td>
<td>68</td>
<td>70</td>
<td>25</td>
<td>4</td>
<td>66</td>
<td>28</td>
<td>130 (30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sahni 107</td>
<td>1991</td>
<td>CHD</td>
<td>L 20–40 vs. Conventional therapy</td>
<td>0.5</td>
<td>157</td>
<td>60</td>
<td>70</td>
<td>100</td>
<td>24</td>
<td>43</td>
<td>30</td>
<td>140 (40)</td>
<td>36 (10)</td>
<td></td>
</tr>
<tr>
<td>Wenk 102</td>
<td>1997</td>
<td>Transplant patients</td>
<td>S 5–20 vs. Usual care</td>
<td>4</td>
<td>72</td>
<td>48</td>
<td>89</td>
<td>27</td>
<td>10</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis 84</td>
<td>2007</td>
<td>Liver disease</td>
<td>P80 vs. placebo</td>
<td>0.7</td>
<td>326</td>
<td>50</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>140 (30)</td>
<td>48 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIRAOL 308</td>
<td>2001</td>
<td>CHD</td>
<td>A80 vs. placebo</td>
<td>0.33</td>
<td>3086</td>
<td>65</td>
<td>65</td>
<td>100</td>
<td>23</td>
<td>55</td>
<td>28</td>
<td>124</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>
Each 10% change in absolute LDL levels was associated with a 1.1% (95% CI 0.3–1.19, \(P = 0.003\)) risk reduction. The large risk reduction in all-cause mortality was chiefly attributed to the 20% risk reduction in CVD deaths (3605 (4.1%) of statin-treated patients vs. 4248 (5.1%) control-treated patients: RR 0.80, 95% CI 0.74–0.87, \(P < 0.0001\), \(I^2 = 27\%). Applying a univariate regression, each 10% change in LDL levels was associated with a 5.6% (95% CI 2.0–8.1%, \(P < 0.001\)) risk reduction of CVD death. This effect diminished in the multivariable analysis. Table 2 displays the impact of a priori chosen covariates on CVD mortality.

We also found a consistent reduction in fatal MI with an 18% risk reduction (RR 0.82, 95% CI 0.75–0.91, \(P < 0.0001\), \(I^2 = 21\%\)). We found a statistically non-significant reduction in deaths from stroke (RR 0.92, 95% CI 0.80–1.07, \(P = 0.55\)) and in non-CVD causes (RR 0.95, 95% CI 0.90–1.00, \(P = 0.07\)).

Risk factors across underlying conditions

We assessed whether our pooling of data from all CVD trials across disease conditions was reasonable and divided the RCTs into their specific primary disease populations assessing CVD death. We included 42 CHD RCTs, 1,8,36–51,53–58,86–97,103–108 7 atherosclerosis, 61,66,68,69,71,79,98 11 primary prevention, 60,62–64,70,74,76,81,83,89,99 4 diabetic patients, 65,67,75,80 2 elderly patients, 59,72 2 renal disease, 52,101 4 transplant patient, 52,73,100,102 1 previous stroke, 77 2 RCTs of congestive heart failure. 78,85

Figure 2. Forest plot of mortality across statins.

Table 2 Meta-regression, impact of co-variates on estimates of CVD death

<table>
<thead>
<tr>
<th>Independent variable (n=51)</th>
<th>Parameter (95% CI)</th>
<th>Relative increase in RR (95%CI) (every 10 U increase in predictor)</th>
<th>(P)-value</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.68 (-1.14 to -0.22)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta-LDL</td>
<td>0.001 (-0.003 to 0.005)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men (%)</td>
<td>0.001 (-0.004 to 0.007)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior CHD (%)</td>
<td>0.002 (-0.0003 to 0.004)</td>
<td>2% (0–4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>0.003 (-0.001 to 0.007)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>0.005 (0.002 to 0.008)</td>
<td>5% (2–8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers (%)</td>
<td>0.0008 (-0.005 to 0.007)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dose</td>
<td>-0.096 (-0.194 to 0.001)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\hat{P} = 17\%\). Each 10% change in absolute LDL levels was associated with a 1.1% (95% CI 0.3–1.19, \(P = 0.003\)) risk reduction.
and 1 RCT with hypercholesterolemic patients with chronic liver disease. Studies did not yield an importantly different direction of effect dependent on populations (heterogeneity $P = 0.07$) (Table 3).

Major cardiovascular events

There were 6318 non-fatal MIs reported in 58 RCTs enrolling 146,041 patients. Overall, there was a highly significant 26% reduction in non-fatal MI [2810 (3.6%) statin vs. 3508 (4.9%) control: RR 0.74, 95% CI 0.67–0.81, $P < 0.001$, $I^2 = 45\%$]. Data were also available on revascularization from 44 RCTs enrolling 118,296 individuals. We found a highly significant effect of statins on revascularization status [3723 (6.2%) statin vs. 4816 (8.1%) control: RR 0.76, 95% CI 0.70–0.81, $P < 0.001$, $I^2 = 44\%$].

In addition to assessing fatal strokes, we evaluated fatal and nonfatal strokes excluding transient ischemic events and included data from 53 RCTs enrolling 154,818 individuals. We found a highly significant effect of statins on revascularization status [3723 (6.2%) statin vs. 4816 (8.1%) control: RR 0.76, 95% CI 0.70–0.81, $P < 0.001$, $I^2 = 44\%$].

Impact of individual statins on CVD mortality

We assessed the impact of individual statins on CVD death. Figure 3 displays the geometric distribution of the RCTs (Figure 3). We excluded one trial of mixed statins in this analysis. Our analysis included 15 RCTs assessing atorvastatin ($n = 29,931$); nine assessing fluvastatin ($n = 7383$); eight RCTs evaluating lovastatin ($n = 16,827$); 25 RCTs evaluating pravastatin ($n = 51,011$); five RCTs evaluating rosuvastatin ($n = 30,245$); and nine RCTs assessing simvastatin ($n = 26,545$).

Mixed-treatment comparison

We applied a mixed-treatment comparison adjusting for LDL-C changes. Table 4 displays the mixed-treatment comparisons between statins. We did not find a significant difference between any statins. A Bayesian probability estimate suggests that certain statins exert a minimally important difference over other statins (Table 5).

Adverse events

Data were available from 34 RCTs on first incident cancers recorded after randomization [median follow-up 3.9 years (interquartile range 2.6–4.9)].

Table 3 CVD deaths across populations in included studies

<table>
<thead>
<tr>
<th>Population</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHD</td>
<td>0.82 (0.76–0.88)</td>
</tr>
<tr>
<td>Atherosclerotic</td>
<td>0.51 (0.22–1.18)</td>
</tr>
<tr>
<td>Primary prevention</td>
<td>0.81 (0.75–0.87)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.85 (0.70–1.03)</td>
</tr>
<tr>
<td>Elderly</td>
<td>0.79 (0.60–1.02)</td>
</tr>
<tr>
<td>Renal disease</td>
<td>1.01 (0.89–1.16)</td>
</tr>
<tr>
<td>Transplant</td>
<td>0.68 (0.45–1.03)</td>
</tr>
<tr>
<td>Previous stroke</td>
<td>1.02 (0.66–1.68)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>1.01 (0.91–1.13)</td>
</tr>
</tbody>
</table>

Heterogeneity P-value = 0.07.
The incidence of cancers was not different between statin groups and control groups [3860 (4.5%) vs. 3703 (4.7%): OR 0.99, 95% CI 0.94–1.04, \(P = 0.76, I^2 = 0\%\)]. Rhabdomyolysis information was available from 35 RCTs enrolling a total of 135,243 individuals.1,8,37,38,40,44,47,50,55,57–60,62,64,65,67–70,73–77,80,81,83,84,89,93,95,99,101,104 We did not find a significant difference between groups [176 (0.25%) statins vs. 168 (0.25%) controls: OR 1.04, 95% CI 0.82–1.30, \(P = 0.73, I^2 = 0\%\)].

We evaluated incident diabetes available from 17 RCTs enrolling 111,003 individuals.1,40,44,58–60,64,70,74,76,88,99 62,63,85,89 When we evaluated new incident diabetes [2215 (3.8%) statins vs. 2048 (3.5%) controls: OR 1.09; 95% CI 1.02–1.16, \(P = 0.008, I^2 = 26\%\)], we found a significantly increased rate of diabetes. Finally, we examined the impact of statins on elevated AST from 23 RCTs and found a significant association (OR 1.30, 95% CI 1.13–1.50, \(P \leq 0.001, I^2 = 0\%\); and the impact of statins on CK increases beyond normal from 19 RCTs (OR 1.07, 95% CI 0.78–1.46, \(P = 0.66, I^2 = 29\%\)). Figure 4 graphically displays the adverse event effect sizes.

Trial sequential monitoring

We applied the TSM evaluation to determine the strength of inference about statins in preventing our primary outcome, CV deaths (Figure 5). We display that based on events accumulating up to 2001, there is conclusive evidence of CV death protection across broad populations.

Discussion

Our meta-analysis demonstrated consistent benefits from LDL-lowering effects attributed to statin therapy. Our analysis demonstrates that statin therapy reduces major CVD events and all-cause mortality. Risks associated with statins appear limited to changes in biochemical profiles rather than clinical events, although there is now reason to explore the extent to which statins may contribute to increased incidence of diabetes. Reasons for possible increased risk of developing diabetes are poorly understood and genome-wide scans have not identified an association between genes involved in moderating LDL cholesterol and statin pharmacodynamics.109

There are several strengths to consider in our analysis. First, our study is the largest evaluation of statins to date. The findings of our analysis are remarkably similar to the Cholesterol Treatment Trialists Collaboration (CTTC), an individual patient data meta-analysis that has now published findings on LDL-lowering effects and outcomes among diabetic patients.3 While, we included 62 more RCTs than the CTTC analysis, our analysis is based on secondary data and we did not have access to individual level data. We applied rigorous searching, based on our ongoing statins database, and extracted data in such a manner as to reduce the risk of error. We considered the strength of evidence using trial sequential monitoring and found that clear evidence existed in 2001 of statins in CVD
risk populations. We demonstrated a harmful effect associated with diabetes incidence, first highlighted in the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. We compared our previous search with their included studies and added an additional seven studies to our review, an addition of three from theirs. We modified our manuscript as a result. Finally, we applied a mixed-treatment comparison to evaluate the relative effectiveness of specific statins. There are also limitations to consider in our analysis, mainly related to the limitations of the included studies. As with any meta-analysis that uses published manuscripts as the data source, it is possible that the original papers were poorly reported. Examples of this include where the papers may report on all-cause mortality, but not specific elements of the cause of death. Similarly, manuscripts may include a composite endpoint, for example, stroke death and non-fatal stroke, and it is occasionally impossible to extract
We included only trials evaluating statins with inert controls rather than head-to-head trials. Previous analysis of head-to-head trials have demonstrated that these trials evaluate dosing rather than the effectiveness of individual statins. Our analysis of cancer trials involved a median follow-up of 3.9 years (interquartile range 2.6–4.9). It is possible that longer periods of follow-up would find differing effects as cancers may take years to develop. Finally, while we found concerning evidence of increased diabetes incidence, this appears to be poorly monitored in clinical trials.

Conducting meta-analyses in cardiac trials presents an important methodologic challenge. Many cardiovascular trials use composite endpoints of their primary endpoints, whereby they combine various endpoints, but with little frequency of the same endpoints among trials. For example, a trial may report a primary composite outcome of all-cause mortality, MI and rehospitalization. Such an endpoint is useful for identifying a primary outcome unlikely to occur in a clinical trial, thus conserving power, but is unhelpful if the authors fail to report the individual outcomes across the composite symptoms. We have previously reviewed the role of composite outcomes in cardiovascular trials and found that composite outcomes can be misleading, as they place similar weight upon minor outcomes (such as rehospitalization) with major outcomes (such as all-cause mortality). We do not believe that composite outcomes of incoherent outcomes should be pooled in a meta-analysis if the individual components of the composite are not provided. In this study, we chose not to utilize the common composite endpoint of coronary heart disease death plus non-fatal MI.

Our mixed-treatment comparison failed to demonstrate significant differences between statins. Previous efforts to assess differences between statins have been based on smaller numbers of trials. We believe that, based on using all available evidence, generic versions of statins exert similar therapeutic effects as brand-label statins, a finding consistent across populations. Using a Bayesian probability framework, it is possible that lovastatin exerts a larger therapeutic effect. However, for several reasons, this inference may be weakened. Lovastatin trials had frequently smaller sample sizes and were conducted predominantly in the early 1990s, before other statin trials, when less complex patients could be entered into the trials, and when other concomitant therapies (i.e. blood pressure lowering, diuretics, anticoagulants) may have been in less frequent use compared to more recent standards of care.

We applied the trial sequential analysis strategy to determine the strength of inference of the cumulative data on the primary endpoint. Conceptually, the trial sequential analysis is analogous to determining whether a single large trial is sufficiently powered and has a sufficient number of events to warrant stopping a trial due to conservative expectations that a treatment effect is overwhelmingly beyond chance. Due to heterogeneity across included trial populations, treatments and methods, meta-analysis sample size considerations additionally need adjustment for variation across trials. Such adjustments are analogous to adjustments for variation across centers in a multi-center trial. In our analysis, we found compelling evidence of effectiveness at approximately 2001, when 31 trials had been conducted. We found that a large number of further inert-controlled trials have been conducted since that period. As with the mixed-treatment comparison, there are several considerations and possible explanations for this phenomenon. First, as drugs are developed and approved for use within comparatively uncomplex patient groups, such as secondary prevention CVD patients, trialists and drug developers seek further opportunities to reduce the risk of events within similar, but more complex patient groups, such as diabetic, renal and transplant patients. Drug companies may seek additional recommendations for their drug and seek increasingly complex patient groups, sometimes with disappointing results. Other drug companies may seek to gain access to the drug market and display evidence of similar efficacy within similar populations.

The important individual patient data meta-analysis of 14 large trials, conducted by the CTTC collaboration, found a 12% proportional reduction in all-cause mortality per mmol/l reduction in LDL-C (RR 0.88, 95% CI 0.84–0.91; P ≤ 0.0001). Our study examined LDL-C reductions on CVD mortality and found that every 10% absolute reduction in LDL-C was associated with a 2% RR in CVD mortality, consistent with the CTTC analysis. However, in our multivariable regression analysis, this effect was diminished. Meta-analyses by publication are frequently limited in assessing continuous outcome changes as we did not have the individual level data. It is possible that if we had the individual level data we could demonstrate larger treatment effects associated with LDL-C and possibly HDL-C changes. Our study demonstrates a clear and consistent benefit of statins, regardless of product. Many of the trials we included were conducted in resource-limited settings. In many of these settings, statins have been an exclusive therapy for wealthier
individuals. As generic formulations are now available, and demonstrate consistent effects, there should be a greater effort to expand access to therapy among populations that may have previously been unable to access them.

In conclusion, statins play an important role in reducing clinically relevant cardiovascular outcomes, most likely due to reducing LDL-C levels. Current guidelines aim to establish target LDL-C reductions to improve a patients long-term reduction in clinical events. Given the clear benefits of statins, adherence to statin therapy should now be a major concern for physicians. Efforts to ensure adherence may be learned from other fields of chronic diseases health care, including reminder systems for patients and possibly even resource intensive strategies such as pill-counts and pharmacy refill assessments. There are few interventions in health care that offer such favorable outcomes and so improving access to treatment and adherence to therapy should be a prime concern for physicians and public health. As statin therapy moves into generic formulations, costs are reduced and this may open opportunities to share these clinically important treatments with those who were previously excluded due to cost.

Acknowledgements

We thank Dr Nicola Cooper for her assistance in providing us with the WinBUGS code.

Conflict of interest: None declared.

References

cardiac events in patients with symptomatic coronary artery disease during one year of treatment. Atherosclerosis 1999; 144:263–70.

