A 54-year-old gentleman with a history of anterior myocardial infarction (MI) in 2000 and inferior MI in 2004 attended for a cardiovascular magnetic resonance (CMR) scan. Steady-state free precession (SSFP) imaging revealed a severely dilated left ventricle with severe impairment of systolic function. Significant thinning was noted in the apical anteroseptal and mid to basal inferolateral regions in keeping with previous MI in these territories. In addition, an area of high signal intensity was noted in the mid wall of the anteroseptal region in the centre of the infarct zone (Figure 1). A T₁ weighted black blood sequence revealed an area of high signal intensity in the same region (Figure 2), which was nulled with a fat suppression sequence (Figure 3), confirming the presence of fat.

Figure 1. SSFP diastolic frame at mid-ventricular level demonstrating wall thinning in the anteroseptal and inferolateral territories compatible with MI. The area of high signal intensity in the anteroseptal region (arrows) is seen to lie in the mid-myocardial wall of the infarct, and to be similar in intensity to soft tissue fat.

Figure 2. Black blood (inversion prepared spin echo) short axis image demonstrating high signal (arrows) compatible with fat within the anteroseptal left ventricular myocardium.

Figure 3. Triple inversion recovery fat suppression image demonstrating nulling of the mid-myocardial signal seen in Figures 1 and 2 (arrows), implying that it comprises predominantly fat.
Lipomatous metaplasia (LM) is defined as fat found within (and thought to be replacing) scar in the myocardium.\(^1\) This is a common finding, at the histological level, in the myocardium from patients with ischaemic heart disease.\(^1\) However, it is infrequently observed during cardiac imaging. LM is not visible with echocardiography or myocardial perfusion imaging. There are a few similar reports in the literature describing LM diagnosed by CMR or computed tomography imaging.\(^2\) With increasing use of these imaging modalities, particularly in the assessment of myocardial viability in the setting of ischaemic heart disease, LM is likely to be observed more frequently.

Photographs and text from: N.A. McKeag, The Heart Centre, Royal Victoria Hospital, Belfast Health & Social Care Trust, Grosvenor Road, Belfast, BT12 6BA, UK; M.T. Harbinson, The Heart Centre, Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, BT9 7AB, UK; P.P. McKeown and M.J. Roberts, The Heart Centre, Royal Victoria Hospital, Belfast Health & Social Care Trust, Grosvenor Road, Belfast, BT12 6BA, UK. email: nickmckeag@googlemail.com

Funding

N.A. McKeag: Northern Ireland Health & Social Care R&D Doctoral Fellowship Award and Northern Ireland Chest Heart & Stroke Association Grant.

Conflict of interest: None declared.

References