Dyslipidemia Is Associated With Sympathetic Nervous Activation and Impaired Endothelial Function in Young Females

Elisabeth Lambert1,2, Nora Straznicky1, Carolina Ika Sari1, Nina Eikelis1, Dagmara Hering3,4, Geoffrey Head2,5, John Dixon1,6, Murray Esler1,6, Markus Schlaich5,6 and Gavin Lambert1,6

BACKGROUND
Dyslipidemia is one of the most well-established risk factors for cardiovascular disease development. Moreover, hypercholesterolemia and plasma cholesterol level in the high to normal range are established triggers for impairment in endothelial function. Evidence indicates that endothelial function is closely linked with sympathetic nervous activity in healthy individuals. We therefore investigated whether both endothelial and sympathetic functions may be impaired in young females with abnormal plasma cholesterol levels.

METHODS
Baseline endothelial function (digital pulse amplitude) and muscle sympathetic nervous activity (microneurography) were retrospectively analyzed in 14 young healthy females with dyslipidemia as indicated by total cholesterol ≥197 mg/dL, high-density lipoprotein ≤39 mg/dL, or low-density lipoprotein >116 mg/dL, and in 13 females with lipids in the healthy range.

RESULTS
Subjects with dyslipidemia had significantly impaired endothelial function compared to those with a normal cholesterol profile (reactive hyperemia index; 1.61 ± 0.10 vs. 2.32 ± 0.14, \(P < 0.001 \)), increased muscle sympathetic nervous activity (after adjusting for body mass and age, 36 ± 3 vs. 27 ± 3 bursts per 100 heartbeats, \(P = 0.049 \)) and elevated high-sensitivity C-reactive protein (4.13 ± 0.77 vs. 1.92 ± 0.61 mg/L, \(P = 0.03 \)).

DISCUSSION
Our results indicate that young healthy females with dyslipidemia present with a strong impairment of endothelial function and increased sympathetic drive. The sympathetic activation observed in the subjects with an elevated cholesterol profile may play a role in the development of cardiovascular disease development.

Keywords: blood pressure; cholesterol; C-reactive protein; endothelial function; hypertension; sympathetic nervous system; blood pressure.

doi:10.1093/ajh/hps016

Epidemiological data support a strong association between cholesterol and cardiovascular disease mortality. Individuals with high plasma concentrations of cholesterol, in particular low-density lipoprotein (LDL) cholesterol, are prone to develop atherosclerosis and have been shown to present with impaired endothelium-dependent vasodilation in the forearm and in the coronary vasculature. Endothelial dysfunction is now recognized as being the initial step in the development of atherosclerosis and subsequent cardiovascular disease development. Indeed, the assessment of endothelial function by noninvasive peripheral arterial tonometry has recently been shown to predict late cardiovascular adverse events beyond the traditional risk scores such as arterial blood pressure and lipid profile. Impaired endothelial function and sympathetic nervous system activation often coexist in disease states such as heart failure, obesity, and hypertension. In healthy individuals we recently showed that there is a direct inverse relationship between sympathetic nervous system activity and endothelial function. Although the causal relationship remains to be determined, experimental and clinical data support the idea that endothelial dysfunction contributes either directly or indirectly to impairment in the autonomic nervous system and vice versa.

Atherosclerosis in coronary and peripheral arteries occurs rarely in healthy premenopausal women; however, the presence of subclinical carotid atherosclerosis is evident. The factors significantly associated with subclinical carotid atherosclerosis measured before menopause include lower high-density lipoprotein (HDL), and higher low-density lipoprotein (LDL), triglycerides (TG), insulin, body weight, and systolic and diastolic blood pressures.
Recently, it was shown that cholesterol-lowering statin drugs (i.e., HMG-CoA reductase inhibitor) significantly improved endothelial function in normocholesterolemic patients with type 2 diabetes and decreased muscle sympathetic nerve activity (MSNA) in hypertensive patients. Given the close link between cholesterol, endothelial function, and the autonomic nervous system, we hypothesized that young females with dyslipidemia but who were otherwise healthy may present with disturbed endothelial and sympathetic nervous function.

METHODS

Subject selection

A retrospective analysis of data from females who had participated in previous research investigations was performed using the Human Neurotransmitters Laboratory database. We selected all females aged between 18 and 30 years and who fulfilled the following criteria: nonsmokers and not taking medication except for oral contraceptives and with no history of cardiovascular or cerebrovascular disease. Sample size calculation indicated that based on a test comparison, a minimum of 25 subjects was required to demonstrate a significant difference in MSNA of 10 bursts per 100 heartbeats between the 2 groups (Power 0.9, α = 0.05). Data were extracted from 27 subjects. The study protocols were approved by the Alfred Hospital Ethics Committee and all subjects gave written informed consent before participating in studies.

Clinical assessment

Demographic details of age, clinical status, and blood pressure were obtained from standard measurements and questionnaires. A detailed history and physical examination was conducted to exclude cardiovascular disease. Supine blood pressure (BP) was measured after 5 minutes’ rest using a Dinamap monitor (Model 1846SX, Critikon, Tampa, FL) as the average of 3 consecutive measurements. Body weight was measured in light indoor clothes without shoes, using a digital scale. Waist circumference was measured at the midpoint between the lowest rib and iliac crest, and hip circumference at the level of the greater trochanters. Fat mass was assessed according to the formula described by Womersley. To determine the menstrual cycle phase at the time of study, participants were required to provide the first day of their last period and the average length of their menstrual cycles. Their level of physical activity during the week was also recorded. All participants underwent ambulatory blood pressure monitoring over 24–26 hours using an oscillometric monitor (Model No. 90207, Spacelabs Medical, Issaquah, WA) to measure brachial BP every 30 minutes. Blood pressure values were averaged over the total period of the recording and averaged over both day and night periods.

Biochemistry

Fasting blood samples were drawn from a cannula placed in an antecubital vein for biochemical analysis of insulin, total cholesterol, TG, HDL and LDL cholesterol, glucose, high-sensitivity C-reactive protein (hs-CRP), and leptin. Dyslipidemia was defined as total cholesterol ≥197 mg/dL or HDL ≤39 mg/dL or LDL >116 mg/dL according to the Third Report of the National Cholesterol Education Program.

Digital vascular function

Digital pulse amplitude was measured in the fasting state with a pulse amplitude tonometry (PAT) device placed on the tip of each index finger (Itamar Medical, Caesarea, Israel). PAT was assessed in response to reactive hyperemia. Measurements were obtained for 5–10 min at baseline followed by 5 min of occlusion of one arm, with the cuff inflated on the upper arm to supra-systolic pressure (60 mm Hg above systolic pressure or 200 mm Hg) and then released to induce reactive flow-mediated hyperemia, measured for 5–10 min. The reactive hyperemia index (RHI) was calculated as the ratio of the average amplitude of the PAT signal over a 1-min time interval starting 1 min after cuff deflation divided by the average amplitude of the PAT signal over a 3.5-min time period at baseline.

Muscle sympathetic nerve activity

Recordings of multiunit postganglionic MSNA were made in the fasting state. A tungsten microelectrode (FFC, Bowdoinham, ME) was inserted directly into the right peroneal nerve at the fibular head. A subcutaneous reference electrode was positioned 2–3 cm away from the recording site. The nerve signal was amplified (x50,000), filtered (bandpass, 700–2000 Hz), and integrated. During MSNA recording, BP was measured continuously using the Finometer system (Finapress Medical System BV, Amsterdam, the Netherlands) and heart rate (HR) was extracted from 3-lead electrocardiography. Blood pressure, electrocardiography, and MSNA were digitized with a sampling frequency of 1000 Hz (PowerLab recording system, model ML 785/8SP, ADI Instruments, NSW, Australia). Resting measurements were recorded over a 15-min period and averaged. The MSNA was expressed as burst incidence (bursts/100 heartbeats).

Assessment of spontaneous arterial baroreflex control of MSNA

Over a 5- to 8-min resting period, diastolic blood pressures associated with individual heartbeats were grouped in intervals of 2 mm Hg and, for each interval, the percentage of diastoles associated with a sympathetic burst was plotted against the mean of the pressure interval. Muscle sympathetic bursts were advanced by 1.3 sec to compensate for baroreflex delay. The sensitivity of the sympathetic baroreflex gain was defined as the slope of the regression line and was expressed as bursts/100 heartbeats/mmHg.

Assessment of spontaneous cardiac baroreflex function

The sequence method of estimation of baroreflex sensitivity has been described by Parati et al. This procedure identifies the “spontaneous” sequences of three or more
consecutive beats in which systolic BP progressively rose and cardiac interval progressively lengthened (type 1 sequences), or systolic BP progressively fell and cardiac interval progressively shortened (type 2 sequences), with a lag of one beat. For each sequence, the linear correlation coefficient between cardiac interval and systolic BP was computed and the sequence validated when \(r > 0.85 \). The slope between cardiac interval and systolic BP was calculated for each validated sequence and expressed as msec/mmHg.

Metabolic measurements

After resting sympathetic neural measurements were completed, a standard 75-g oral glucose tolerance test (OGTT) was performed. A blood sample was withdrawn from a cannula placed in an antecubital vein 120 min after glucose administration (Glucaid, Fronine, Australia). Insulin resistance was calculated from OGTT parameters according to the homeostatic model assessment method.

Statistics

Data are reported as mean ± SEM. Statistical analysis was performed using the Student t test. MSNA has been shown to increase with increasing age and body mass index (BMI)\(^{16}\); hence all MSNA variables measured were adjusted by both age and BMI using the following formula:

\[
Y_i = y_i - b_1(x_{ii} - \bar{x}_1) - b_2(x_{ii} - \bar{x}_2) - \ldots - b_k(x_{ik} - \bar{x}_k)
\]

where \(y_i \) and \(x_{ii} \) are data points of the original linear regression with slope \(b_k \), and where \(\bar{x} \) is the mean of variable \(x \) and \(Y_i \) represents the adjusted value for variable \(y \).

RESULTS

Anthropometric, Hemodynamic, and Biological Characteristics of the Participants

Participants were divided according to their plasma cholesterol profile. Fourteen (52%) were found to have abnormal values of total cholesterol, HDL, or LDL cholesterol. Six subjects had elevated plasma total cholesterol and LDL, one had elevated total cholesterol and low HDL, 3 subjects had elevated total cholesterol, 3 had low HDL, and 1 had high LDL. There were none with raised TG (>150 mg/dL). There were 5 females taking the oral contraceptive pill in each group. Six subjects had elevated plasma total cholesterol and LDL, or systolic BP progressively fell and cardiac interval progressively shortened (type 2 sequences), with a lag of one beat. For each sequence, the linear correlation coefficient between cardiac interval and systolic BP was computed and the sequence validated when \(r > 0.85 \). The slope between cardiac interval and systolic BP was calculated for each validated sequence and expressed as msec/mmHg.

Females with dyslipidemia presented with significantly elevated plasma insulin concentration (\(P < 0.010 \)) and elevated hs-CRP (\(P = 0.03 \)).

Endothelial, Sympathetic, and Baroreflex Function

Endothelial function, as assessed by RHI, was significantly impaired in the dyslipidemia group compared with the normal group (1.61 ± 0.10 vs. 2.32 ± 0.14, \(P < 0.001 \), Figure 1). Sympathetic activity assessed in the skeletal muscle was significantly increased in the dyslipidemia group compared with the normal group (37 ± 3 vs. 27 ± 3 bursts per 100 heartbeats, \(P = 0.049 \), Figure 2). Sympathetic baroreflex function tended to be impaired in the elevated cholesterol group (\(-4.68 ± 1.10 \) vs. \(-8.75 ± 1.82 \) bursts/100 heartbeats/mmHg, \(P = 0.07 \)). There was no difference in cardiac baroreflex function between the normal and the dyslipidemia groups (20 ± 3 vs. 25 ± 3 msec/mmHg, respectively, \(P = 0.29 \)).

DISCUSSION

Impaired endothelial function is considered to precede the clinical manifestation of atherosclerosis\(^4\) and is a strong predictor of subsequent adverse cardiovascular events.\(^3\) Steinberg and colleagues demonstrated that among healthy individuals, those with higher plasma cholesterol levels, even when still in the normal range, presented with impaired endothelial function compared to those with the lowest cholesterol levels.\(^17\) This strongly indicated that cholesterol plays an important role in initiating endothelial damage. In line with this view, the present study indicates that in young healthy women with dyslipidemia, there is impairment of endothelial function. Moreover, this degree of endothelial dysfunction is accompanied by increased sympathetic neural drive, which may exert downstream effects initiating end organ dysfunction and predispose to cardiovascular disease development.

This demonstration of activation of the sympathetic nervous system in young women with dyslipidemia is novel. Increased neural drive has been associated with many conditions associated with cardiovascular risk such as hypertension,\(^3\) obesity,\(^19\) and heart failure,\(^20\) conditions which have also been associated with impaired endothelial function.\(^21,22\) However, the women in the present study, apart from presenting with a slightly abnormal cholesterol profile, were healthy and the two groups were matched for age, BMI, and insulin sensitivity. Whether sympathetic and endothelial processes influence each other or are both altered independently is unknown. There is some evidence in healthy individuals, by using systemic inhibition of nitric oxide synthase by N\(^\text{G}\)-monomethyl-L-arginine infusion, that nitric oxide, in addition to its direct vasodilator action, plays a role in the neural regulation of vascular tone.\(^24\) Experimental data support the idea that impaired endothelial function may influence sympathetic activity through alterations in neurotransmitter release, reuptake, or receptor sensitivity.\(^1\) It seems that while endothelial function may impact on sympathetic tone, the reverse may also be true. Indeed, lower body negative pressure-induced increased MSNA was shown to reduce endothelium-dependent flow mediated vasodilation, suggesting a specific inhibitory effect of sympathetic activation.
Cholesterol, Endothelial, and Sympathetic Function

Given the dual relationship between endothelial function and sympathetic tone, it is possible that elevated MSNA may contribute to or reinforce endothelial dysfunction in women with an abnormal plasma cholesterol profile or vice versa.

Cardiac baroreflex function was intact in the women with dyslipidemia and, while the baroreflex control of MSNA tended to be impaired, it did not reach significance, thereby suggesting that sympathetic activation seen in young women with an abnormal cholesterol profile may not depend on reduced reflex restraint of baroreceptors on sympathetic tone.

Although the two groups did not differ in body mass or body fat content, plasma leptin concentration was surprisingly elevated in the group of women with dyslipidemia. The cause of increased plasma leptin concentration in this group of women is uncertain. They tended to have increased waist circumference, which is typically used as a surrogate marker of visceral fat. In women however, leptin is expressed and secreted more prominently in subcutaneous fat compared with visceral fat, so waist circumference may not be the best index for differences in plasma leptin concentration. Elevated cholesterol may not be a direct cause of increased leptin because it has been suggested that serum leptin concentration is independent of lipid metabolism. In vitro studies have suggested that leptin may cause endothelial dysfunction as it induced oxidative stress in cultured endothelial cells by increasing the generation of reactive oxygen species. Leptin also has been shown to stimulate the

Table 1. Characteristics of the participants

<table>
<thead>
<tr>
<th></th>
<th>Normal cholesterol</th>
<th>Abnormal cholesterol</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>22.6 ± 1.02</td>
<td>23.2 ± 0.98</td>
<td>0.64</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.62 ± 0.02</td>
<td>1.61 ± 0.02</td>
<td>0.69</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>66.7 ± 5.9</td>
<td>73.9 ± 4.1</td>
<td>0.32</td>
</tr>
<tr>
<td>Waist, cm</td>
<td>74.9 ± 4.2</td>
<td>84.2 ± 2.0</td>
<td>0.051</td>
</tr>
<tr>
<td>Hip, cm</td>
<td>92 ± 4</td>
<td>101 ± 3</td>
<td>0.09</td>
</tr>
<tr>
<td>Waist/hip ratio</td>
<td>0.814 ± 0.01</td>
<td>0.839 ± 0.02</td>
<td>0.32</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.5 ± 2.3</td>
<td>28.7 ± 1.5</td>
<td>0.24</td>
</tr>
<tr>
<td>Body fat, %</td>
<td>19.6 ± 2.8</td>
<td>23.6 ± 1.8</td>
<td>0.23</td>
</tr>
<tr>
<td>Exercise, min/wk</td>
<td>272 ± 102</td>
<td>254 ± 58</td>
<td>0.88</td>
</tr>
<tr>
<td>Family history of hypertension, n (%)</td>
<td>6 (46%)</td>
<td>6 (43%)</td>
<td>—</td>
</tr>
<tr>
<td>24-h SBP, mm Hg</td>
<td>112 ± 2</td>
<td>112 ± 2</td>
<td>0.99</td>
</tr>
<tr>
<td>Daytime SBP, mm Hg</td>
<td>118 ± 2</td>
<td>117 ± 2</td>
<td>0.84</td>
</tr>
<tr>
<td>Nighttime SBP, mm Hg</td>
<td>105 ± 2</td>
<td>105 ± 2</td>
<td>0.85</td>
</tr>
<tr>
<td>24-h DBP, mm Hg</td>
<td>67 ± 2</td>
<td>68 ± 2</td>
<td>0.62</td>
</tr>
<tr>
<td>Daytime DBP, mm Hg</td>
<td>72 ± 2</td>
<td>73 ± 2</td>
<td>0.66</td>
</tr>
<tr>
<td>Nighttime DBP, mm Hg</td>
<td>60 ± 2</td>
<td>62 ± 2</td>
<td>0.53</td>
</tr>
<tr>
<td>24-h HR, bpm</td>
<td>76 ± 2</td>
<td>73 ± 4</td>
<td>0.38</td>
</tr>
<tr>
<td>Daytime HR, bpm</td>
<td>81 ± 1</td>
<td>78 ± 4</td>
<td>0.40</td>
</tr>
<tr>
<td>Nighttime HR, bpm</td>
<td>70 ± 2</td>
<td>67 ± 4</td>
<td>0.79</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>160 ± 4</td>
<td>191 ± 10</td>
<td>0.011</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>56 ± 6</td>
<td>52 ± 4</td>
<td>0.38</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>89 ± 4</td>
<td>122 ± 8</td>
<td>0.001</td>
</tr>
<tr>
<td>Total cholesterol/HDL</td>
<td>2.91 ± 0.12</td>
<td>3.74 ± 0.14</td>
<td>0.000</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>77 ± 8</td>
<td>87 ± 7</td>
<td>0.35</td>
</tr>
<tr>
<td>Fasting glucose (mg/dL)</td>
<td>81 ± 1</td>
<td>79 ± 2</td>
<td>0.47</td>
</tr>
<tr>
<td>2-h glucose (mg/dL)</td>
<td>93 ± 6</td>
<td>103 ± 10</td>
<td>0.38</td>
</tr>
<tr>
<td>Fasting insulin (mU/L)</td>
<td>12.06 ± 1.18</td>
<td>13.78 ± 1.05</td>
<td>0.29</td>
</tr>
<tr>
<td>HOMA</td>
<td>2.41 ± 0.25</td>
<td>2.66 ± 0.20</td>
<td>0.45</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
<td>11.6 ± 2.6</td>
<td>20.8 ± 2.1</td>
<td>0.010</td>
</tr>
<tr>
<td>hs-CRP (mg/l)</td>
<td>1.92 ± 0.61</td>
<td>4.13 ± 0.77</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; bpm, beats per minute; DBP, diastolic blood pressure; HDL, high-density lipoprotein; HR, heart rate; HOMA, homeostatic model assessment; hs-CRP, high-sensitivity C-reactive protein; LDL, low-density lipoprotein; SBP, systolic blood pressure. P values <0.05 appear in bold.
secretion of proinflammatory cytokines such as tumor necrosis factor alpha and interleukin-6 (IL-6), which are known to negatively affect endothelial function.30 Furthermore, leptin has also been shown to activate the sympathetic nervous system, most likely owing to a central neural action of this hormone31; therefore, we cannot exclude the possibility that sympathetic activation in women with elevated cholesterol levels may also occur in part through leptin’s action.

Women with dyslipidemia also presented with increased plasma hs-CRP. C-reactive protein is an acute phase reactant synthesized in the liver in response to IL-6 and is a marker of low-grade inflammation. A study reported an independent association between waist girth and hs-CRP levels, most likely because the abdominal fat depot is a source of IL-6 that potently stimulates CRP synthesis in the liver.32 Waist circumference tended to be higher in the group of women with dyslipidemia, which may explain the increased hs-CRP. However a recent study indicates that CRP levels are significantly related to higher leptin levels in young women regardless of adiposity, insulin sensitivity, or physical activity.33 On the other hand, it has also been suggested that autonomic function may play a role in regulating plasma hs-CRP.34 Previous studies have shown that CRP was able to induce pro-oxidative effects and inhibit endothelial nitric oxide synthase and therefore appears to be a key molecule able to accentuate endothelial dysfunction.35 Elevated hs-CRP is particularly important in this context because its levels have been shown to be predictive of the development of hypertension in prehypertensive and normotensive individuals.36

Increased adrenergic tone is particularly relevant in disease states such as hypertension and heart failure, where enhanced sympathetic outflow has been linked with target organ damage and increased cardiovascular mortality.18,20 and in metabolic disorders19 where sympathetic activation is linked with insulin resistance.37 While it may be premature to state that the finding of increased sympathetic outflow in young women with dyslipidemia has a direct clinical implication, we recently demonstrated that in young healthy individuals, increased MSNA positively correlated with left ventricular mass index and was negatively
associated with renal function, independent of body mass and blood pressure. Importantly, there exist data indicating that sympathetic activation may precede the development of hypertension and hyperinsulinemia. Altogether, this suggests that despite no apparent sign of current clinical manifestation of cardiovascular disease, women with dyslipidemia may be more predisposed to progression toward cardiovascular disease development. Whether this group of individuals would benefit from cholesterol-lowering interventions such as statins remains to be seen but, given that statins exert a beneficial effect on sympathetic tone beyond its effect on endothelial function, such an approach may hold promise.

A number of limitations should be noted. This study was a retrospective analysis rather than a prospective trial. Additionally, cholesterol and endothelial function may be influenced by many factors such as obesity, insulin resistance, diabetes mellitus, hypertension, age, menstrual cycle, and physical activity. Our groups were matched for body weight, fat mass, fasting glucose and insulin concentration, insulin sensitivity, blood pressure, and physical activity, thereby excluding these as possible confounding factors. Menstrual phase has been shown to influence endothelial function and sympathetic tone in young women. Indeed, a fall in endothelial function is diminished soon after ovulation, which then rises again during the luteal phase of the menstrual cycle, and higher MSNA was observed in the luteal compared with the follicular phase. In the present study, females were at various stages of the menstrual cycle and some were taking oral contraceptives. While this may be a limitation of the study, there were an equal number of subjects on the contraceptive pill or in the luteal or follicular phase in each group. Secondly, fat content and distribution were not determined using a robust technique such as dual-energy x-ray absorptiometry, so we cannot exclude that subtle changes in visceral adiposity may have played a role in influencing MSNA and endothelial function. Third, plasma cholesterol was measured on one occasion only.

Finally, our measure of endothelial function relied on the measurement in the digits rather than in the coronary circulation or in the brachial artery. Nevertheless, endothelial function assessed in the fingers rather than in the coronary circulation or in the brachial artery. Nevertheless, endothelial function assessed in the fingers has been shown to provide a high degree of sensitivity and specificity when compared to the assessment of coronary artery endothelial function. This study demonstrates that young females with dyslipidemia present with endothelial dysfunction and elevated inflammatory markers, which was accompanied by a marked increase in sympathetic neural tone. Whether sympathetic activation contributes to the initiation of cardiovascular disease in this setting remains to be elucidated.

ACKNOWLEDGMENTS

This project research was supported by a grant from the National Health and Medical Research Council (NHMRC). Gavin Lambert, John Dixon, and Markus Schlaich are supported by an NHMRC Senior Research Fellowship and Geoffrey Head and Murray Esler by an NHMRC Senior Principal Research Fellowship.

DISCLOSURE

Professor Esler serves on scientific advisory boards of Servier Australia, Abbott (formerly Solvay) Pharmaceuticals, and ARDIAN. Professor Schlaich serves on scientific advisory boards for Abbott (formerly Solvay) Pharmaceuticals and Novartis Pharmaceuticals. The laboratories of Professors Esler, Schlaich, and Lambert currently receive research funding from ARDIAN and Allergan. The funding organizations played no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

REFERENCES

33. Spruijt-Metz D, Emken BA, Spruijt MR, Richey JM, Berman LJ, Belcher BR, Hsu YW, McClain AD, Lane CJ, Weigensberg MJ. CRP is related to higher leptin levels in minority peripuberal females regardless of adiposity levels. *Obesity (Silver Spring)* 2012;20:512–516.