Inhibins, activins and follistatin in reproduction

D.M.de Kretser¹, M.P.Hedger, K.L.Loveland and D.J.Phillips

Centre for Molecular Reproduction and Endocrinology, Monash Institute of Reproduction and Development, Monash University, Clayton 3168, Victoria, Australia

¹To whom correspondence should be addressed at: Monash Institute of Reproduction and Development, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia; E-mail: david.de.kretser@med.monash.edu.au

The regulation of reproductive processes involves a complex network of communication systems between the brain, endocrine organs, the gonads and other reproductive tissues. Classically, our understanding has focused on the role of endocrine hormones, but more recently interest has also dwelt on the paracrine and autocrine regulation of these cell systems. In this review, the structure and physiology of the inhibins, activins and follistatin are discussed in terms of the evidence supporting their role as endocrine hormones, and how they might function as paracrine factors within the pituitary, gonad and associated tissues. With the advent of more specific techniques and assays for their measurement, the potential of inhibins, activins and follistatin as clinical markers of reproductive function and in the screening of various pathologies is also evaluated.

Keywords: endocrine/FSH/ovary/paracrine/testis

TABLE OF CONTENTS

Introduction
Impact of inhibin, activin and follistatin on reproductive processes by regulation of FSH secretion
Role of inhibins, activins and follistatin in the male
Role of inhibins, activins and follistatin in the female
Conclusions
Acknowledgements
References

Introduction

The quest to isolate inhibin, a putative protein hormone produced by the testis and ovary, culminated in 1985 with the purification of two forms of inhibin, namely inhibin A and inhibin B (Ling et al., 1985; Robertson et al., 1985). These proteins were shown to be disulphide-linked dimers which shared a common α-subunit and differed on the basis of a β-subunit termed βₐ in inhibin A (αβₐ) and β₇ in inhibin B (αβ₇). Both inhibin A and inhibin B have the capacity specifically to suppress FSH secretion by pituitary cells in culture, without affecting LH secretion.

In subsequent years, our understanding of the control of FSH has increased in complexity following the isolation from follicular fluid of three proteins termed activin A, activin B and activin AB, all of which could stimulate FSH secretion (Ling et al., 1986; Vale et al., 1986). Each of the activins represent disulphide-linked dimers of the β-subunits of inhibin, either homodimers of the β-subunit (activin A: βₐβₐ, activin B: β₉β₉) or a heterodimer (activin AB: βₐβ₉). The βₐ, β₉ and α-subunits show homology to each other and also are members of the transforming growth factor-β (TGFβ) superfamily of proteins (Kingsley, 1994). Subsequently, three additional β-subunits termed β₉, β₉ (Xenopus only) and β₉ have been isolated with disulphide-linked homodimers being formed to create activin C, activin D and activin E (Hötten et al., 1995; Oda et al., 1995; Fang et al., 1996). These dimers have no effect on FSH secretion, but it is important to note that the β₉-subunit has the capacity to form heterodimers with βₐ and β₉ but not with the α-subunit (Mellor et al., 2000). Thus, synthesis of the β₉-subunit may affect the levels of bioavailable activin.

Further studies of proteins in ovarian follicular fluid enabled the isolation of another FSH-suppressing protein termed follistatin, that bore no significant homology to the α- and β-subunits of the inhibin/activin family (Robertson et al., 1987; Ueno et al., 1987). Follistatin is a single-chain glycoprotein hormone with a range of molecular weights from 31 to 49 kDa based on alternative mRNA splicing and variable glycosylation of the protein. The alternatively spliced mRNAs encode two proteins of 315 amino acids (follistatin 315) and 288 amino acids (follistatin 288); follistatin 315 can be further proteolytically degraded to follistatin 303. Both follistatin 315 and follistatin 288 have the capacity to suppress FSH specifically in vitro and in vivo. Subsequent studies have clearly identified that the mechanism of action of follistatin on FSH secretion results from its capacity to bind activin with high affinity, thereby neutralizing the FSH stimulatory actions of activin (Nakamura et al., 1990). It is unclear whether follistatin has an action independent of its capacity to bind and neutralize the function of activins A, AB and B.

© European Society of Human Reproduction and Embryology
As will be discussed in more detail below, the overwhelming view is that inhibin acts as a circulating feedback regulator of FSH secretion. Although it is produced at a number of sites, the ovary and testis form the major circulating sources of inhibin (Robertson et al., 1988). In contrast, the activins are produced in a much broader range of tissues (Meunier et al., 1988) and have a vast array of actions usually exerted through paracrine mechanisms (Woodruff, 1998). Whereas gonadectomy leads to a precipitous and rapid decline in circulating inhibin concentrations (Robertson et al., 1988; Ishida et al., 1990), similar experiments did not result in dramatically lower levels of activin and follistatin concentrations (Sakai et al., 1992; Klein et al., 1993; McFarlane et al., 1996; Phillips et al., 1996), strongly suggesting the presence of multiple sources of these proteins. In fact, the levels of follistatin rise following castration (Phillips et al., 1996); this latter response represents part of the acute phase response following surgical stress.

The biology of follistatin leads to the existence of reservoirs of activin and follistatin in a variety of tissue sites. Follistatin 288 binds to heparan sulphate proteoglycans (HSPG) (Sugino et al., 1993) and consequently, by its ability to bind activin, significant stores of follistatin 288 and activin are found complexed to HSPG in basement membranes. This concept has been confirmed by the demonstration that heparin, when infused into the circulation, has the capacity to stimulate large and rapid releases of follistatin and activin (Klein et al., 1996a; Phillips et al., 2000). The biological importance of the released follistatin and activin remains unclear, especially in view of studies suggesting that the binding of activin to follistatin targets activin to a lysosomal intracellular degradation pathway (Hashimoto et al., 1997). Unlike the binding of fibroblast growth factors (FGF) to HSPG, which enhances the accessibility of FGF to their receptors (McKeehan et al., 1998), no such augmented action results from the binding of activin to follistatin bound to HSPG. In contrast, follistatin 315 has a low affinity for HSPG and is regarded as the major circulating form of follistatin (Schneyer et al., 1996).

Follistatin is often produced in the same cells that produce activin, or alternatively in adjacent cell types. These sites of production serve to regulate the local actions of activin and perhaps, through concentration gradients, limit the capacity of this multi-potent growth factor to diffuse into the circulation and exert actions at distant tissues (Phillips and de Kretser, 1998; Phillips, 2000).

Impact of inhibin, activin and follistatin on reproductive processes by regulation of FSH secretion

As briefly mentioned above, there is agreement that inhibin is principally produced in the testis and ovary and, by circulating in the blood stream, exerts its action at the pituitary to suppress FSH secretion. The principal sites of production in the male are the Sertoli cells (Steinberger and Steinberger, 1976; Roberts et al., 1989; Anawalt et al., 1996; Majdic et al., 1997), and in the female, the granulosa cells (Findlay et al., 2001). Infusion of recombinant human inhibin A into the circulation in castrated rams resulted in a specific suppression of FSH secretion commencing approximately 6 h after the start of the infusion and continuing for a period of approximately 12 h following its cessation (Tilbrook et al., 1993). While the effects of inhibin on gonadotrophin secretion are directed exclusively at the pituitary and for FSH are independent of GnRH inputs, there are some suggestions that inhibin may decrease LH pulse amplitude under conditions of low GnRH (Tilbrook et al., 2001). The responsiveness of pituitary FSH to inhibin feedback is set up early in postnatal life, with the maximum sensitivity occurring by the age of puberty (Tilbrook et al., 1999).

In contrast to the actions of inhibin, which typify a circulating negative feedback regulator, the activins exert their action on FSH secretion through paracrine mechanisms in the pituitary (Corrigan et al., 1991). However, infusions of activin A have been shown to stimulate FSH secretion in monkeys (McLachlan et al., 1989; Stouffer et al., 1993). The activin βB and βA subunits are produced by gonadotrophs in the pituitary and have been shown to act locally to exert a stimulatory action on FSH secretion (Roberts et al., 1989). Exposure of pituitary cells in culture to a neutralizing monoclonal antibody to activin B resulted in a decline in FSH secretion in vitro (Corrigan et al., 1991; Bilezikjian et al., 1993a,b, 1996). Similarly, exposure of the pituitary to follistatin, in the presence or absence of exogenous activin, can block activin’s stimulatory actions on FSH. Several studies have demonstrated that follistatin is also produced in the pituitary glands in the folliculo-stellate cells and can modulate the local actions of activin on FSH secretion (Gospodarowicz and Lau, 1989; Kobawa et al., 1991).

Role of inhibins, activins and follistatin in the male

Actions in the testis

In order to understand fully the actions of these proteins in the testis, it is crucial to review the distribution of the α, βA and βB inhibin subunits, follistatin, and their receptors and binding sites within the various cell types. Their localization to the testis has been confirmed by the identification of mRNA and protein at several sites, and these will be discussed below and related to our understanding of their functional significance.

As indicated earlier, the testis is a major contributor of circulating inhibin levels. In the human, inhibin B is the circulating form whereas in the sheep it is inhibin A (Illingworth et al., 1996a). Castration leads to a profound and rapid fall in circulating inhibin levels (Robertson et al., 1988). The levels of inhibin in testicular venous blood were higher than levels in the general circulation, but the gradient was considerably lower than that seen for steroid hormones (Ishida et al., 1990; Winters, 1990). These observations are consistent with a longer half-life for inhibin compared with testosterone. Immunohistochemistry and in-situ hybridization data demonstrate that production of the inhibin α-subunit mRNA and protein within the seminiferous epithelium occurs within Sertoli cells but not germ cells, and within Leydig cells of the immature and adult testis (Cuevas et al., 1987; Shaha et al., 1989; Kaipia et al., 1992; Majdic et al., 1997; Noguchi et al., 1997).

There are considerable data available to indicate that Sertoli cells are the principal site of inhibin production in the male, as shown by the secretion of inhibin in vitro by Sertoli cell cultures and its stimulation by FSH (Steinberger and Steinberger, 1976; Le Gac and de Kretser, 1982). There is also a positive relationship between Sertoli cell number and inhibin B levels in the circulation
Inhibins, activins and follistatin in reproduction

In a number of normal and pathophysiological states in the rat and monkey, thereby supporting the concept that the Sertoli cell is the principal site of inhibin B production (Ramaswamy et al., 1999; Sharpe et al., 1999).

FSH is generally regarded as the principal stimulatory protein for inhibin secretion, acting to up-regulate α-subunit mRNA production (Steinberger and Steinberger, 1976; Le Gac and de Kretser, 1982; Hancock et al., 1992). Application of high doses of FSH to rat Sertoli cells in vitro caused the secretion of both dimeric inhibin and free α-subunit precursors (Grootenhuis et al., 1989; Hancock et al., 1992). These observations suggest that Sertoli cells not only secrete dimeric inhibin but may also contribute free α-subunit products into the circulation. There is also evidence that the Leydig cells have the capacity to produce both bioactive and immunoactive inhibin in humans and rats (McLachlan et al., 1988; Risbridger et al., 1989). However, the stimulation of circulating immunoactive inhibin B levels by hCG in humans has not been confirmed using dimeric enzyme-linked immunosorbent assays (ELISAs) (Kinniburgh and Anderson, 2001), which detected a rapid rise of the α-subunit precursor, pro-αC. Recent studies using the Leydig cell cytotoxin, ethane dimethane disulphonate (EDS), suggest that the Leydig cells, through mechanisms which are not fully understood, can modulate expression of the inhibin α-subunit gene in the seminiferous tubules (Tena-Sempere et al., 1999).

As indicated earlier, there is no marked decline in activin A and follistatin levels following castration (McFarlane et al., 1996; Phillips et al., 1996). While this suggests that the testis does not contribute significantly to circulating levels of these two proteins, there are nevertheless data to indicate that mRNA and protein for the βA and βB subunits are present in Sertoli cells of the rat (Toboesc et al., 1988; Kaipia et al., 1992; Majdic et al., 1997) and human (Andersson et al., 1998; Anderson et al., 1998). Studies by others (Grootenhuis et al., 1989; de Winter et al., 1993) have indicated the presence of activin-like bioactivity in low concentrations in Sertoli cell culture medium, and our own data using specific ELISA assays for activin A clearly demonstrate that Sertoli cells from immature and adult male rats can produce this protein in vitro (Okuma et al., 2000). There are also data indicating that the Leydig cells and peritubular cells secrete activin A in vitro (Lee et al., 1989; de Winter et al., 1994). Immunocytochemical studies in the human testis have identified βB protein in spermatogonia, primary spermatocytes and round spermatids, raising the possibility that these are sites of activin B production (Andersson et al., 1998). Similarly, our unpublished data in the rat show that the identical germ cells produce mRNA and protein for the βB-subunit (M.K.O’Bryan et al., unpublished observations).

In defining the possibility of autocrine or paracrine actions within the testis, the localization of activin receptors assists in delineating possible target tissues. mRNA for the type IIA activin receptors is located in primary spermatocytes and early round spermatids (de Winter et al., 1992; Kaipia et al., 1992), whilst spermatogonia express mRNA for the activin type IIB receptor (Kaipia et al., 1993). Leydig and Sertoli cells also express mRNA for the type IIA receptor (de Winter et al., 1992). Recent studies suggest a temporal up-regulation of a 6 kb transcript of the type IIA receptor in rat Sertoli cells at a time when they demonstrate a proliferative response to activin A, whereas the mRNA for the type IIA receptor was widely expressed (Fragale et al., 2001). Expression of mRNA for the type Iα receptor was found in Leydig and Sertoli cells but not in germ cells, whereas the mRNA for the ActR IB was found in germ cells, especially round spermatids (de Jong, 1997).

The functionality of these receptors has also been demonstrated by the binding of iodinated activin A to primary spermatocytes and round spermatids (Krummen et al., 1994), strongly suggesting that these are sites of activin action. Since follistatin has been shown to be produced by the Sertoli cells, spermatogonia, primary spermatocytes and round spermatids, these cells have the capacity, through follistatin, to modulate the local actions of activin (Michel et al., 1990; Kogawa et al., 1991; Meinhardt et al., 1998). As discussed earlier, the use of certain antibodies to follistatin demonstrate that this protein can be located on the outer surface of cells within the testis, suggesting binding with strong affinity to HSPG (Sugino et al., 1993).

Evidence of local actions emerging from manipulation of the α, βA and βB genes

Matzuk et al. (1992) demonstrated that targeted disruption of the inhibin α-subunit gene in mice resulted in the development of testicular tumours at 3–4 weeks after birth, leading to progressive cachexia and death. Histologically, these tumour cells appeared to be very similar to granulosa cells, although they probably arise from Sertoli cells. The cachexia in these animals has been demonstrated to be due to the high levels of activin that are present in these mice since the absence of α-subunit leads to β-subunit dimerization (Matzuk et al., 1994; Coerver et al., 1996). By crossing these mice with α-subunit deletions with mice having a targeted disruption of the activin Type IIA receptor, it could be demonstrated that in the absence of activin signalling through this receptor, gonadal tumours still occurred but the cachexia was absent (Coerver et al., 1996). This infers the importance of activin in the development of the cachexia in these mice.

Targeted disruption of the βA-subunit gene led to perinatal death of mice due to palatal developmental defects (Matzuk et al., 1995a), making it impossible to determine the effect of the absence of βA protein on testicular development and function. In other studies, no obvious disruption of spermatogenesis was observed in mice with a functional disruption of the βB-subunit gene (Vassalli et al., 1994). It is possible that the failure to obtain a phenotype may have been due to the capacity of activin A to substitute for activin B. In a further attempt to disrupt the action of the activins, one group (Matzuk et al., 1995b) showed that mice with a targeted disruption of the activin Type IIA receptor gene were fertile despite having testes that were considerably smaller than normal. These mice had lower FSH levels, and the smaller testicular size was attributed to the decrease in Sertoli cell numbers that resulted from the reduced drive by FSH on the proliferation of these cells in the fetal and neonatal periods. Quantitative studies demonstrated a 30% decrease in final Sertoli cell numbers leading to a corresponding decline in sperm production. These findings were similar to observations of mice with targeted disruption of the FSH β-subunit gene (Wreford et al., 2001). Further studies in both these animal models have suggested that, in the absence of FSH, the capacity of Sertoli cells to support germ cells is decreased (Kumar et al., 2001).
Other studies utilizing overexpression of the β_A-subunit gene in mice showed spermatogenic disruption (Tanimoto et al., 1999). Induction of β_A synthesis in spermatocytes using the metallothio-

dein promoter led to a heterogeneous appearance in testicular

histology. In some tubules, vacuolation suggested the total

absence of germ cells, but in other areas spermatids were more

severely depleted than spermatagonia and primary spermatocytes.

Surprisingly, overexpression of the follistatin gene also resulted

in spermatogenic defects and infertility related to the degree of

follistatin overexpression (Guo et al., 1998). The higher the level

of follistatin expression, the lower the testis weight and the

greater the disruption of spermatogenesis. Unfortunately, targeted

disruption of the follistatin gene leads to perinatal death due to

respiratory difficulties, and hence the effects of the absence of this

gene on adult testicular function cannot be studied at present

(Matzuk et al., 1995c). These data infer that graded levels of

activin bioactivity may be crucial for determining the progress

of spermatogenesis. Further support for this concept was gained

when transgenic mice were generated with a construct that
directed expression of the β_B-subunit coding region into the β_A

-subunit gene locus (Brown et al., 2000). These mice have a delay
in the onset of spermatogenesis, presumably arising from the
production of the less potent activin B (Corrigan et al., 1991;

Nakamura et al., 1992) at sites where activin A would normally

be made.

Actions on the development of the rodent testis

Several studies have provided data to suggest that activin and
follistatin exert discrete, age-specific actions during the early
post-natal development of the rat testis. This is supported by the
demonstration of discrete switches in the expression of mRNAs
and proteins corresponding to the receptor, ligand and antagonists
involved in activin signalling. For example, mRNA and protein
corresponding to the β_A-subunit are synthesized in gonocytes
but they are absent from the emerging spermatogonial population
that arises in the first few days of life (Meehan et al., 2000). In
contrast, follistatin mRNA is absent from gonocytes at birth and
appears in these germ cells around day 3 as they transform into
spermatogonia. Follistatin mRNA and protein persist in sperma-

togonia through adulthood (Meinhardt et al., 1998; Meehan et al.,
2000). Localization of activin A to fetal gonocytes has also been
demonstrated in sheep (Jarred et al., 1999).

Experimental manipulations in vitro using testis fragment
cultures have also demonstrated age-specific effects of activin.
Cultures of 3-day-old rat testis resulted in activin A
stimulating gonocyte numbers without an alteration in
spermatogonial numbers (Meehan et al., 2000). However,
follistatin in combination with FSH stimulated spermatogonial
numbers. In testis fragments taken from 3-day-old rats, activin
A either slightly inhibited Sertoli cell proliferation (Meehan et al.,
2000) or had no measurable effect (Boitani et al., 1995),
while FSH strongly stimulated Sertoli cell proliferation. In
contrast, in fragments from day 9 rats, a stimulation of Sertoli
cell proliferation was observed, particularly by the combination
of activin A and FSH (Boitani et al., 1995). A discrete up-
regulation of the 6 kb mRNA isoform encoding the activin
type II receptor was documented in Sertoli cells of the 7- to
9-day-old rat (Fragale et al., 2001), corresponding to the time
when activin has a stimulatory effect on Sertoli cell
proliferation and immediately prior to the onset of Sertoli
cell terminal differentiation. These temporally discrete actions
suggest important regulatory roles for these proteins during
early testicular development. In co-cultures of spermatogonia
with Sertoli cells from day 20 rats, a significant stimulation of
spermatogonial proliferation in response to activin A was
demonstrated (Mather et al., 1990). The different results
obtained in the earlier study of Mather and colleagues
compared with those in the later studies using testis fragment
cultures (Meehan et al., 2000) may reflect the impact of the
testis cytoarchitecture on activin and FSH signalling, or arise
from age-specific differences in the spermatogonial populations
investigated

Action on mitochondrial morphology in primary spermatocytes

During spermatogenesis, the mitochondria in spermatogonia show
features similar to those in mitochondria present in somatic cells,
namely that the cristae run transversely across the mitochondrial
matrix. As spermatogonia enter meiosis and become primary
spermatocytes, there is a dilatation of the intra-crystal spaces and
the membranes of the cristae are pushed towards the periphery of
the mitochondria, leaving a central space. These appearances are
referred to as a ‘condensed’ mitochondrial morphology (Seitz et al.,
1995). If primary spermatocytes are cultured, there is a
decrease in the percentage of mitochondria showing the
condensed appearance (Meinhardt et al., 2000). These authors
showed that addition of Sertoli cell culture medium or activin A
could, in a dose-dependent fashion, maintain the ‘condensed’
mitochondrial phenotype. These changes were inhibited by an
antiserum specific to activin A.

The functional importance of these structural changes remains
unclear. Other studies have shown that the change in mitochon-
drial morphology is associated with a loss of heat-shock protein
60 (HSP60) which appears to act in concert with HSP10 as a
chaperone to fold newly formed mitochondrial proteins
(Meinhardt et al., 1995; Paranko et al., 1996). Further, the ‘Lon-protease’ found to be localized in mitochondria was lost
after the zygotene stage (Seitz et al., 1995). This protease is
thought to permit limited proteolytic degradation of mitochondrial
proteins in the early meiotic stages, and its disappearance may
indicate the loss of proteolytic degradative capacity. Given that
mRNA for the β_B-subunit and its protein is localized to primary
spermatocytes (Andersson et al., 1998) and that these cells also
express specific activin Type I and Type II receptors, the
possibility exists that these actions on mitochondria may represent
an example of an autocrine role for the activins.

Actions on androgen production

A series of initial observations (Hsueh et al., 1987) suggested that
inhibit stimulated testosterone production during in-vitro incuba-
tions of Leydig cells from 21-day-old rats, but activin had the
opposite action. Others have been unable to show that inhibit
inhibited stimulated testosterone production using highly purified adult
Leydig cells (Lin et al., 1989), suggesting therefore that this
stimulation may be related to an age-specific role. On the other
hand, the latter study demonstrated that activin A could, in vitro,
inhibit testosterone production. The in-vivo functional signifi-
cance of these observations remains to be determined.
Role of inhibins, activins and follistatin in the female

At present, our knowledge of the role of the inhibins, activins and follistatins in female reproduction is more substantial than in the male. In part, this arises from the ability to study certain aspects of ovarian folliculogenesis in vitro, whereas the capacity to study the seminiferous epithelium in vitro is compromised by the inability to maintain the integrity of the epithelium in culture.

Many of the early physiological studies of inhibin in the human menstrual cycle were undertaken by a radioimmunoassay ('Monash' assay) that was subsequently shown to measure not only the dimeric inhibins but also products of the α-subunit. This cross-reactivity resulted in an inability to distinguish between inhibin A and inhibin B and α-subunit proteins which were abundantly released into the circulation. This has required some revision of the conclusions reached from these early studies. Using this assay system, a modest increase in immunoreactive inhibin was found in the late follicular phase of the menstrual cycle reaching a peak with the LH surge (McLachlan et al., 1987a). The highest levels were found, surprisingly, in the luteal phase of the cycle with a positive correlation to progesterone levels. Further support for the concept that the corpus luteum secreted inhibin emerged from the ability of hCG to prevent the premenstrual decrease in serum inhibin levels and the ability for hCG to prevent the dramatic decrease in the luteal phase inhibin levels following the administration of GnRH antagonist (Roseff et al., 1989). These conclusions were supported by studies involving luteectomy (Illingworth et al., 1991).

The availability of sensitive ELISAs for inhibin A and inhibin B enabled definition of the patterns of secretion of these two proteins across the menstrual cycle (Groome et al., 1994, 1996; Muttukrishna et al., 1994). These studies showed that the pattern of secretion of inhibin A very closely resembled the menstrual profile of immunoactive inhibin as measured by radioimmunoassay. In contrast, inhibin B levels are highest in the early to mid-follicular phase, and decline in the late follicular phase, rising briefly in concert with the LH surge and declining to a nadir approximately 7 days post-ovulation. This latter observation indicates that the corpus luteum does not produce inhibin B.

Since both inhibin A and inhibin B have the capacity to suppress FSH secretion, the combined actions of these proteins, in concert with estrogen, are responsible for the feedback regulation of FSH secretion from the pituitary gland. The determination of the relative potency of inhibin A and B has been difficult due to a variety of bioassays and immunologically based assays, but one study (Robertson et al., 1996) represents the most thorough to date. As the levels of inhibin A and estradiol run similar courses, it is difficult to delineate the specific role for each in the control of FSH in the latter part of the follicular phase. However, the rise of inhibin B in the early to mid-follicular phase is responsible for the decline in FSH levels in the latter part of the follicular phase.

These patterns of inhibin A and inhibin B reflect the localization and production of these two proteins in the various stages of follicular development (Roberts et al., 1993). The preantral follicle shows evidence of βB production with no α-subunit being detected, suggesting that the dimeric product is activin B. With follicular growth, FSH stimulates α-subunit production which, together with the βB-subunit, is responsible for inhibin B production. Further support for the view that inhibin B is
produced by these small follicles is suggested by the rise in FSH levels in perimenopausal women, brought about in part by the declining ovarian output of inhibin B from the reduced number of small follicles (Welt et al., 1999).

As the cohort of follicles proceeds towards ovulation, the dominant follicle shows an increase in β_b-subunit expression, resulting in the increase in inhibin A during the latter part of the follicular phase and reaching a peak at mid-cycle; this in turn decreases FSH leading to suppression of β_b expression in small follicles (Groome et al., 1994). The LH surge is associated with a decline in expression of all the inhibin subunits and with a re-establishment of α- and β_b-subunit expression following the formation of the corpus luteum.

There are no stage-specific changes in the levels of follistatin during the menstrual cycle (Evans et al., 1998; McConnell et al., 1998), and the levels of activin A show a modest increase from the midluteal phase until degeneration of the corpus luteum in the latter part of the cycle (Muttukrishna et al., 1996). These data, in concert with earlier comments made in this review, strongly suggest that while inhibin acts as a negative feedback regulator of FSH secretion, the roles of activin and follistatin are more likely to exert an effect on FSH secretion through paracrine mechanisms within the pituitary gland. However, these proteins and the inhibins may also exert local effects on ovarian folliculogenesis.

Most of the data concerning the local actions of inhibin, activin and follistatin in the ovary arise from non-human species. The inhibin subunits and follistatin have been localized by immunohistochemistry and in-situ hybridization, and the results in general show a similar pattern. These products are expressed in granulosa cells and luteal cells but not in theca cells (Woodruff et al., 1988; Schwall et al., 1990; Fraser et al., 1993; Roberts et al., 1994; Tuuri et al., 1996; Sidis et al., 1998). However, the localization to luteal cells is a primate phenomenon in keeping with the secretion of inhibin and free α-subunit by the corpus luteum. The pre-antral follicles express both β-subunits and, as the follicle enlarges, α-subunit and follistatin expression increases in keeping with the demonstrated stimulation of these proteins by FSH (Fraser et al., 1993; Roberts et al., 1993).

The actions of activin result in small follicle growth through the stimulation of proliferation of granulosa cells (Rabinovici et al., 1991; Li et al., 1995; Miro et al., 1995; Miro and Hillier, 1996). Additionally, the activin-based enhancement of FSH receptors on granulosa cells further assists the growth of follicles in response to FSH stimulation during the follicular phase of the menstrual cycle (Hasegawa et al., 1988; Xiao et al., 1992). Further synergy with the actions of FSH occurs through the stimulation of increased aromatase expression by activin, resulting in an increase in estradiol production (Hutchinson et al., 1987; Shukovski and Findlay, 1990; Miro et al., 1991). The inhibition of progesterone secretion by activin, when considered with the other actions described above, probably inhibits or delays luteinization.

Since follistatin expression is low in pre-antral follicles, and follistatin can inhibit aromatase and inhibit secretion as well as stimulating progesterone, it seems likely that the local actions of activin maintain the follicle in an FSH-responsive state, whereas follistatin stimulates luteinization (Xiao et al., 1990; Xiao and Findlay, 1991). Further support for this concept emerges from the observation that activin inhibits androgen production by theca cells, thereby limiting estradiol secretion by the developing follicle—an action opposed by inhibin (Hillier et al., 1991; Smyth et al., 1994). However, the capacity of activin to stimulate both follistatin and inhibin production by granulosa cells in turn results in a limitation of its local actions.

Activin appears to stimulate the growth of small follicles in the immature ovary, while in the adult the activin produced by large pre-ovulatory follicles may suppress the growth of surrounding follicles (Mizunuma et al., 1999). Several studies have suggested that inhibin and activin can modulate the capacity of the oocyte to proceed through meiosis (O et al., 1989; Sidis et al., 1998; Silva and Knight, 1998). The local production of activin and inhibin by the cumulus–oocyte complex is supported by the demonstration that cumulus cells express mRNA for all the inhibin subunits and follistatin (Roberts et al., 1993; Sidis et al., 1998). These studies also showed that the oocyte did not express mRNA for the inhibin subunits but expressed all the activin receptor subtypes (IA, IB, IIA, IIB). In keeping with this distribution, activin A stimulated meiotic maturation of oocytes in vitro in several species including humans, and this could be inhibited by follistatin (Sadatsuki et al., 1993; Alak et al., 1996, 1998). In addition, inhibin retarded the meiotic maturation of immature rat oocytes in vitro (O et al., 1989). These observations suggest that activin may be a useful agent to aid the in-vitro maturation of oocytes for assisted reproduction programs. In this context, activin A has been shown to increase the capacity of bovine oocytes to form blastocysts (Silva and Knight, 1998).

FSH control of inhibin secretion from the ovary

While several in-vitro studies have demonstrated that FSH can enhance inhibin secretion by granulosa cells, the proliferative action of FSH on granulosa cells can mask the magnitude of the response. However, the detailed studies of Hall and colleagues in GnRH-deficient women receiving pulsatile GnRH secretion have clearly demonstrated the important role of FSH in inhibin B secretion (Hall et al., 1992; Welt et al., 1997). These authors used the observation that the pulse frequency of GnRH administration could significantly alter the magnitude of the FSH response to the explore the importance of FSH on in-vivo inhibin secretion. It was noted that increasing the frequency of pulsatile GnRH from every 4 h in the luteal phase to every 90 min at the time of menses is associated with a greater rise in FSH, as well as a rise in inhibin B not seen with the 4 h pulse frequency of GnRH (Hall et al., 1992; Welt et al., 1997). These authors also demonstrated that the interruption of FSH secretion by the use of a GnRH antagonist early in the follicular phase led to a loss of the dominant follicle and a decline both in inhibin A and B secretion. However, if the GnRH antagonist was administered late in the follicular phase, there was an arrest in development of the dominant follicle, which had the capacity to recover after cessation of the GnRH antagonist with a subsequent restoration of inhibin A and estradiol levels, but not those of inhibin B (Welt et al., 1999).

Further evidence of the relationship between FSH and inhibin A and B secretion can be seen in studies of ageing women. In a comparison of immunoactive inhibin levels in the menstrual cycles of perimenopausal women compared with normal cycling women at an earlier age, it was shown that inhibin levels were lower and were matched by an elevated follicular phase FSH secretion (Lenton et al., 1991). These conclusions have been supported by subsequent studies (Klein et al., 1996b; Welt et al.,...
1999) using specific assays for inhibin A and B, although it was suggested that inhibin B levels decline earlier than inhibin A (Burger et al., 1998; Welt et al., 1999). In contrast, all of these studies suggested that estradiol levels were relatively well maintained in the perimenopausal state (Lee et al., 1988; MacNaughton et al., 1992). Some studies have suggested that the decline in inhibin B may be associated with an increase in activin A, both of which may contribute to the rise in follicular phase FSH levels of cycling women (Reame et al., 1998).

Pregnancy

The measurements of immunoactive inhibin levels by radioimmunoassay established that the levels of inhibin rose initially following the establishment of pregnancy in women conceiving during a study of their menstrual cycles (Lenton et al., 1991). These studies, and others on women without ovaries who conceived by ovum donation and whose inhibin levels were substantially lower than in normal conception, established that in the initial 4 weeks of pregnancy the principal source of inhibin was the corpus luteum (McLachlan et al., 1987b; Yokkaichiya et al., 1991). Nevertheless, the inhibin levels during early pregnancy in women conceiving by ovum donation did rise slightly, consistent with observations that the placental trophoblast secretes inhibin and that the term placenta contains substantial levels of both immunoactive and bioactive inhibin (McLachlan et al., 1986; Riley et al., 1996).

The levels of immunoactive inhibin measured by the ‘Monash’ radioimmunoassay rose to a peak at 13–16 weeks of pregnancy, plateaued during the second trimester, and rose again in the third trimester to term (Abe et al., 1990; Yokkaichiya et al., 1991). Later studies, using specific ELISAs which detect inhibin A and B, showed that the circulating first- and second-trimester levels were principally inhibin A with the later third-trimester rise being due to both inhibin A and B (Muttukrishna et al., 1995; Illingworth et al., 1996b; Petraglia et al., 1997; Wallace et al., 1997a).

Detailed studies involving partial isolation and characterization of placental extracts demonstrated the presence of inhibin, follistatin and activin (de Kretser et al., 1994). The elution profiles of immunoactive activin displayed three peaks, thereby suggesting the presence of activin A, B and activin AB. However, other studies could not confirm the presence of these species (Yokoyama et al., 1995).

In keeping with the known placental content of activin A and follistatin, studies in sheep confirmed the presence of bioactive and immunoactive activin and follistatin in amniotic fluid and the placenta (Wongprasartsuk et al., 1994). In the human, the early fetoplacental unit was a source of both inhibin A and activin A (Illingworth et al., 1996b; Muttukrishna et al., 1997). Activin A levels rise during pregnancy, with the most marked rise being during the third trimester (Muttukrishna et al., 1996; Petraglia et al., 1997; O’Connor et al., 1999). It was suggested by one group (Petraglia et al., 1994) that activin A levels in serum rose further during labour and noted no increase in women undergoing Caesarean delivery for non-obstructed labour; however, they observed elevated levels where the indication for intervention was obstructed labour. More recently, others (Schneider-Kolsky et al., 2000) were unable to confirm the rise in activin A associated with labour. The reason for the different results in the two studies is not clear, but may reflect differences in the time of sample collection relative to delivery. Recent studies in pregnant sheep have identified that hypoxia is a profound stimulus to fetal activin A production (Jenkin et al., 2001), which raises the possibility that the patients studied in obstructed labour may have subjected the fetus to hypoxia. It is possible that the rise in activin A in late gestation is related to the increasing contractility of uterine smooth muscle, since binding sites for activin have been found in the myometrium of rats infused with radioactively labelled activin A (Draper et al., 1997).

Immunoreactive follistatin levels rise during pregnancy with a particularly significant increase in the third trimester (Wakatsuki et al., 1996; O’Connor et al., 1999). These studies suggest that the progressive increase in follistatin in late gestation binds and renders the activin circulating in maternal serum biologically inactive.

Potential clinical applications of inhibin and activin measurement in pregnancy

Prediction of early pregnancy viability

Several studies have proposed that lower levels of either immunoactive inhibin (Yokkaichiya et al., 1991) or inhibin A (Lockwood et al., 1998; Treetampinich et al., 2000) may be a useful marker of early pregnancy loss. However, as there is some overlap between the normal and abnormal ranges this raises some questions as to the application of these observations to routine use in IVF cycles.

Markers of corpus luteum number and function

Progesterone supplements are often used for corpus luteum support in IVF cycles. As such supplements can obscure the use of progesterone as a marker of corpus luteum function, the measurement of inhibin A can provide an excellent protein marker of luteal function (Treetampinich et al., 2000).

Diagnosis of Down’s syndrome

Wallace et al. (1995, 1998) have demonstrated that inhibin A levels in maternal serum are elevated in women carrying a child with Down’s syndrome, whereas the levels of pro-αC and inhibin B are not. The levels of these proteins in amniotic fluid were also elevated (Wallace et al., 1997b) and the levels of α and βA mRNAs expression were also increased in the placenta of Down’s syndrome pregnancies (Lambert-Messerlian et al., 1998). These observations added to earlier data obtained using assays directed to the inhibin α-subunit (Van Lith et al., 1992; Spencer et al., 1993; Cuckle et al., 1994) which suggested that inhibin measurements could contribute additional diagnostic specificity to the existing components of the triple test (α-fetoprotein, unconjugated estriol and β-hCG), increasing the predictive value to 77%. In a recent study it was observed that, with the triple test, the detection of Down’s syndrome was 84%, with a false-positive rate of 21% (Wenstrom et al., 1997). The addition of inhibin A to the other markers raised the detection rate to 90%, with a decline in the false-positive rate to 11%. Attempts to discern the value of inhibin A measurements in first-trimester screening between 8–14 weeks have resulted in conflicting claims that will require further evaluation (Wallace et al., 1995; Wald et al., 1996).
Prediction and diagnosis of pre-eclampsia

In keeping with the need for markers that would identify women at risk of developing pre-eclampsia, Aquilina et al. (1999) noted that the second-trimester inhibin A levels in maternal serum of women who later developed pre-eclampsia were elevated above controls. In this study, the predictive value for the diagnosis of pre-eclampsia was 47%, with a specificity of 91%. The positive predictive value was 24% and the negative predictive value was 97%. Similar observations were noted by others (Cuckle et al., 1998) and have been combined with the measurement of serum β-hCG—another potential predictive marker of pre-eclampsia (Muller et al., 1996)—as a predictive test for pre-eclampsia (Lambert-Messerlian et al., 2000). This and other studies suggested that the addition of β-hCG did not improve the sensitivity for pre-eclampsia detection (Aquilina et al., 2000). Activin A levels have also been noted to be elevated in hypertensive women during pregnancy, and some investigators suggest that they are predictive of the subsequent development of pre-eclampsia (Petragli et al., 1995; Silver et al., 1999). The use of activin A levels in screening for pre-eclampsia appears to provide better predictive value than inhibin A levels (Muttukrishna et al., 2000). Further studies will be necessary to establish the cost-effectiveness of these assays in the early detection of pre-eclampsia.

Diagnosis and follow-up of patients with hydatidiform mole

Application of the ‘Monash’ radioimmunoassay to the serum of women with hydatidiform mole revealed that immunoreactive inhibin levels were elevated in concert with β-hCG (Yohkaichiya et al., 1989). These authors noted that following evacuation of the molar pregnancy, the levels of inhibin declined more rapidly than β-hCG in those women without a continuing trophoblastic source, suggesting that inhibin measurements may provide an additional prediction of patients requiring further treatment. While more recent studies using either an α-subunit-directed assay or those specific for inhibin A and B confirmed that inhibin was elevated in women with molar pregnancies, the absolute level was not prognostic of outcome, and inhibin was not found to be useful as a follow-up marker (Badonnel et al., 1994; Pautier et al., 2001).

Diagnosis of ovarian cancer

The initial observation using the ‘Monash’ radioimmunoassay indicated that immunoreactive inhibin levels were elevated in women with granulosa cell tumours and could predict recurrence (Lappohn et al., 1989). Subsequent studies have shown that 100% of granulosa cell tumours have elevated inhibin levels as assessed by radioimmunoassay and inhibin B ELISA, with the majority also showing increased levels of inhibin A and pro-αC (Robertson et al., 1999). These studies were followed by others which suggested that the majority of women with mucinous epithelial ovarian tumours had elevated readings in the assay which detects all forms of α-subunit secreted (Burger, 1993; Healy et al., 1993).

In a detailed comparison of the ‘Monash’ radioimmunoassay with specific assays for inhibin A and B and a pro-αC assay, Robertson et al. (1999) showed that mucinous tumours were detected in 70% of cases by radioimmunoassay and 60% by inhibin B ELISA, whereas serous tumours showed elevated levels in 35% by radioimmunoassay but in <15% with other assays. Using a new αC-directed immunofluorometric assay (αC-IFMA), Robertson et al. (1999) showed that when this assay was combined with the measurement of CA 125 a very valuable screening test for ovarian tumours was available. This combination of assays showed that in serious tumours, CA 125 was elevated in 94% and the αC-IFMA in 44%, whereas in mucinous tumours CA 125 was increased in 65% and the αC–IFMA in 100%. The latter also detected 100% of all granulosa cell tumours. More details of these and other studies are available in a recently published comprehensive review (Risbridger et al., 2001).

Conclusions

This review has focused on the physiology and clinical applications of the inhibins, activins and follistatin in reproductive biology and medicine. It should be remembered that these proteins—particularly the activins and follistatins—have wider roles based on their distribution and actions in many organ systems. These include developmental biology, liver, renal and bone biology, haematopoiesis and inflammation (Phillips, 2001). The implications of these actions are only just emerging and will stimulate rapid expansion of our knowledge that is limited only by the availability of these proteins for experimentation and specific assays for their measurement.

Acknowledgements

The authors thank Sue Smith for excellent secretarial support. The authors are the recipients of a National Health and Medical Research Council of Australia Program Grant.

References

536
Inhibins, activins and follistatin in reproduction

Jarred, R.A., Cancilla, B., Richards, M., Groome, N.P., McNayyt, K.P. and...

Inhibins, activins and follistatin in reproduction

