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There is a substantial and growing body of literature which solves
Laplace’s equation governing the velocity field for a linear-shear
flow of liquid in the unwetted (Cassie) state over a superhydro-
phobic surface. Usually, no-slip and shear-free boundary condi-
tions are applied at liquid–solid interfaces and liquid–gas ones
(menisci), respectively. When the menisci are curved, the liquid is
said to flow over a “bubble mattress.” We show that the dimen-
sionless apparent hydrodynamic slip length available from studies
of such surfaces is equivalent to (i) the dimensionless spreading
resistance for a flat, isothermal heat source flanked by arc-shaped
adiabatic boundaries and (ii) the dimensionless thermal contact
resistance between symmetric mating surfaces with flat contacts
flanked by arc-shaped adiabatic boundaries. This is important
because real surfaces are rough rather than smooth. Furthermore,
we demonstrate that this observation provides a significant source
of new and explicit results on spreading and contact resistances.
Significantly, the results presented accommodate arbitrary solid-
to-solid contact fraction and arc geometry in the contact resist-
ance problem for the first time. We also provide formulae for the
case when each period window includes a finite number of no-slip
(or isothermal) and shear free (or adiabatic) regions and extend
them to the case when the latter are weakly curved. Finally, we
discuss other areas of mathematical physics to which our results
are directly relevant. [DOI: 10.1115/1.4039993]

1 Introduction

The phenomena of spreading (constriction) and contact resist-
ance are illustrated in Fig. 1, a contour plot of adiabats and iso-
therms within contacting materials of thermal conductivities k1 and
2k1 prepared using the solution by Crowdy [1] discussed below for
a linear-shear flow over a superhydrophobic surface. The same rate
of heat conducts between adjacent pairs of adiabats, and due to the
spreading resistance, the temperature gradients are sharpest near the
heat source. Often, the majority of the heat flow is through the con-
tacts as the gaps are filled with a low conductivity gas and radiation
heat transfer across them is relatively weak [2]. Then, the assump-
tion of adiabatic gaps made here is valid. The net effect of surface
roughness is a larger temperature difference required to transfer a

specified heat rate through the materials relative to the idealized
limit of flat interfaces on account of the coupled effects of a reduc-
tion of the cross-sectional area of the domain and spreading resist-
ance. This is accounted for in the heat transfer literature by contact
resistance. A comprehensive review of spreading and contact resist-
ance was provided by Yovanovich and Marotta [2] in 2003 and
subsequent work was reviewed by Razavi et al. [3] in 2016.

Cooper et al. [4] published a seminal paper on contact resist-
ance in 1969. Therein, an estimate of the contact resistance was
obtained based upon the solution for the (axisymmetric) tempera-
ture field in a cylinder, where the boundary conditions were an
“almost isothermal” contact surrounded by an adiabatic annulus
along its base, an adiabatic outer radius, and a uniform far-field
heat flux. Contrary to the topography of rough surfaces, the analy-
sis by Cooper et al. [4] and the vast majority of subsequent ones
assume a flat plane of contact with periodic isotherms and adia-
bats. Notably, Das and Sadhal [5] considered the Cartesian-
geometry problem for flat contacts between semi-infinite materials
of different thermal conductivities adjacent to sparsely distributed,

Fig. 1 Adiabats and isotherms for a two-dimensional tempera-
ture field in materials of thermal conductivities k1 and 2k1

assuming flat contacts and adiabatic circular arcs in nominal
plane of contact as per adaptation of a O((1 2 /)4) solution by
Crowdy [1]
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circular-arc geometry gaps, not assumed to be of equal protrusion
angle, filled with a third material of finite thermal conductivity.
Bipolar coordinates were used and further details are provided by
Das [6]. Das and Sadhal [7] then used their solution to the single-
gap problem as a basis for the (symmetric) multigap one to capture
the interactions between gaps. To preserve analytical tractability, it
was further assumed that the gaps were thin, which simplified the
temperature distribution in them and their interaction. The tempera-
ture field was computed to O((1�/)6), where / is the contact frac-
tion, from which the contact resistance follows, although the
closed-form expression is not provided due to its length.

The principal contribution of this paper is to adapt (and in one
case extend) to the problem at hand existing studies from the fluid
dynamics literature for the flow of liquid in the Cassie state over
ridge-type structures oriented parallel to the flow direction. The
mathematical similarity of the problems means that recent devel-
opments accounting for meniscus curvature can be immediately
applied here to provide the change in spreading and contact resis-
tances relative to a planar interface. Indeed, when appropriately
nondimensionalized, the spreading resistance, contact resistance,
and apparent hydrodynamic slip length are identical. They depend
upon two dimensionless geometric parameters for a periodic
domain with one flat, isothermal (no-slip) boundary condition and
one adiabatic (shear free) arc one along its base. These are contact
(solid) fraction and protrusion angle (a), i.e., that tangent to the
arc emanating from where it contacts the solid and defined to be
positive when material is removed from the baseline Cartesian
domain. Dimensionless contact resistance is further dependent on
the thermal conductivity ratio for the mating materials.

This paper proceeds as follows: In Sec. 2, we provide defini-
tions for spreading and contact resistances in domains with arc-
geometry, adiabatic boundaries. In Sec. 3, we nondimensionalize
the (apparent hydrodynamic) slip length for linear-shear flows
over a superhydrophobic surface, spreading resistance, and con-
tact resistance such that they are all equal to the identical function
of solid (contact) fraction and protrusion angle. In Sec. 4, we pro-
vide a suite of expressions for this parameter which are collec-
tively valid for nearly the complete range of solid fraction and
protrusion angle and provide illustrative results. Section 5 consid-
ers the case when each period window contains a finite number of
no-slip and shear-free slots and extends the existing literature
such that the latter may be weakly curved. Here, we also provide
an expression for spreading resistance when the boundary condi-
tion along the flat portion of the domain is one of constant heat
flux rather than temperature. The implications of our results are
discussed in Sec. 6. Conclusions are provided in Sec. 7.

2 Definitions of Spreading and Contact Resistances

Figure 2 shows an isothermal boundary condition imposed
along all or part of the base of a semi-infinite domain. In the one-
dimensional (1D) conduction case shown in Fig. 2(a), the (flux

based) thermal resistance (R00) is given by L/k, where L is the
height of the domain. It is instructive to next consider the two-
dimensional problem where an adiabatic boundary condition, of
width 2a, is adjacent to an isothermal heat source, of width
2(d� a), along a flat domain base as per Fig. 2(b). (The heat
source or adiabat may be placed centrally, as Fig. 2 may be inter-
preted as one period of an alternating periodic pattern.) Decom-
posing the temperature field into 1D and perturbative (p)
components such that T¼ T1dþTp, the total resistance is

Ts � T1
q 00

zfflfflfflffl}|fflfflfflffl{R00t

¼ Ts;1d � T1;1d

q00

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{R00
1d

þTs;p � T1;p
q00

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{R00sp

(1)

where the subscripts sp and s denote spreading and heat source,
respectively, and q00 ¼ /q00s , where /¼ (d� a)/d and q00s is the
mean heat flux leaving the source. The temperature of the source
is zero; therefore, the spreading resistance is

R00sp ¼ �
T1;p
q00

(2)

As per the linear superposition of the one-dimensional and pertur-
bation problems, the mean heat flux through the perturbation
domain is zero. This implies that the temperature averaged over
the width of the domain, denoted by T , in the perturbation prob-
lem is constant; hence, the spreading resistance is often expressed
as

R00sp ¼ �
T y¼0;p

q00
(3)

Proceeding to the case of an adiabatic arc along the base of the
domain as per Fig. 2(c) invalidates the foregoing linear
superposition-based approach to determining the spreading resist-
ance. However, continuing to define the one-dimensional resist-
ance as that for a one-dimensional domain, i.e., L/k, the spreading
resistance is

R00sp ¼ lim
y!1

� T

q00
� y

k

� �
(4)

We note that negative protrusion angles (see Fig. 2(c)) and pos-
itive protrusion angles decrease and increase total thermal resist-
ance relative to a flat, adiabatic boundary (see Fig. 2(b)),
respectively. For example, in the case of a negative protrusion
angle, the additional cross-sectional area added to the domain ena-
bles a fraction of the heat from the source to conduct along a
downward path absent in the case of a flat, adiabatic interface.
Insofar as contact resistance, only the solution for a positive pro-
trusion angle is relevant as area is removed from both sides of a
nominally flat interface.

Fig. 2 Heat conduction from an isothermal, flat heat source into a semi-infinite domain: (a)
one-dimensional case, (b) two-dimensional case with flat, adiabatic boundary, and (c) two-
dimensional case with adiabatic-arc boundary
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Considering heat conduction from material 1 to material 2 in
the representative domain shown in Fig. 1, it follows from the
symmetry arguments discussed in Cooper et al. [4] and general-
ized by Das and Sadhal [5] that the contact regions are isothermal.
Moreover, for an arbitrary number of non-uniformly spaced con-
tacts in a period window, all the contacts may be shown to remain
isothermal. Hence

R00t;1 ¼ R00sp;1 þ
limy!1 yð Þ

k1

material 1 (5)

R00t;2 ¼ R00sp;1 þ
limy!1 yð Þ

k1

� �
k1

k2

material 2 (6)

where R00t;1 ¼ limy!1ð�T1=q00Þ; R00t;2 ¼ limy!�1ðT2=q00Þ and
limy!1ðy=k1Þ is understood to be the (infinite) 1D resistance. The
contact resistance between materials 1 and 2 becomes

R00tc ¼ R00sp;1 1þ k1

k2

� �
(7)

3 Conversion Between Hydrodynamic and Thermal

Problems

The mathematical problem depicted in Fig. 2(c) may be consid-
ered in the context of a linear-shear flow of liquid in the Cassie-
state over ridges oriented parallel to the flow as per Fig. 3. Here, l

is the viscosity of the liquid, w is its streamwise (z direction)
velocity, and s is the far-field shear stress or, equivalently, that
across any horizontal plane in the domain. A no-slip boundary
condition is applied along the solid–liquid interfaces (ridge tips)
and the (curved) meniscus is considered shear free. The apparent
hydrodynamic slip length, denoted by b and having dimensions of
length, is defined such that when it is multiplied by s=l, it pro-
vides the perturbation to the far-field velocity relative to a one-
dimensional flow over a flat, no slip boundary. Thus

b ¼ lim
y!1

wl
s
� y

� �
(8)

We nondimensionalize lengths by d and velocity by sd=l and
indicate that a quantity is dimensionless by placing a tilde over it.
Too, in the previously discussed thermal problems, we nondimen-
sionalize temperature by q 00d=k. We define the dimensionless
spreading resistance as

~R
00
sp ¼

R00spk

d
(9)

It then follows from Eq. (7) that

R00tc ¼
~R
00
spd k1 þ k2ð Þ

k1k2

(10)

Thus, by defining the dimensionless contact resistance as

~R
00
tc ¼

R00tck1k2

d k1 þ k2ð Þ (11)

we establish that

~R
00
tc ¼ ~R

00
sp (12)

The dimensionless analogs of the thermal problem shown in
Fig. 2(c) and the hydrodynamic one shown in Fig. 3 are shown in
Fig. 4 and, correspondingly, those of Eqs. (4) and (8) are

~R
00
sp ¼ lim

y!1
ð� ~T � ~yÞ (13)

~b ¼ lim
y!1
ð ~w � ~yÞ (14)

Hence, as noted by Enright et al. [8] in the case of flat, adiabatic

regions, since � ~T ¼ ~w, the dimensionless spreading resistance
equals the dimensionless hydrodynamic slip length. Therefore, we
have established our key result that

~R
00
sp ¼ ~R

00
tc ¼ ~b (15)

We proceed to document relevant expressions from the
literature on apparent slip which may be used to quantify

Fig. 3 Linear shear flow of liquid in the Cassie state over
ridges oriented parallel to the flow

Fig. 4 Dimensionless analogs of thermal problem in Fig. 2(c) and hydrodynamic problem in
Fig. 3
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spreading and contact resistances in domains with curved, adia-
batic boundaries.

4 Spreading Resistances With Curved Adiabatic

Boundaries

Here, we provide a suite of expressions for ~R
00
sp (and thus ~R

00
tc)

based upon those for ~b compiled from the apparent slip literature.
Except when solid fraction is small but a< 0 and curvature is not
small, they essentially span the full range of / and a. We also dis-
cuss and extend results from the apparent slip literature relevant
to some additional spreading resistance problems.

4.1 Flat Boundary Limit: / Arbitrary, a 5 0. Utilizing a
conformal map, Veziro�glu and Chandra [9] showed that, for the
case of a flat isothermal contact surrounded by a flat adiabatic
boundary

~R
00
sp ¼

2

p
ln sec

p 1� /ð Þ
2

� �� �
(16)

The equivalent result was obtained by Philip [10] in the context of
flows through porous media and cast into the form of a slip length
by Lauga and Stone [11].

4.2 Small Contact Fraction: /� 1, a � 0. A small parame-
ter in many relevant studies is the solid fraction of the ridges (/)
in the hydrodynamic problem or, equivalently, the contact fraction
in the thermal one. Using the method of matched asymptotic
expansions, Schnitzer [12] provides an expression for the slip
length valid over the range 0 � a � p/2 of protrusion angles in the
/ ! 0 limit. The corresponding expression for the dimensionless
spreading resistance is

~R
00
sp � 1� /ð Þ 2cosh�1 p=2� að Þ=

ffiffiffiffiffiffi
2/
p
 �

p=2� að Þ2 � 2/
h i1=2

8<
:

� 1

p=2� a
ln 2 p=2� að Þ2
h i

þBi að Þ þBo að Þ
�
þ o 1ð Þ

(17)

where

Bi að Þ ¼ 1

p=2� a
ln

21�2a=p 1=2� a=pð Þ ffiffiffipp
C 3=2� a=pð Þ=C 1� a=pð Þ (18)

Bo að Þ ¼ 1

p=2� a
ln

2cot að ÞC 1� a=pð ÞC 1=2þ a=pð Þ
C a=pð ÞC 3=2� a=pð Þ

þ 2cot að Þ � 2

p
ln 4þ 2

p
cE þ

2

p
w a=pð Þ (19)

where C and w are the gamma and digamma functions, respec-
tively, and cE � 0.5772 is the Euler–Mascheroni constant. As /
! 0, the singularity in the spreading resistance scales as logð1=/Þ
for 0 � a< p/2 and as 1=

ffiffiffiffi
/
p

for 0 < p=2� a ¼ Oð
ffiffiffiffi
/
p
Þ. There is

an excellent agreement between Eq. (17) and the seminumerical
results by Luca et al. [13], even for contact fractions up to 10%.

4.3 Small Curvature: / Arbitrary, a� 1. Another relevant
choice of the small parameter is the curvature of the adiabatic
boundary nondimensionalized by half its planform length (a), i.e.,

~� ¼ � sin að Þ
2 1� /ð Þ (20)

which is small when the protrusion angle a is small. Then, the
expression developed by Sbragaglia and Prosperetti [14] yields
the first-order correction to the slip length for �p/2 � a � p/2 rel-
ative to that for a flat boundary as per Eq. (16) based on a study
by Philip [10]. Then

~R
00
sp �

2

p
ln sec

p 1� /ð Þ
2

� �� �

� ~� 1� /ð Þ3
ð1

0

1� cos 1� /ð Þps½ Þ
� 

1� s2ð Þds

cos 1� /ð Þps½ � � cos 1� /ð Þp½ � þ O ~�2ð Þ

(21)

Teo and Khoo [15] showed that this is accurate to within 10% for
�40 deg � a � 30 deg. Also, as discussed in more detail later,
Crowdy [16] has rederived this result using very different ideas
based on reciprocity arguments.

4.4 Contact Fraction �10%, a Arbitrary. Crowdy [1,17]
provides a series of 3 (explicit) expressions in the limit of high
contact fraction (/ ! 1) at various orders of accuracy, all valid
for arbitrary protrusion angle. Equation (4.13) in Crowdy [1], an
explicit result accurate to O((1�/)7), has maximum relative
errors of 1–2% across the full range of protrusion angles as per a
comparison with the numerical data of Teo and Khoo [15] for
contact fractions as low as 25% and remains accurate to within
8–9% down to contact fractions as low as 10%. An approximation
of this result which ignores certain terms of eighth order in no-
shear fraction is

~R
00
sp �

p 1� /ð Þ2U að Þ
2

1þ 1� /ð Þ4 p=2ð Þ4b að Þ
15

� �

1� 1� /ð Þ2 p=2ð Þ2U að Þ
3

� 1� /ð Þ4 p=2ð Þ4b að Þ
15

(22)

where

U að Þ ¼ 3p2 � 4paþ 2a2

6 p� að Þ2
(23)

b að Þ ¼ 32a4 � 128pa3 þ 212p2a2 � 168p3aþ 45p4

360 p� að Þ4
(24)

This has maximum relative error of 2% and 12% down to contact
fractions as low as 25% and 10%, respectively. Thus, for engi-
neering purposes, Eqs. (17) and (22) span nearly the full range of
contact fraction and protrusion angle, and numerical calculations
need not be performed. The exception is when contact fraction is
small and protrusion angle is negative, which is only relevant to
spreading resistance.

4.5 Illustrative Results. We plot ~R
00
sp versus / in Fig. 5. The

a¼ 0 curve is from the result by Veziro�glu and Chandra [9],
Eq. (16). Those for a¼ p/6, p/3, and p/2 are from the result by
Schnitzer [12], Eq. (17), for / � 0.1 and from Eq. (4.13) in
Crowdy [1] for 0.1 � / � 1. At / ¼ 0:1; ~R

00
sp calculated from Eq.

(4.13) in Crowdy [1] exceeds that calculated from Eq. (17) by
1.84%, 0.47%, and 5.61% at a¼p/6, p/3, and p/2, respectively.
At /¼ 0.01, the dimensionless spreading resistance is 1.40, 2.19,
and 7.34 times that for a flat surface when a¼ p/6, p/3, and p/2,
respectively.

5 Additional Spreading Resistance Expressions

5.1 Flat Adiabatic Regions With Arbitrary Pattern in a
Period Window. In an extension of the result for a single no-
shear slot per period window discussed in Sec. 4.1, Crowdy [18]
has derived analogous formulas for the case of any (finite) number
of flat, no-shear slots per period. These formulas are expressed in
terms of a classical special function called the Schottky–Klein
prime function. They may be used to account for defects within
the contact regions, where adiabatic boundary conditions apply.
The two slot case is studied in detail in Ref. [18] and, in light of
the analogy discussed in this paper, it is useful to record here how
those results translate into explicit formulas for the spreading
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resistance of a periodic surface comprising two flat adiabats per
period window. We then show how to extend these results to
weakly curved gaps thereby directly generalizing the results of
Sec. 4.3.

It was shown in Ref. [18] that, on introduction of the special
function

Pðf;qÞ � ð1� fÞ
Y1
k¼1

ð1� q2kfÞð1� q2k=fÞ; 0 < q < 1 (25)

which is easy to compute by simple truncation of this infinite
product definition (note that q< 1 so that later terms in this prod-
uct for large values of k tend to unity), the problem of a linear
shear flow over two flat shear-free regions may be resolved. As
per Fig. 6, the shear-free regions occupy the intervals ½�~s;�~r �
and ½~r ; ~s� on 0 < ~r < ~s, where lengths have been nondimensional-
ized by half the period window. The result is that
~w0ð~x; ~yÞ ¼ Im½~hð~zÞ�, where ~w0 is the streamwise velocity nondi-
mensionalized by the shear rate times half the period window and
~hð~zÞ, where ~z ¼ ~x þ i~y, is the complex potential specified
henceforth.

Crowdy [18] defines

t ¼ ffiffiffi
q
p

eiht (26)

with the two real parameters q and ht chosen to satisfy the two
nonlinear equations

~r ¼ � i

p
log

P �q=t;qð ÞP �qt;qð Þ
P �q=t;qð ÞP �qt;qð Þ

" #
þ ht

p
;

~s ¼ � i

p
log

P q=t; qð ÞP qt; qð Þ
P q=t; qð ÞP qt;qð Þ

" #
þ ht

p

(27)

These two equations, which relate the mathematical parameters q
and ht to the physical geometry of the surface, are readily solved
for using Newton’s method. Then, the complex potential ~hð~zÞ can
be written parametrically in terms of the intermediate complex
variable f as

~z ¼ ~Z fð Þ � � i

p
log

P f=t;qð ÞP ft; qð Þ
P f=t;qð ÞP ft; qð Þ

� �
þ ht

p
;

~h ¼ ~H fð Þ � � i

p
log

P f=t;qð ÞP ft; qð Þ
P f=t;qð ÞP ft; qð Þ

" # (28)

Too, with q and ht determined as above, the associated spreading
resistance is given explicitly by the formula

~R
00
sp ¼

2

p
log

���� P t2; q
� �

P jtj2; q
� � ���� (29)

There is no need to restrict the problem to adiabats of equal length
as was done here for convenience. The treatment of Ref. [18]
extends to two flat adiabats of any length in each period window
of the surface, as well as to any number of flat adiabats per period.
A wealth of new formulas for a diverse array of surface geome-
tries is therefore available.

Extension of these formulas to incorporate weakly curved gaps
can also be achieved. Crowdy [16] has shown how the formula
(21) for the first-order correction in the spreading resistance and
for small protrusion angles of the gaps (when there is just one per
period window) can be derived by means of reciprocal theorem
arguments based on the use of Green’s second integral identity;
the original derivation of the result by Sbragaglia and Prosperetti
used more direct arguments where those authors solved for the
first-order correction for the full field. When just the correction to
the slip length is of interest, the reciprocity arguments of Ref. [16]
bypass any need to compute the associated field correction. It is
straightforward to adapt the latter arguments to the case of two (or
more) adiabats per period window, and thus, deduce integral
expressions for the first-order correction to the spreading resist-
ance when the curvature of each of the gap is assumed to be small.
Those integral formulas require knowledge of the solution to the
flat-adiabat problem but, as just discussed, these are available
from the results of Ref. [18].

To illustrate the case of two weakly protruding gaps per period
window as illustrated schematically in Fig. 6, on introduction of
the two independent protrusion angles a1, a2 � 1, an expression
for the modified spreading resistance, denoted by ~R00sp, is

~R00sp ¼ ~R
00
sp þ a1

~R
ð1Þ
1 þ a2

~R
ð2Þ
1 þ oða1; a2Þ (30)

where

~R
1ð Þ

1 ¼
1

2

ð�~r

�~s

~g1 ~xð Þ @ ~w0

@~x

� �2

d~x; ~R
2ð Þ

1 ¼
1

2

ð~s

~r

~g2 ~xð Þ @ ~w0

@~x

� �2

d~x

(31)

Fig. 6 Single-period window of surface comprising gaps
between ½2~s ;2~r � and ½~r ; ~s � protruding with (positive) angles a1

and a2, respectively. Under the assumptions that the angles are
small, the contact resistance is given, to leading order in these
angles, by the explicit formulas (30)–(33).

Fig. 5 ~R
00

sp versus /. The a 5 0 curve is from the result by Vezir-
o�glu and Chandra [9], Eq. (16). Those for a 5 p/6, p/3, and p/2 are
from the results by Schnitzer [12], Eq. (17), for / £ 0.1 and from
Eq. (4.13) in Crowdy [1] for 0.1 £ / £ 1.
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where

~g1 ~xð Þ ¼ 1

~s � ~r

~s � ~rð Þ2

4
� ~x þ ~r þ ~s

2

� �2
 !

;

~g2 ~xð Þ ¼ 1

~s � ~r

~s � ~rð Þ2

4
� ~x � ~r þ ~s

2

� �2
 ! (32)

and

@ ~w0

@~x
¼ Im

d~h

d~z

� �
¼ Im

H0 fð Þ
Z0 fð Þ

� �
(33)

Expressions for the latter quantity are available from Eq. (28)
meaning that the two integrands in Eq. (31) are completely known
and simple quadrature produces the first-order modifications to
the spreading resistance (if required, it is convenient to compute
these integrals in the parametric f-plane).

5.2 Isoflux Heat Source. Lam et al. [19] provide an analyti-
cal expression, given by their Eq. (36), for the dimensionless
apparent thermal slip length, and therefore, spreading resistance,
in the case of an isoflux ridge surrounded by an adiabatic, arc-
shaped boundary. It is based on the same boundary perturbation
used by Sbragaglia and Prosperetti [14] and readily converted to a
dimensionless spreading resistance.

6 Discussion

The results for single- or periodic-idealized contacts provided
here are relevant because the prediction of contact resistance
between engineering surfaces, where contacts are of nonuniform
size and spacing, is based upon them together with the roughness
profiles of the surfaces (prior to contact) and deformation theory.
Generally, the single idealized contacts are assumed to be circular,
with radii specified such that they have the same area as the actual
contacts and placed centrally in a cylindrical region. The effects of
adiabatic, arc-shaped boundaries surrounding the contacts in this
geometry may not be extracted from the existing slip literature, but
we resolve them in a companion paper [20]. Key parameters appear-
ing in theoretical expressions for ~R

00
tc include the mean of the absolute

slope of a surface as measured by, say, a stylus-type profilometer and
spreading resistance. We expect them to be more accurate when the
spreading resistance accounts for arc-shaped adiabatic boundaries
rather than flat ones. Finally, we note that the protrusion angle in the
foregoing expressions for ~R

00
sp may be approximated as the inverse

tangent of the mean of the absolute slope of a surface.
Analogies between the notion of the slip length associated with

superhydrophobic surfaces and related concepts arising in other
areas of mathematical physics have been pointed out. It has been
shown that the longitudinal slip length associated with unidirec-
tional patterning on a superhydrophobic surface is mathematically
the same object as the so-called blockage coefficient which meas-
ures the degree to which an array of obstacles occludes an oncom-
ing uniform potential flow [21]. (It is interesting to point out that
such analogies can afford valuable theoretical insights: for exam-
ple, Schnitzer [22] found this analogy with blockage coefficients
useful in his asymptotic analysis of slip over a superhydrophobic
surface with very small solid fraction.) Other analogies exist; for
example, to the added mass of translating objects, and to the
notion of impedance of an aperture in acoustics and diffraction
problems [21]. The present paper shows that such analogies
extend to heat transfer and thermal resistance contexts and that
this cross-disciplinary realization provides new insights and
immediate advantages.

7 Conclusions

Expressions for spreading resistance are embedded in those
which predict the thermal contact resistance between mating

surfaces. In practice, outside the contacting regions of such mating
surfaces, their topography is usually assumed to be flat. We enable
the relaxation of this assumption over the complete range of geo-
metrical parameters for the Cartesian problem by adapting results
from the recent literature on apparent hydrodynamic slip to enable
one to model such regions as adiabatic arcs of constant radius of
curvature, which better resemble the actual topography. At a real-
istic contact fraction of 1%, the increase in resistance ranges from
a factor of 1.40 to a factor of 7.34.
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Nomenclature

a ¼ half-width of gap (cavity) (m)
b ¼ apparent hydrodynamic slip length (m)
d ¼ pitch (m)
k ¼ thermal conductivity (W/(m K))
L ¼ length of material (m)
n ¼ direction normal to arc (meniscus)
P ¼ special function defined by Eq. (25)

q00 ¼ heat flux (W/m2)
~r ¼ dimensionless distance defined in Fig. 6

R00 ¼ flux-based thermal resistance (m2 K/W)
~R00

sp ¼ ~R
00
sp capturing effects of 2 weakly curved gaps

~s ¼ dimensionless distance defined in Fig. 6
t ¼ complex parameter defined by Eq. (26)

T ¼ temperature (K)
w ¼ streamwise velocity (m)
x ¼ direction parallel to flat contacts
y ¼ direction perpendicular to flat contacts

Greek Symbols

a ¼ protrusion angle
/ ¼ solid or contact fraction
ht ¼ real parameter defined by Eq. (27)
l ¼ viscosity (kg/(m s))
q ¼ real parameter defined by Eq. (27)
s ¼ mean shear stress
f ¼ intermediate complex parameter

Subscripts

p ¼ perturbative
sp ¼ spreading

t ¼ total
tc ¼ thermal contact
1 ¼ material 1
2 ¼ material 2
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