Hot arguments to cool off the plume debate?: COMMENT

COMMENT: doi: 10.1130/G25165C.1

Keith Putirka*
California State University–Fresno, Department of Earth and Environmental Sciences, 2576 E. San Ramon Avenue, MS/ST24, Fresno, California 93740, USA

A thoughtful review by Class (2008) and a new article by Albarede (2008) provide a new context for re-examining potential relationships between excess temperatures (T_{ex}) and 3He/4He (Putirka, 2008). The issue is to explain why high 3He/4He mantle (HHM) is tapped by ocean island basalts (OIB), but not by the depleted mantle (DM) that feeds mid-oceanic ridge basalts (MORB). Two possibilities (not mutually exclusive) are HHM is physically segregated from DM and tapped only by OIB-specific dynamics (e.g., plumes), or HHM is intermixed within a DM matrix but partially melts at a lower or higher temperature.

A new merged data set (Putirka, 2008, Figure 3; Abedini et al., 2006; Jackson et al., 2007) yields nine new 3He/4He maxima compared to my 2008 data (Putirka, 2008): Azores, 11.3; Cape Verde, 15.7; Galapagos, 27.4; Hawaii, 35; Iceland, 37.7; Kerguelen, 18.3; Reunion, 14.9; Samoa, 33.8; and Tahiti, 17. Also added are data from the Cook-Austral chain: 3He/4He$_{max} = 7$ (Mukhopadhyay, 2007), $T_{ex} = 1535 ^{\circ}$C, $T_{eq} = 139 ^{\circ}$C, $F = 8.03^{\circ}$C, and $H_{2}O = 0.93^{\circ}$C. The correlation coefficient (R) between T_{ex} and 3He/4He is now 0.67 (Figure 1A). Galapagos is excluded in this new data set, as in Putirka (2008), because its T_{ex} and parental melt fraction (F) are not well known. We also now compare 3He/4He to F to a proxy for T_{eq} calculated independent of T (Putirka, 2008), and positively correlate F with 3He/4He (Figure 1B), allowing a quantitative illustration of certain premises in Putirka (2008).

Class noted that “because enriched components contribute radiogenic 3He” they “allow for any combination of T_{ex} and 3He/4He$_{max}$. However, if enriched components are fertile, only partial melts generated at low T and low F can have high 3He/4He (upper dashed curve, with negative slope; Figure 1), even while some low-F melts may have low 3He/4He (lowermost dashed curve). High-F melts should also merge toward DM (3He/4He $= 8$) or some DM-HHM mixture, depending on whether HHM (the fertile source) is exhausted. But OIB with high F and T_{ex} are observed to have high 3He/4He.

What if HHM is the most refractory mantle component (Albarede, 2008)? Could selective fusion of a refractory component explain 3He/4He-F relationships? Partial melts should then follow the solid curves, with positive slopes. The HHM-as-refractory model appears to explain the OIB pattern (Figure 1), but can only match the data if HHM has 3He/4He $= 120$ (Jackson et al., 2008, and is $>$400 times less fertile than DM (F_{DM}/F$_{HHM} = 425$) (Figure 1). Given that HHM and DM have comparable 3Sr/87Sr and 143Nd/144Nd, a stark difference in fertility seems unlikely.

In contrast, global T_{ex}-3He/4He-F relationships are consistent with a model whereby HHM is transported into the melting region by a thermally activated process, e.g., a thermal plume. Because thermal plumes are expected to be deep, but resistant to mixing. The rest of the mantle also need not be singular in its 3He/4He: some low T_{ex} OIB plausibly derive from a fertile source with low to moderate 3He/4He (Figure 1A). Of course, the expected relationships between 3He/4He for a non-layered mantle are invalid if plumes do not partially melt ambient mantle, or if ambient mantle is not DM, options which are perhaps worth considering. In the meantime, global T_{ex}-3He/4F relationships may be telling us something about the petrologic character of isotopic mantle components. To the extent that they do, models that exclude compositional layering appear less probable, at least at this stage of the investigation.

ACKNOWLEDGMENTS
Thanks to M. Jackson and S. Hurwitz for help in understanding 3He-related issues and to C. Herzberg for a helpful review.

REFERENCES CITED

Figure 1. A: OIB excess temperature (T_{ex}) versus 3He/4He$_{max}$. R—correlation coefficient. B: Total melt fraction (F) of parental liquids (Putirka, 2008) versus 3He/4He$_{max}$. Dashed curves: HHM is more fertile than DM (F_{DM}). Solid curves: HHM is less fertile than DM (F_{HHM}). If $F_{DM} = F_{HHM}$, 3He/4He = 29 for all F. Stepped curves: HHM is either exhausted (dashed curve) or not yet melted (solid curve) at $F = 0.8$, so as to explain MORB. All curves assume 3He/4He$_{min}$ = 8, and 3He/4He$_{max}$ = 50, except as noted.

© 2008 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.