Lionel L. Siame1, Esmaeil Shabanian1,2, and Olivier Bellier1
1CEREGE (Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement), U.M.R. 6635 (CNRS-INSU,
Université Aix-Marseille), B.P.80, Plateau de l’Arbois, 13545,
Aix-en-Provence cedex 4, France
2International Institute of Earthquake Engineering and Seismology
(IIEES), BP 19395-3913 Tehran, Iran

ABSTRACT

Hollingsworth et al. (2008) proposed a “new” kinematic model for
the complicated tectonic pattern in the eastern South Caspian Sea re-
gion. Our Comment is focused on the Ashkhabad fault and the Kopeh
Dagh Mountains, examining the data and hypothesis used by the authors
to support their model.

Hollingsworth et al. presented 10 m of right-lateral displacement
along the Ashkhabad fault, recorded by a river bank and a line of irriga-
tion system. In this area, the well-expressed fault trace (Fig. 1A) is not
consistent with that proposed by the authors (their figure 2B). Moreover,
there is no clear evidence of right-lateral displacements where the fault
traces intersect either other river banks or erosional gullies (Fig. 1A).
Accepting the particular line of irrigation as representative for right-
lateral fault offset, it should be noted that the offset is on the order of
14 m, and not 10 m. Irrigation lines can be right-laterally or left-laterally
(Fig. 1B) offset along the fault (ranging from 1 to 20 m; e.g., Trifonov,
1978). Assuming that the 14 m right-lateral offset is representative, and
taking into account that the first irrigation lines were constructed no later
than the 5th century B.C. (Trifonov, 1978), yields a maximum slip rate
of 5.6 mm/a for this part of the fault, which, in turn, decreases the pro-
posed strike-slip faulting inception age to ca. 6 Ma ago.

Hollingsworth et al. reconstructed a cumulative offset of 35 km
along the Ashkhabad fault, using Cretaceous and Neogene deposits.
Even if one accepts the reliability of this offset, it should be, at mini-
mum, 42 km (Fig. 1D). Following the authors’ map, the northwest ter-
mination of the Ashkhabad fault is northwest-trending, showing the
Neogene deposits belong to the southern block. However, a detailed
gomorphic analysis using satellite SPOT (Satellite Pour l’Observation
de la Terre) imagery (with a pixel resolution of 2.5 m) convinced us that
the Ashkhabad fault clearly is WSW-trending just north of the Creta-
ceous formations (Fig. 1F), showing the Neogene deposits belong to
the northern block. In fact, the Neogene deposits are always located on
the northern side of the fault. At the northeast termination of the fault, the
Cretaceous units belong to a well-preserved syncline that shows a maxi-
mum right-lateral offset of ~6 km (Fig. 1D). Following our observations,
the measurable post-Neogene offset along the same segment of the fault
is ~9 km, indicated by an offset syncline (Fig. 1E).

The proposed geodynamic interpretation relies largely on rigid block
rotations in the Kopeh Dagh (figures 1 and 5 in Hollingsworth et al.,
2008) that cannot be confirmed by the regional fold axes pattern (Fig. 1C).
Indeed, the post-folding, brittle deformation pattern favors a simple

© 2009 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

Figure 1. A: Quickbird satellite image (GoogleEarth) centered
on the Kazandzhik fault, showing the fault-related morphology and
possible fault traces. Inset shows a simplified morphotectonic map
focused on the area investigated by Hollingsworth et al. (2008).
Points 1–6 are intersection points of the fault traces with
geomorphic features (1–4: river banks; 5–6: erosional gullies).
The fault traces from our mapping (red lines) are compared to that
proposed by Hollingsworth et al. (2008, black dotted line). B:
Quickbird image (GoogleEarth) showing an apparent left-lateral
offset in an irrigation line. C: Simplified structural map
of the Kopeh Dagh based on SPOT5 satellite images showing
the major faults (white solid lines, simplified after Shabanian
et al., 2009) and the fold axes (blue lines). D: Structural map
of the north-central Kopeh Dagh showing the Ashkhabad
fault based on SPOT5 images. Keys: Cretaceous—1; Tirgan
limestone—2; Sarcheshmeh marl—3; Sanganeh shale and
marl—I; Aitamir sandstone and
shale—5; Miocene marl—6; Pliocene conglomerate—7; Quaternary deposits—8; Main fault—9; Fold axes (continuous lines are antcline axes).
E: SPOT5 image of the 9-km-long, right-lateral offset cumulated by a syncline developed within Neogene deposits. F: SPOT5 image extract showing that the Ashkhabad fault trace clearly runs between the Cretaceous and Neogene deposits.
strike-slip faulting mechanism within the Kopeh Dagh. More important is the 10 Ma age for the inception of the deformation associated with the westward motion of the South Caspian basin. This value strongly relies on (1) the observations discussed in this Comment, and (2) the hypothesis that the instantaneous global positioning system rates remained constant throughout the late Cenozoic. However, given the concerns we highlight on the Ashkhabad fault and the Kopeh Dagh, one should be cautious about the validity of the data set presented by the authors before accepting that their model clarifies the active tectonics of this complicated region.

REFERENCES CITED