
Optimal edge filters explain human blur detection

William H. McIlhagga $
Bradford School of Optometry and Vision Science,

University of Bradford, Bradford, United Kingdom

Keith A. May $
Department of Optometry and Visual Science,

City University London, London, United Kingdom

Edges are important visual features, providing many cues to the three-dimensional structure of the world. One of these cues
is edge blur. Sharp edges tend to be caused by object boundaries, while blurred edges indicate shadows, surface curvature,
or defocus due to relative depth. Edge blur also drives accommodation and may be implicated in the correct development of
the eye’s optical power. Here we use classification image techniques to reveal the mechanisms underlying blur detection in
human vision. Observers were shown a sharp and a blurred edge in white noise and had to identify the blurred edge. The
resultant smoothed classification image derived from these experiments was similar to a derivative of a Gaussian filter. We
also fitted a number of edge detection models (MIRAGE, N1, and N3

þ) and the ideal observer to observer responses, but
none performed as well as the classification image. However, observer responses were well fitted by a recently developed
optimal edge detector model, coupled with a Bayesian prior on the expected blurs in the stimulus. This model outperformed
the classification image when performance was measured by the Akaike Information Criterion. This result strongly suggests
that humans use optimal edge detection filters to detect edges and encode their blur.
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Introduction

It is widely accepted that edges play an important
role in visual perception. Edges are usually defined as
sudden changes in image intensity, but many edges
have a gradual change in intensity. When this occurs
the edge is perceived as blurred. Blur may be intrinsic to
the physical edge formation process, such as an
attached shadow edge on a curved surface or a
penumbral shadow boundary. Blur may also be caused
by the optics of the human eye. Outside of a small,
foveated volume of space, the edges in the retinal image
are blurred because of the limited depth of field of the
eye. Both intrinsic and optical blur can be exploited to
inform us about the world. The intrinsic blur of shadow
edges and the sharpness of boundary edges provides
information for shape-from-shading, and optical blur is
a cue to depth (Marshall, Burbeck, Ariely, Rolland, &
Martin, 1996; Mather, 1996, 1997; Mather & Smith,
2000). Optical blur is also the primary driver of
accommodation (Kruger & Pola, 1986; Phillips &
Stark, 1977), and it may be implicated in emmetropiza-
tion (Flitcroft, 1998), which is the developmental
process that matches the eye’s length to its optical
power.

Humans are good at detecting blur (Hamerly &
Dvorak, 1981; Watt & Morgan, 1983), but it is unclear

how they do it. One possibility is that edge blur is
extracted as a byproduct of edge detection (Elder &
Zucker, 1998; Georgeson, May, Freeman, & Hesse,
2007; Lindeberg, 1994, 1998; May & Georgeson, 2007a,
2007b; Watt & Morgan, 1985). Generally, it is assumed
that edges are detected by oriented filters, much like the
receptive fields of V1 simple cells, and these filters have
a range of sizes, or scales, in order to capture the range
of edge blurs that can occur. For example, in Marr’s
Primal Sketch (Marr & Hildreth, 1980) the image is
initially analyzed with Laplacian-of-Gaussian filters of
different sizes to yield zero crossings. These are then
integrated into edges in V1, in which each edge is
characterized by various properties, including its scale,
or blur. The MIRAGE model (Watt & Morgan, 1983,
1985) also assumes that an image is analyzed by a bank
of filters of different widths. Uniquely, however, the
MIRAGE model combines these filter outputs into a
single representation of the image in which scale is not
explicitly represented; edge location and blur are then
extracted by further simple calculations. The N1 and
N3
þ models (Georgeson et al., 2007), based upon the

theoretical work of Lindeberg (1994, 1998), also
assume that the image is analyzed by a bank of filters
of different scales. In the N1 and N3

þ models, the
location and blur of an edge are found by looking for
peaks in a scale-space representation of the image
(Lindeberg, 1998; Witkin, 1983). Other models of edge
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detection (Elder & Zucker, 1998) also embody the idea
that to detect edges, the image must be analyzed at
different scales.

Here we examine the mechanisms of human blur
detection using classification images (Beard & Ahuma-
da, 1998; Murray, 2011). To carry out a classification
image experiment, one begins with a psychophysical
task, such as detecting the difference between a sharp
edge and a slightly blurred edge. To each stimulus,
white noise is then added. The observer’s behavior on
each trial, which is influenced by the specific noise
pattern used on that trial, can be used to infer how the
observer actually detects blur. Classification images
have previously been used to characterize human edge
detection filters (Morgenstern, Elder, & Hou, 2004),
but not in detail.

Our results show that the classification images for
blur detection are similar to a difference of Gaussian
derivative filters. We also fitted three models of blur
detection, the MIRAGE model (Watt & Morgan,
1985), the N1 model (Georgeson et al., 2007), and the
N3
þ model (Georgeson et al., 2007), to our data by

defining appropriate decision variables for those
models. We find that none of them fits our blur
detection data very well. This is surprising because
these models have received support from many
experiments—blur thresholds (Watt & Morgan, 1983,
1985), blur matching tasks (Georgeson, 1994; George-
son et al., 2007; May & Georgeson, 2007a, 2007b), and
the reported perception of edge location (Georgeson &
Freeman, 1997; Hesse & Georgeson, 2005).

We find however that a new blur detection model,
using optimal edge detection filters (McIlhagga, 2011)
combined with a Bayesian decision rule, is able to
account for the blur detection data better than the
classification image.

Methods

Stimuli

In each trial, observers were shown two horizontal
edges, one of which was sharp and the other blurred,
and had to select the blurred edge by pressing a mouse
button. Both edges were embedded in high contrast
noise. An example of the stimulus is shown in Figure 1.
Each edge image was 1.678 wide and 1.678 tall (400 by
400 pixels), separated by a gap of 0.48. The stimuli were
presented for 250 milliseconds on a gamma-corrected
CRT monitor (Mitsubishi 2070SB 22 inches) in a dark
room. The monitor was driven by a Bitsþþ processor
(Cambridge Research Systems, Ltd) that generated 14-
bit gray-scale images. The background was grey with a
luminance of 50.6 cd/m2.

The contrast pattern of the sharp edge on the ith trial
was si(x, y) ¼ S(x) þ ni(x), where S(x) is a sharp step
edge profile and ni(x) is a Gaussian white noise sample.
(Here we use x to refer to the vertical dimension on the
stimulus, and y to refer to the horizontal dimension.)
The contrast pattern of the blurred edge on the ith trial
was bi(x, y)¼B(x)þmi(x), where B(x) is a blurred edge
formed by convolving a step edge profile with a
Gaussian filter having scale r, and mi(x) is another
noise sample. Contrast is defined as the luminance at a
point divided by the mean luminance, minus 1. Both
sharp and blurred edges had a contrast difference
across the edge of 0.4 (i.e., a Michelson contrast of 0.2).
Noise was created by adding an independent pseudo-
random noise value to each scan line of each edge
image. The noise values were drawn from a Gaussian
distribution with a standard deviation of either 0.16
(low-noise condition) or 0.32 (high noise condition) in
contrast units. The one-dimensional spectral power
densities were 0.8 · 10-4 deg-1 and 3.2 · 10-4 deg-1,
respectively. Before adding the noise signal to the edge,
we truncated it to fall between 60.8, so that the
combined signal fell within the range of physically
realizable values, [-1, 1]. Each noise sample was stored
for classification image analysis as described below.
These images are constant in the y direction, so the y
coordinate is ignored from here on.

Three observers (the authors KAM and WHM and a
student TS) each did 5,000 trials, in 250 trial blocks, at
both low and high noise levels. The low-noise
experiments were done first, then the high-noise
experiments. The scale of the Gaussian blurring filter
was chosen for each observer so that their probability
correct in the low-noise condition was close to 75%.
Experimental procedures conformed to the Ethical
Guidelines of the Bradford School of Optometry and
Vision Science, as approved by the University of
Bradford Life Sciences Ethics Committee. All of the
data from these experiments are available in the
supplementary material.

Figure 1. An example of the stimuli, consisting of two horizontal

edges embedded in horizontal white noise. The observer had to

indicate which edge was blurred, here the left one.
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Classification images

In a single experimental trial, the observer sees two
images, which we will label I1 and I2, and must decide
which contains the blurred edge. One way they could
do this is to compute a weighted sum of the contrasts in
each image, and select the image which maximizes this
sum as being the most blurred. The vector of weights is
called a template. The weighted sum of image j isX

x

hðxÞIjðxÞ ¼ h � Ij ð1Þ

where h is the template vector, indexed by position x.
The observer decides image I1 contains the blurred edge
if h � I1 - h � I2 . 0; otherwise they decide image I2 was
blurred. The difference h � (I1 - I2) is called a decision
variable.

The observer will be correct on trial i when h � (bi -
si) . 0, where the actual blurred and sharp images on
that trial have been substituted into the decision
variable. However, human observers often make a
different choice when shown the same stimulus again,
which must be caused by some internal randomness, or
noise, unrelated to the stimuli. If we assume, for
convenience, that the internal noise is a standard
logistic variable, the observer’s probability correct on
the ith trial is a logistic function of the decision
variable:

pðbi; si; hÞ ¼ 1-exp -h � ðbi-siÞ½ �f g-1 ð2Þ
Now, let ci be 1 if the human observer actually was
correct on the ith trial of the experiment, and 0
otherwise. The log-likelihood of the observer’s respons-
es, given the template h, is then

LðhÞ ¼
X
i

cilog pðbi; si; hÞ½ �f

þð1-ciÞlog 1-pðbi; si; hÞ½ �g ð3Þ
An estimate of the template h is a called a classification
image. Classification images are commonly computed
from the difference between the mean noise pattern
when the observer is correct and the mean noise pattern
when the observer is incorrect (Ahumada, 2002; Beard
& Ahumada, 1998; Murray, 2011; Murray, Bennett, &
Sekuler, 2002). However, we used the maximum
likelihood estimate for h, which can be computed by
logistic regression (Knoblauch & Maloney, 2008;
Nelder & Wedderburn, 1972). The covariate matrix
used in the logistic regression is Xi,j ¼ bi( j) - si( j),
where the ith row of X contains the difference between
the blurred and sharp stimuli on the ith trial. This was
regressed against the observation vector ci.

Classification images are usually very noisy because
of overfitting. This occurs because there are so many
parameters in the classification image (400 in our case)

that it is possible to exploit wholly accidental correla-
tions between stimulus noise and observer responses to
improve the likelihood. Classification images are, for
this reason, often improved in appearance by some ad
hoc smoothing applied after the image has been
estimated. However, smoothing is better accomplished
by adding a penalty to the likelihood which is
proportional to the sum of squared second differences
of the template (Hastie & Tibshirani, 1986; Knoblauch
& Maloney, 2008) yielding a penalized likelihood:

LpðhÞ ¼ LðhÞ-k
X
x

hðx-1Þ-2hðxÞ þ hðxþ 1Þ½ �2 ð4Þ

Smooth classification images can also be estimated by
logistic regression using an augmented covariate
matrix.

We used the Akaike Information Criterion (AIC)
(Akaike, 1974) to choose the best smoothing parameter
k. The AIC is a model selection measure that takes into
account both the likelihood of a model and its
complexity. It is defined as -2L(h) þ 2N(h), where
N(h) is the effective number of parameters. The
effective number of parameters is the trace of the
projection matrix of the logistic regression on the final
convergent iteration (Hastie & Tibshirani, 1986) and is
reduced as the smoothing increases. The magnitude of
the AIC is not meaningful, but differences between
AICs are (Burnham & Anderson, 2004). When selecting
amongst models, the one with the lowest AIC is to be
preferred, so for the smoothing parameter, we chose the
value of k which minimized the AIC.

Alternatives to classification images

While most of the emphasis in classification image
experiments is placed on the resulting estimate of the
template, the critical aspect of classification image
analysis is its attempt to explain human responses on a
trial-by-trial basis, using unique stimuli on each trial.
The classification image itself is simply a convenient
approximation to the human observer, which uses a
linear decision variable. Instead of this, however, we
could use any other model for blur detection from
which we can derive a suitable decision variable.

In general, a decision variable is a function d(I1, I2,
u) of the two stimuli and a set of parameters u. The
observer will choose stimulus I1 as being the blurred
edge if d(I1, I2, u) . 0; otherwise they will choose
stimulus I2. Given a decision variable for a particular
model, the probability of a correct response is simply

pðbi; si;uÞ ¼ 1-exp -k � dðbi; si;uÞ½ �-1 ð5Þ
with the model decision variable replacing the linear
decision variable in Equation 2. The proportionality
factor k is needed because of the assumption that the
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internal noise is a standard logistic variable. This
probability correct is then substituted into Equation 3,
and the model parameters / can be estimated by
maximum likelihood. This approach is an extension of
that used by Solomon (2002), who fitted parameterized
templates by maximum likelihood. Here, however, we
fit entire models.

We use this approach to fit the MIRAGE model
(Watt & Morgan, 1985), the N1 and N3

þ models
(Georgeson et al., 2007), and an optimal edge detector
(McIlhagga, 2011) to our blur detection data. Some
models of blur detection that focus on predicting blur
thresholds (e.g., Watson & Ahumada, 2011) give the
magnitude of a decision variable, but not its sign. These
kinds of models are not intended to be used for trial-by-
trial modeling and so we did not attempt to fit them.

Results

Classification images

Figure 2 shows the unsmoothed and the best
smoothed classification images for all three observers
in the low noise condition. The AICs for the best
smoothed classification images are given in the first row
of Table 1. The second row of the table gives the
difference DAIC between the AIC of the unsmoothed
classification image and the AIC of the best smoothed
classification image. In all cases, the smoothed classi-

fication image has a better AIC than the unsmoothed
one. The classification images in Figure 2 sometimes
resemble a difference of two Gaussian first derivative
filters, which would be consistent with it being a
difference of two simple cell receptive fields (Hawken &
Parker, 1987; Parker & Hawken, 1988; Ringach, 2002,
2004), tuned to the sharp and the blurred edges. Our
classification images differ from previous classification
image estimates of edge detectors (Morgenstern et al.,
2004), which appeared more nearly like simple Gauss-
ian first derivative filters. However, our task is different:
our observers had to compare two different edges and
report which was the most blurred, whereas Morgen-
stern and colleagues’ observers had to compare an edge
with a blank and report which was the edge.

The human visual system is almost certainly not
linear, unlike the classification image model. However,
the classification image is related to the true human
decision variable in a straightforward way. Whatever
the structure of the true human decision variable
dhuman(I1, I2) it can be expanded as a Taylor series in
the stimulus contrasts I1 and I2. The first order term of
this Taylor series is a linear combination of stimulus
contrasts I1 and I2, like the classification image. Thus
the classification image can be thought of as an estimate
of the first-order term of the true decision variable. This
means that the AIC of the smoothed classification
image can be used as a benchmark for accepting or
rejecting alternative models for human blur detection. If
some alternative model does not have a better AIC than
the classification image, then it is worse than a first

Figure 2. Stimulus profiles and classification images for all observers in the low-noise condition. The gray-shaded area is the luminance

profile of the blurred edge, B(x), used for each observer. The Gaussian blur r used to form the blurred edge was 0.02158, 0.03678, and

0.02168, respectively, for KAM, TS, and WHM. Subject TS needed more blur than the other two to obtain about 75% correct. The x axis is

in degrees of visual angle. The y axis is the contrast for the edges. The maximum likelihood classification image is shown as a thin blue

line, and the best smoothed classification image by the thick black line. The height of the classification image is arbitrarily determined by

the assumption of unit internal noise. However, the classification images share the same scale across all three panels.
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order approximation to the true human decision
variable. In that case it is unlikely to be correct. Using
this criterion, we can evaluate other possible models for
human blur detection. We turn to this next.

The ideal observer

The ideal observer (Geisler, 1989, 2011) is a widely
used theoretical observer who is statistically optimal for
the task at hand, in terms of the probability of a correct
choice. An ideal observer who wishes to maximize the
probability of correctly selecting the blurred edge from
two stimulus images I1 and I2 will do so by computing
two log-likelihoods. The first is the log-likelihood that
image I1 contains the blurred edge and I2 contains the
sharp edge. The second is the log likelihood of the
alternative possibility that image I1 contains the sharp
edge and I2 contains the blurred edge. They choose the
alternative that has the highest likelihood as being the
one most likely to be correct. It can be shown that, in
additive Gaussian noise, this is equivalent to computing
a linear decision variable hideal � (I1 - I2), where the
ideal template is proportional to the difference between
the blurred and sharp edges, hideal(x)¼ k[B(x) - S(x)],
where k is a scaling factor.

We can work out the log-likelihood for the ideal
observer by substituting hideal into Equation 3. In doing
so, we are implicitly adding internal noise to the ideal
observer in order to improve their fit. There is one free
parameter here, the scaling factor k. The DAIC values
for the ideal observer, compared to the smoothed
classification image, are shown in row 3 of Table 1. In
all cases, the ideal observer is substantially worse than
the best classification image and so is highly unlikely to

be a correct account of human performance in this
task.

MIRAGE

The MIRAGE model (Watt & Morgan, 1985) offers
an alternative model for human blur perception.
MIRAGE begins by convolving an image with filters
that are second derivative of Gaussians of different
scales. It then splits the output of each filter into
positive and negative halves, and adds the positive
halves of all filter outputs together, and the negative
halves of all filter outputs together. These half-signals
are further parsed into ‘‘zero-bounded response distri-
butions’’ or RESPs. A RESP is a maximal spatial
interval in the signal that is nonzero inside and zero
outside. It has been suggested that edge blur is encoded
in the distance between the centroids of two adjacent
RESPs, one in the positive half-signal and one in the
negative half-signal.

When applied to our noisy stimulus images, MI-
RAGE found many RESPs. We assumed that the
adjacent RESPs with the largest mass were those most
likely to correspond to the edge rather than noise. We
chose the most obvious decision variable for the
MIRAGE model, which is

dðI1; I2Þ ¼ ðcentroid distance in image I1Þ
-ðcentroid distance in image I2Þ ð6Þ

This is used in Equation 5 to calculate the MIRAGE
probabilities correct, and from these the MIRAGE log-
likelihood and AIC can be calculated. The DAIC values
of the MIRAGE model are shown in row 4 of Table 1.

Subject:
KAM TS WHM

Noise contrast 0.16 0.32 0.16 0.32 0.16 0.32

1) Smoothed classification image 4494

(N ¼ 76)

5800

(N ¼ 72)

5083

(N ¼ 34)

5038

(N ¼ 48)

4291

(N ¼ 75)

5439

(N ¼ 50)

DAIC for

2) Unsmoothed classification image (N ¼ 400) 349 322 264 363 307 387

3) Ideal observer (N ¼ 1) 654 570 630 1053 703 978

4) MIRAGE (N ¼ 1) 1440 998 1566 1857 1778 1438

5) N1 model (N ¼ 2) 502 523 560 911 957 902

6) N3
þ model (N ¼ 2) 1744 994 1312 1695 1992 1332

7) Optimal edge detector, Bayesian (N ¼ 6) -178 -274 94 -1 -72 -90

Table 1. AIC for the smoothed classification image (row 1) and DAIC for the models mentioned later in the text. The values in brackets in

row 1 are the effective number of parameters N for the best smoothed classification image. They vary because different amounts of

smoothing proved best for different observers and noise levels. The DAIC values are the AIC for the given model (rows 2–7) minus the

AIC for the best smoothed classification image. Positive values indicate the model fits worse than the best smoothed classification image

in row 1; negative values (in bold) indicate that it fits better. The effective number of parameters N for each of the models is given in

brackets after each model name. A simple rule of thumb is that AIC differences less than 2 suggest both models are more or less

equivalent, while differences greater than 10 indicate the worse model has essentially no support from the data (Burnham & Anderson,

2004).
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In all cases, the MIRAGE model fitted the observer
responses very poorly compared to the smoothed
classification image and is unlikely to be correct.

The N1 and N3
þ models

Georgeson et al. (2007) described two models for
human edge and blur perception. Both models work by
computing derivatives of the image at different scales.
Both the N1 and N3

þ models yield a scale-space
representation of the input image (Witkin, 1983), which
is a representation of the image over a range of scales.
The scale filters F(x,r) in the N1 model are normalized
derivatives of Gaussians

Fðx; rÞ ¼ rpexpð-x2= 2r2
� �

Þ=
ffiffiffiffiffiffiffiffiffiffi
2pr2
p

ð7Þ
The normalization exponent p affects which filter
responds best to an edge with a particular blur. The
edges in the image are found by looking for local
maxima, or peaks, in the scale space. The spatial
coordinates of the local maximum gives the location of
the edge, and the scale coordinate of the local
maximum is proportional to the blur of the edge. A
Gaussian blurred edge with scale re will be detected by
a filter with scale re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ðn-pÞ

p
, where n¼ 1 for the N1

model and n ¼ 3 for the N3
þ model; p ¼ n/2 is a

conventional choice here, but anything between 0 and n
is valid.

Let Scale(x, r) be the scale space produced from an
input image by either the N1 or N3

þ filters. Stimulus
noise generates many peaks in the scale space, and we
have to select the one that corresponds to the sharp or
blurred edge. We choose the peak that has the greatest
edge contrast. To do this, we find all peaks in scale
space and multiply the height of each by a correction
factor to get the contrast of the edge, and then choose
the one with the highest contrast. Note that the peaks
are found before the correction factor is applied. The
correction factor for N3

þ is derived in May and
Georgeson (2007a), equation 2; the correction factor
for N1 is derived similarly.

The estimate of edge blur is the scale coordinate of
the chosen peak multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn-pÞ=p

p
. That is, if the

best peak for image I1 is at position x1 and scale r1, our
estimate for edge blur is simply r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn-pÞ=p

p
. An

obvious decision variable is then d(I1, I2) ¼ (r1 –
r2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn-pÞ=p

p
. We used this decision variable to fit the

N1 and N3
þ models to observer responses. The scales

ranged from 1 to 60 pixels (0.00428 to 0.2528),
logarithmically spaced. The exact choice of scales had
only minor influence on the fit. We assumed the
observer knew the location of the edge and only had
to find the peak in scale. (Relaxing this assumption
worsened the fit.) DAIC values for the N1 and N3

þ

models are given in Table 1, rows 5 and 6. These AIC

values were obtained by finding the normalization
exponent p which yielded the smallest AIC. Neither N1

nor N3
þ fits the data very well, when compared to the fit

of the smoothed classification image. The main reason
for the poor fit was that in both models, the scale space
was overwhelmed by noise peaks.

Optimal edge detection

We turn now to a model that does fit the data better
than the best classification image, so it is a strong
candidate for an accurate description of human edge
detection. It is likely that, whatever process humans use
to detect edges, it has been driven towards an optimum
by natural selection (Geisler, 2011). We may therefore
gain some insight into human edge detection by
studying optimal edge detection. The best known
approach to optimal edge detection is that of Canny
(1986), who proposed that edge detectors should
optimize the product of signal-to-noise ratio and the
precision of edge localization. However, Canny over-
simplified the localization measure (Koplowitz &
Greco, 1994; McIlhagga, 2011; Tagare & deFigueiredo,
1990) and neglected the impact of nearby edges on the
edge detection process (McIlhagga, 2011). When these
problems are fixed and the edge detectors further
generalized to detect edges of different scales, the
optimal detection filter Dr for an edge of scale r (here
defined as a step edge convolved with a Gaussian filter
of scale r) can be approximated by a convolution of
three filters (McIlhagga, 2011)

DrðxÞ ¼WðxÞ � gðx; r0Þ �MrðxÞ ð8Þ
where W(x) is a whitening filter, g(x, r0) is an auxiliary
Gaussian filter with a fixed scale r0 and Mr(x) is a filter
matched to the shape of an edge of scale r after it has
been whitened. The matched filter Mr(x) is normalized
to have an r.m.s. power of 1. The whitening filter W(x)
whitens images having a natural-image power spectrum
C2/f 2 þ n20 (Burton & Moorhead, 1987; Field, 1987),
where C2/f 2 is brown noise and n20 is the squared
amplitude of the white noise. The whitening filter acts
like a smoothed derivative operator. The optimal
detector has two parameters, the ratio C/n0, which is
estimated from the image, and the scale r0 for the
auxiliary Gaussian filter, which should be small. The
optimal edge detector is diagrammed in Figure 3.

The convolution of Dr(x) with an image I(x)
represents the image at a single scale. To represent
the image at all scales, we must convolve an image I(x)
with optimal edge detectors at different scales. The
collection of these convolutions is a scale-space
representation of the image R(x, r), given by

Rðx; rÞ ¼ IðxÞ �DrðxÞ ð9Þ
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The square of the scale space R(x,r)2 is related to the
log likelihood of observing the image I(x) given there is
an edge at position x with scale r (McIlhagga, 2011):

Rðx; rÞ2 ¼ logPðIjedge atx; rÞ þ constant ð10Þ
If all locations and blurs are equally probable, the
maximum of R(x, r)2 gives the location and blur
associated with the most probable edge.

Optimal detection with a Bayesian prior

In our experiments, however, the location and scale
are not equiprobable; only one location is possible, and
only two scales. In this case, the observer should use
Bayes’ theorem to compute the posterior probability of

an edge by combining the likelihood R(x, r)2 with their
prior distribution of edge location and scale. For
simplicity, we will assume the observer knows the edge
position exactly, and so consider only the scale
coordinate. A Bayesian observer who views two
stimulus images I1 and I2 in our experiment may
hypothesize that image I1 contains a blurred edge with
scale rb, and image I2 contains a sharp edge with scale
rs. Letting p(rb, rs) be the observer’s prior probability
for this hypothesis, the log posterior probability is

logPðrb; rsjI1; I2Þ ¼ logPðI1jrbÞ þ logPðI2jrsÞ

þ logpðrb;rsÞ-logPðI1; I2Þ

¼ R1ðrbÞ2 þ R2ðrsÞ2
þ logpðrb; rsÞ þ constant

ð11Þ
where R1 and R2 are the scale space representations of
images I1 and I2 at spatial position x¼ 0. Alternatively,
the observer may hypothesise that image I2 contains a
blurred edge with scale rb0, and image I1 contains a
sharp edge with scale rs

0. The log-probability of this
hypothesis is

logPðr0
b;r

0
sjI2; I1Þ ¼ R1ðr0

sÞ
2 þ R2ðr0

bÞ
2

þ logpðr0
b;r

0
sÞ þ constant

ð12Þ
when r

0

b . r
0

s. The constant in this equation is identical
to the one in Equation 11. The optimal decision rule is
to decide that image I1 contains the blurred edge and I2
the sharp edge whenZZ

rb.rs

Pðrb;rsjI1; I2Þdrsdrb.

ZZ
r 0
b
.r 0

s

Pðr0
b; r

0
sjI2; I1Þdr0

sdr
0
b ð13Þ

However, this calculation is computationally expensive,
since one would have to take the scale space outputs,
exponentiate them, then integrate them. In addition, it
does not directly yield an estimate of the edge blur, for
which one would have to compute the posterior mean.
(It did not fit the data particularly well either.)

An alternative to the optimal decision rule is to
prefer the first hypothesis (blurred edge in image I1)
when the maximum posterior probability of the first
hypothesis exceeds the maximum posterior probability
of the second; that is, when

max
rb;rs

logPðrb; rsjI1; I2Þ½ �

-max
r 0
b
;r 0

s

logPðr0
b;r

0
sjI2; I1Þ

� �
.0 ð14Þ

Figure 3. Operation of the optimal edge detector at a single scale.

A noisy input image is first whitened by a whitening filter to yield a

whitened image. The whitening filter is a form of smoothed

derivative. The whitened image is then convolved with a filter

matched to a whitened edge of a particular scale. This yields a

final output image. This is the representation of the input image at

a single scale. The collection of all final images at all scales used

forms a scale space. An example of the scale space is shown in

Figure 4. The process of whitening followed by matching can be

collapsed into a single convolution with a combined filter, shown in

bottom right. The combined filters are what are shown in Figure 4.

(The auxiliary Gaussian filter has been omitted in this diagram.)
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The decision variable for this model, d(I1, I2), is simply
the left hand side of this inequality. It can be easily
computed from the output of the optimal edge
detector, and estimates of the edge blurs are immedi-
ately available as the values of rb, rs or r

0

b,r
0

s which
yielded the maximum.

To fit this model, we need a prior. We assume for
simplicity that the prior is an almost separable function

pðrb; rsÞ ¼
pbðrbÞpsðrsÞ if rb.rs

0 otherwise

�
ð15Þ

where pb and ps are priors for the sharp and blurred
edge scales at the known position x ¼ 0. This prior is
the observer’s belief about the distribution of scale, not
the true distribution. The sharp and blurred edge priors
were modeled as beta distributions because these are
flexible distributions with a finite domain.

Fitting the optimal edge detector

The optimal edge detector model has six free
parameters: the proportionality factor k, the auxiliary
blur in the optimal filters r0, and two beta parameters
for each of the two priors pb and ps. The value of r0 was
fitted individually by subject and noise level to provide
the best fit. No attempt was made to enforce
consistency of the parameters within subject. The
whitening parameter C/n0 is not a free parameter and
was estimated for each subject and noise level from the
collection of all stimuli shown to that subject. The same
set of scales adopted for the N1 and N3

þ models were
used here (up to 60 pixels, or 0.1878), except that the
scales for subject TS extended out to 80 pixels (0.258).
The choice of scales affects the AIC only marginally.
Fitting of the free parameters for the optimal detector
was difficult, and we adopted a semi-Monte Carlo
method, in which a Nelder-Mead minimization routine
(routine fmins in Matlab) was started at many
randomly selected initial values, and the best one
selected.

We find that this model, based on optimal edge
detection, is an overwhelmingly superior to the fit of
the best classification image for KAM and WHM
(Table 1, last row). Thus it is a strong candidate for the
edge detection processes in those observers. The model
is illustrated in Figure 4 for observer KAM.

Figure 5 shows a typical psychometric function
derived from the optimal edge detection model. This
shows the observer probability correct as a function of
the optimal detector’s decision variable. The psycho-
metric function was constructed as follows. For every
possible value d of the decision variable, we selected a
subset of trials in an interval around d. We then
measured the observer’s probability correct over this
subset of trials. If the model fits the observer responses,

we would expect that the observer’s probability correct
should be a smooth logistic function of the model’s
decision variable.

Although the optimal edge detection model fitted
KAM and WHM well, it was rather worse for subject
TS; it is rejected for the low noise condition and is
essentially the same as the smoothed classification
image in the high noise condition. There could be many
reasons for this, but one possibility is that, being
inexperienced, observer TS did not use a consistent
decision rule during the experiment. TS would of
course not have a consistent classification image either,
but the average classification image might fit all the
data better than the average optimal edge detector. To
test this, we split TS’s data for each noise level into four
sequentially recorded parts and fitted each part with
both a smoothed classification image and an optimal
edge detector model. We found only minor improve-
ment in fit for the low noise data. However, in the high
noise data (which was collected last) the optimal edge
detector model was better than the best smoothed
classification image in all four parts, sometimes
overwhelmingly so (the DAICs for each part were
-19, -19, -1, and -20, all in favor of the optimal edge
detector). This suggests that the consistency of observer
TS improved over time so that by the time he did the

Figure 4. The Bayesian version of the optimal edge detector

model. The top panel plots an example luminance profile of a

noisy blurred edge bi(x). Only the central half of the stimulus is

displayed. The lower left image shows the output of the optimal

edge detectors as a scale space R(x, r). The detector location is

along the horizontal axis (in degrees), and the scale r is plotted

along the vertical axis (finer scales at the top, coarser at the

bottom). The lower right hand panel shows the priors for the sharp

edge (in red) and blurred edge (in green) for each filter scale. The

filters drawn on top of the scale space image are the combined

filters Dr(x) that correspond to the maxima of the respective

priors. This plot is for observer KAM in the low-noise condition.
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high noise experiment his decision criterion varied
slowly enough for the optimal model to fit his responses
well over short runs.

Goodness of fit

The AIC is a model-selection tool. It assesses the
relative performance of competing models, but does
not indicate whether the best model actually fits the
data. Unfortunately, standard goodness-of-fit tests are
insensitive in large sparse logistic regressions such as
this one (Kuss, 2002), with one data point per cell and
many cells. Thus we evaluated goodness of fit by
simulation.

Let pi ¼ p(bi, si, h) be the probability correct for the
ith trial, as specified by the model. Let ci be 1 or 0
depending on whether the observer was actually
correct. The observed likelihood of the model is Lobs

¼ R ci log pi þ (1 þ ci) log(1 - pi). Now simulate an
observer by setting csimi equal to 1 if a uniform random
variable ri is less than pi. The likelihood of the
simulated observer is Lsim ¼ Rcsimi log pi þ (1 - csimi )
log(1 - pi). We can repeat this many times to find the
empirical distribution of simulated likelihoods condi-
tional on the model probabilities, i.e., the distribution
of observed likelihoods that would occur if the model
was precisely correct. If the observed likelihood Lobs is
consistent with being drawn from this simulated
distribution, then the model fits the data.

We found that Lobs invariably fell between the 40th
and 60th percentiles of the simulated likelihood
distribution, so the observer responses are entirely
consistent with the optimal edge detector model for all
observers and noise levels.

Discussion

The classification image technique is a powerful way
of evaluating models for human visual performance.
One important insight here is that the fit of the
classification image provides a useful benchmark for
evaluating the effectiveness of other models in account-
ing for human perception. We found that the only
model that might explain blur perception is one based
on a set of optimal edge detectors. In this model, blur
detection is a byproduct of edge detection over a range
of scales. Our observers combined the outputs of these
edge detectors with a Bayesian prior to yield a decision.
Both parts of the model, the optimal edge detectors and
the Bayesian decision rule, are necessary to explain
human performance in this experiment. However,
neither the prior identified here nor the specific optimal
filters are directly applicable to normal viewing

conditions. The prior is obviously task dependent;
and under normal viewing the optimal filters would
change shape because they depend on image statistics
through the parameter C/n0.

Here we look at some aspects of this model: the role
and significance of the whitening stage; relationship to
other edge detection models; and the relationship to the
ideal observer.

Whitening

One aspect of the optimal edge detector model is the
way it adapts to image statistics. The whitening filter
W(x) and the matched filter Mr(x) both change in
response to changes in image statistics. The main use
for this adaptive change in the experiments reported
here is to cope with large amounts of noise, but in other
circumstances it adjusts the edge detectors to follow the
image statistics. In particular, the optimal edge detector
will adapt to image blur. Humans also adapt to image
blur (Webster, Georgeson, & Webster, 2002). The
optimal edge detector model suggests that the adaptive
process occurs in order to optimize the edge detection
performance, and this is consistent with reports that
blur sensitivity improves after adaptation to blur
(Cufflin, Mankowska, & Mallen, 2007).

Figure 5. How well the optimal edge detector model accounts for

observer KAM’s probability correct. The x axis plots the decision

variable for the optimal model, and the black curve gives the

model’s probability correct as a function of the decision variable.

The red jagged line shows the human observer’s probability

correct, as a function of the model decision variable. This was

calculated as follows. For each value of x, we selected trials in

which the model decision variable was near x, and then calculated

the observer’s probability correct within that set of trials.
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The whitening filter is separate in the optimal edge
detector model only as a mathematically convenient
way of specifying the optimal filters. However, it may
be physiologically separate in the human visual system,
too. It has frequently been suggested that the retina
performs a whitening-like operation to encode the
image for optimal transmission along the optic nerve
(Atick & Redlich, 1992; Ruderman, 1994). If so, we
could identify the whitening filter in the optimal edge
detector with retinal filtering, and the subsequent
matched filtering with the computations of neurons in
areas V1 and later.

Relationship to other edge detectors

The optimal edge detector model is a generalization
of the N1 model. When the white noise is zero, the
whitening filter W(x) becomes a derivative operator,
and the matched filter Mr(x) becomes a Gaussian
function. Under these conditions, the optimal filter
Dr(x) is a derivative of a Gaussian, which is the filter
shape suggested by Lindeberg (1998) and the N1 model
(Georgeson et al., 2007), among others. Given that the
optimal edge detector is so similar to the N1 model,
perhaps an N1 model with a Bayesian prior might fit
the data better than the simple N1 model we used. We
added the same form of Bayesian prior as used in the
optimal model to the N1 model with normalization
exponent p¼ 0.5 (This normalization is needed for the
N1 filter outputs to be interpreted as likelihoods.) This
Bayes-N1 model yielded DAIC values of 1012, -20,
630, 57, -42, and 10 (in the same order as the columns
of Table 1). While never better than the optimal model,
the Bayes-N1 model does beat the smoothed classifica-
tion image in two cases.

The N1 model is good at accounting for human blur
perception when noise is absent, but the N3

þ model is
better (Georgeson et al., 2007). The N3

þ model is
nonlinear, so its success implies that human blur
perception is not like the linear model proposed here.
However, we do not have an optimal theory for
nonlinear filters like those used in N3

þ, so we do not
yet know if a nonlinear edge detector would account
for our data better than the current model. Certainly,
the N3

þmodel as it stands is unable to account for our
data. It is possible that human edge detection behaves
like a set of optimal linear filters for high noise levels, as
here, but transitions to a nonlinear detector like N3

þ at
very low noise levels.

Ideal observers and optimal detectors

Although the ideal observer fails to account for
human blur perception, there is some similarity in the

approach of the ideal observer and the optimal detector
theory used here. The ideal observer optimizes the
probability of a correct decision. The optimal detector
is designed to maximize a numerical criterion of
performance. It is possible to frame the optimal edge
detector as an ideal observer who maximizes the
probability that the edge location and scale is within
a particular distance of the true location and scale
(Tagare & deFigueiredo, 1990). So to a large extent, the
two approaches are very similar.

Where they differ is that the ideal observer is an
infinitely flexible observer, who can adapt to the
requirements of the particular experiment. The optimal
edge detector, however, is pressed into service to carry
out a specific psychophysical task for which it may not
be well suited. This is because the optimal edge detector
is designed to detect edges under general, ecologically
reasonable conditions, and where the experiment
departs from these conditions, the performance of the
optimal edge detector deteriorates. Understanding of
human performance in other psychophysical tasks may
benefit from this approach: we should assume that the
observer uses processes that are optimized to perform a
related real-world task. The goal to understanding
vision should be to identify this real-world task and
derive a mechanism or process—a computational
model (Marr, 1982)—that is optimal for it.

Although we find no support for the ideal observer
in this study, human observers have often been
successfully described as an ideal observer with added
noise and a so-called ‘‘sampling’’ inefficiency. However,
the sampling inefficiency encompasses a number of
ways that the human observer can deviate from the
ideal, including—as is the case here—using a complete-
ly different template. We believe that, unless the
sampling efficiency is quite high, the ideal observer
may not be a useful way of modeling how the human
observer carries out a task.

Noise

An optimal edge detector will only show a clear
advantage over a suboptimal one when the signal-to-
noise ratio is low. This doesn’t seem to be the case in
everyday life, where the retinal image is clear enough,
so why would there be strong selection pressure for
optimal edge detectors? It is widely believed that the
brain needs to minimize the amount of energy
expended in computations (Laughlin, 2001; Lennie,
2003; Levy & Baxter, 1996; Vincent, Baddeley,
Troscianko, & Gilchrist, 2005), and one way it can
achieve this is by minimizing the internal signal level or
spiking rate. Under these conditions, internal noise can
be significant, and the need for highly optimal edge
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detection filters is much greater than might otherwise
be expected.

Conclusions

Our experiments suggest that humans detect blur by
analyzing the stimuli with a bank of optimal edge
detectors, tuned to different scales. In this model, blur
detection is a by-product of edge detection over a range
of scales. We modeled performance using a recently
derived general-purpose edge detector that optimizes
itself to the prevailing image statistics to maximize edge
detection performance. We found that the optimal edge
detector alone could not explain human performance:
our model combines the output of the general-purpose
edge detector with a task-specific Bayesian prior to
yield a decision. Our model predicts human perfor-
mance in our blur detection task with remarkable
accuracy on a trial-by-trial basis. Our model gave an
overwhelmingly better fit to the data than other
published models of blur perception or even the ideal
observer for our task. We argue that the ideal observer
may be of limited usefulness in understanding perfor-
mance in psychophysical tasks: under the assumption
that the observer performs the task by recruiting
mechanisms that are optimized for a related real-world
task, we should try to identify that task and derive a
mechanism that is optimal for it. In our case, we find
that a mechanism that is optimal for general-purpose
edge detection explains human blur detection decisions
very well.
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