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Radial frequency (RF) patterns are circular contours
where the radius is modulated sinusoidally. These stimuli
can represent a wide range of common shapes and have
been popular for investigating human shape perception.
Theories postulate a multistage model where a global
contour integration mechanism integrates the outputs of
local curvature-sensitive mechanisms. However, studies
on how the local contour features are processed have
been mostly based on indirect experimental
manipulations. Here, we use a novel way to explore the
contour integration, using the classification image (a
psychophysical reverse-correlation) method. RF contours
were composed of local elements, and random ‘‘radial
position noise’’ offsets were added to element radial
positions. We analyzed the relationship between trial-to-
trial variations in radial noise and corresponding
behavioral responses, resulting in a ‘‘shape template’’:
an estimate of the contour parts and features that the
visual system uses in the shape discrimination task.
Integration of contour features in a global template-like
model explains our data well, and we show that
observer performance for different shapes can be
predicted from the classification images. Classification
images show that observers used most of the contour
parts. Further analysis suggests linear rather than
probability summation of contour parts. Convex forms
were detected better than concave forms and the
corresponding templates had better sampling efficiency.
With sufficient presentation time, we found no
systematic preferences for a certain class of contour
features (such as corners or sides). However, when the
presentation time was very short, the visual system
might prefer corner features over side features.

Introduction

Mechanisms of shape perception

The overall shape of an object is an important cue
for object recognition, as many objects are perfectly
recognizable from the shape cues alone, e.g., in the case
of silhouettes and line drawings. In general, shape
integration in humans seems to be fast and largely
invariant to such low-level physical properties of
stimuli as contrast or gross size.

Neural computations in shape integration have been
under intensive research. Shape perception has various
stages; lower levels analyze the local contour parts and
features feeding the signals to higher levels, which are
sensitive to global shapes. The first stage in the shape
analysis takes place already in the first cortical visual
area V1. V1 neurons are capable of extracting local
contour information, being sensitive to stimulus
orientation, spatial scale, and polarity (Campbell &
Robson, 1968; Hubel & Wiesel, 1959). However, V1
receptive field sizes are very small, and typically V1
neurons have unimodal orientation tuning, implying
that all but the simplest shape discriminations require
higher level integration of responses over a population
of neurons.

Many computational models suggest the existence
of an intermediate stage of analysis, where more
complex local contour features, such as local angles
and curves, are extracted (see Figure 1). Output of
these mechanisms could serve as shape primitives for
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later global stages in shape analysis. Psychophysical
evidence for mechanisms selective to contour curva-
ture has been obtained by adaptation paradigms
(shape-frequency aftereffect and shape-amplitude af-
tereffect; Gheorghiu & Kingdom, 2007, 2009) as well
as by polarity-specific integration of the contour
information (Bell, Gheorghiu, Hess, & Kingdom,
2011). These models are supported by the neuro-
physiological evidence for neurons specialized for
local contour feature encoding. Neurons in macaque
area V2 seem to code local orientation combinations
(Anzai, Peng, & Van Essen, 2007; Willmore, Prenger,
& Gallant, 2010). V4 neurons often have bimodal
orientation tuning (David, Hayden, & Gallant, 2006)
and respond well to curvilinear shapes (Gallant,
Braun, & Van Essen, 1993; Gallant, Connor, Rakshit,
Lewis, & Van Essen, 1996; Nandy, Sharpee, Reynolds,
& Mitchell, 2013). Many neurons in V4 are tuned to
contour features or specific combinations of contour
features, such as convex features in the upper left with
a concavity in the bottom, but are not necessarily
selective for specific global shapes (Connor, Brincat, &
Pasupathy, 2007; Pasupathy & Connor, 1999, 2001).
The last global stages of shape perception are assumed
to take place in a network that consists of higher
ventral visual areas such as human V4 (Wilkinson et
al., 2000) and LOC (see, e.g., Grill-Spector, Kourtzi,
& Kanwisher, 2001).

The major empirical support for the third stage,
global shape mechanisms, comes from psychophysical
contour integration studies. Radial frequency (RF)
patterns (Wilkinson, Wilson, & Habak, 1998)—i.e.,
closed circular contours where the radius is modulated
by a sinusoidal function of the polar angle (see Figure 2
and Methods)—have been a popular stimulus in shape
processing studies. By varying the radial frequency and
phase of the pattern, it is possible to generate many
geometrical shapes, such as a triangle (RF3), a square/
diamond (RF4), a pentagon (RF5), and so on. Even
more complex shapes can be represented by a sum of
elementary radial frequencies. Observers have been
shown to have extreme sensitivity to detecting the
radial frequency modulation, as the discrimination
thresholds versus perfect circles were near the hyper-
acuity range (Wilkinson et al., 1998).

Spatial integration of radial frequency modulation
has been studied by varying the number and extent of
contour features (Bell & Badcock, 2008; Hess, Wang, &
Dakin, 1999; Ivanov & Mullen, 2012; Loffler, Wilson,
& Wilkinson, 2003; Schmidtmann, Kennedy, Orbach,
& Loffler, 2012). Many studies suggest global or
‘‘optimal’’ integration, i.e., integration of feature
information in a mechanism that sums information
from local contour part detectors in a manner that is
nearly linear, rather than probability summation from
independent detectors (as discussed later in more
detail).

Figure 1. Multistage model for contour integration. The first stage (represented by the blue oval) analyzes the local contour curvature.

Here, we assume that this stage can be represented by matching the contour element locations and contour templates. The global

shape analysis stage (A) then integrates (sums) these responses globally. Another possible scheme (B) is probability summation,

where shape integration is based not on the global analysis stage but on maximum local responses.
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An important paradigm has used a circular stimulus
that contains both radially modulated and nonmodu-
lated parts (Hess et al., 1999; Loffler et al., 2003;
Schmidtmann et al., 2012). Strong improvement of
discriminability as a function of modulated contour
length has been found, at least when the underlying RF
patterns have low radial frequency (RF , 10). This has
been interpreted as evidence for a global mechanism
that sums information across the whole contour, as
probability summation alone cannot explain this
phenomenon. However, a study where contour parts
were presented in isolated spatial windows (Mullen,
Beaudot, & Ivanov, 2011) reported that the discrimi-
nation thresholds for a single feature were close to the
discrimination threshold for the whole pattern (but see
Dickinson, McGinty, Webster, & Badcock, 2012).
Moreover, global integration has been reported to be
dependent on low-level factors such as stimulus
contrast (Ivanov & Mullen, 2012).

Similar global shape mechanisms have been pro-
posed to support the perception of global forms in
Glass patterns, where strong summation of local
stimulus information has been reported (Wilson &

Wilkinson, 1998; Wilson, Wilkinson, & Asaad, 1997;
but see Kurki, Laurinen, Peromaa, & Saarinen, 2003).
However, the mechanisms are not necessarily the same
(Bell & Badcock, 2008).

Processing of contour features

In addition to the global processing hypothesis,
another central question has been whether the effi-
ciency of detecting certain contour features (such as
corners, convex sides, and concave sides) is higher than
that for other contour features. Hess et al. (1999)
reported that masking the square-like RF4 pattern with
orientation-filtered luminance noise increased the
threshold more when the orientation band in the noise
matched the orientation of the side contours in the RF4
pattern, compared with the corners. This was inter-
preted as evidence that the visual system relies mostly
on the side contour features. However, results from
lateral RF masking studies have been interpreted as
showing that curvature maxima (corners) features are

Figure 2. Stimuli were composed of DoG elements. The RF4 pattern used here can be thought to have four (convex) corner

features, and depending on amplitude four side features that can be either convex (A), straight (F), or concave (E). Convex and

concave side processing was tested in separate experimental conditions. (A) The target RF4 pattern with convex sides (convex

condition) without position noise. (B) A perfect circle with no RF modulation; the baseline shape in the convex condition. (C) The

target pattern with convex sides with noise. (D) The baseline shape in the convex condition with noise. (E) The target RF4 pattern

with concave sides (concave condition) without noise. (F) The baseline shape in the concave condition, a ‘‘square’’ shape with

straight edges. (G) The target concave RF pattern with noise. (H) The baseline shape in the concave condition with noise. The task

in the convex conditions was to discriminate between instances of (C) and (D); in concave conditions, the task was to discriminate

between instances of (G) and (H).
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more important than sides for shape perception
(Habak, Wilkinson, Zakher, & Wilson, 2004; Poirier &
Wilson, 2007).

Another line of research has investigated possible
differences in processing of convex and concave
features. Concavity and convexity are defined by
curvature relative to the object center (here, the middle
of the screen), and the visual system may use them as a
cue in object segregation. It has been reported that
figure/ground segregation prefers an interpretation
where figures have convex sides (Kanizsa, 1979). Also,
visual sensitivity has been reported to be higher in
convex parts of the shape (see, e.g., Bertamini &
Mosca, 2004; Driver & Baylis, 1995; Loffler et al., 2003;
but see Barenholtz, Cohen, Feldman, & Singh, 2003).
Moreover, functional magnetic resonance imaging
studies have suggested that convex contours may elicit
stronger responses in higher ventral areas such as
lateral occipital complex (LOC) (Haushofer, Baker,
Livingstone, & Kanwisher, 2008).

Classification images and contour integration

Here, we used the classification-image or psycho-
physical reverse-correlation method (Beard & Ahuma-
da, 1998; Eckstein & Ahumada, 2002; Levi & Klein,
2003; Li, Levi, & Klein, 2004; Murray, 2011; Solomon,
2002) to investigate shape integration. The method
enables direct estimation of the contour parts and
features processed by the visual system in a shape
discrimination task. It is based on analyzing the trial-
to-trial relationship between noisy stimulus values that
were shown in the experiment and corresponding
behavioral responses. We use a novel design, utilizing
the ‘‘position noise’’ paradigm (Li et al., 2004) that has
been previously used to study perceptual learning and
amblyopia in a Vernier offset task. Observers’ task was
to discriminate the target radial frequency shape from a
‘‘baseline’’ (circle or square) shape. Shape stimuli were
composed of local difference-of-Gaussian (DoG) ele-
ments. The radial positions of the elements were
sinusoidally modulated (see Figure 2). To enable
classification-image estimation, we further added a
slight random offset (position noise) to the radii of the
elements. These offsets were independent and randomly
generated anew in every trial. Addition of radial noise
makes the presence of features that define the shape
(corners; convex or concave sides) stochastic, i.e., they
are present only on average and not on every stimulus
instance. Thus, the visual system needs to compute a
measure of similarity between noisy stimuli and the
target shapes. Applying the radial position noise
paradigm allowed us to use very low-dimensional and
efficient stimuli and reduce the number of trials per
classification image to around 2,000.

The classification-image method is based on the
linear template-matching model in signal-detection
theory (Peterson, Birdsall, & Fox, 1954), also known as
the noisy cross-correlator model. In this straightfor-
ward model, the outcome of the visual processing is
modeled by linear cross correlation between the
stimulus information and an internal ‘‘shape template’’
that determines which parts and features of the stimuli
are sampled and processed in the visual system (see
Methods). In any trial, noise can either increase or
decrease the radial modulation of each contour feature
(noise radial offsets match the radial modulation or are
opposite to the radial modulation).

We assume that the visual system makes the
perceptual decision by first analyzing the local contour
information (radial offsets) and then integrating (cross
correlating) these data in an internal shape template1

for the behavioral decision. The relationship between
the known stimuli, the unknown internal weights, and
the observed responses can be represented as a
regression problem, which can be solved using the
generalized linear model (GLM) probit regression.

Template-matching models have previously been
found to explain many key features in low-level visual
experiments, especially the detectability of a stimulus
with the presence of external noise (Li et al., 2004; Neri
& Levi, 2006; Pelli & Farell, 1999; Solomon & Pelli,
1994). The shape radial position noise paradigm allows
comparison of human performance with an ideal
observer that is able to use the shape feature
information in an optimal way. Cross correlating the
stimulus information (i.e., radial offsets) with the target
stimulus profile is equal to obtaining the likelihood
ratio of the target presence and is thus an ideal
detection and discrimination strategy (Green & Swets,
1974).

The classification-image method enables a direct
estimation of critical features in shape discrimination,
complementing findings obtained from indirect mask-
ing techniques such as lateral contour masking. It is
able to provide more detailed information on relative
weight and type of contour features used, as opposed to
relatively coarse addition/subtraction of features. Fur-
ther, we show that it is possible to test quantitative
models on how the contour features are integrated by
comparing the observed and predicted performance of
a noisy linear model and building a model observer and
comparing its responses to the same stimulus shown to
human observers.

Research questions

We derive classification images for radial frequency
patterns, aiming to shed light on contour shape
integration mechanisms. We use a square-like RF4
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pattern, as it a relatively simple and recognizable
pattern and is both horizontally and vertically sym-
metrical. By changing the RF4 amplitude, it is possible
to create circular (zero RF amplitude) and square
patterns with convex sides (medium amplitude) and
finally square patterns with concave sides (high
amplitude). First, we test how feasible a template-
matching model for shape integration is by comparing
how well a linear template-matching model that uses
the estimated template (classification image) can
predict the observed discrimination efficiency (i.e.,
squared detectability index divided by an ideal ob-
server’s detectability index). Following Murray, Ben-
nett, and Sekuler (2005), we show that it is possible to
directly predict the discrimination efficiency from a
classification image that has been estimated with GLM.
A good match between predicted and observed
efficiency suggests that a template-matching model can
quantitatively explain (at least to an approximation)
the contour integration performance on the task.

Second, we estimate the relative efficiency of contour
detectors that process the corner features and different
kinds of side features. The RF4 pattern can be thought
to have eight contour features: four corners (convex
maxima) and 4 side features. Depending on the RF
amplitude of the pattern, the sides or RF troughs are
either convex—i.e., curved outwards (low-amplitude
RF4 pattern)—or concave (high-amplitude RF4 pat-
tern; see Figure 1), i.e., curved inwards. In the RF4
pattern, RF peaks form corners or convex maxima
which are at the diagonals of the pattern.

In the first and the last experiments, the target
pattern sides have convex curvature or ‘‘convex RF’’
with respect to the center of the display. The baseline
pattern was a circle with constant curvature. In the
second experiment, we investigate the discrimination of
shape with concave sides, ‘‘concave RF,’’ which is
compared with a baseline shape with straight sides. We
then estimate the efficiency of both classes of contour
feature discrimination by estimating the average local
template efficiency by means of an ideal observer. The
stimuli were designed so that the relative shape
difference between the baseline and target shape was
identical in both concave and convex conditions. Thus
the ideal observer was exactly the same.

Third, we investigate the efficiency of processing
contour features and how they are summed at the
global stage (see Figure 1). In addition to standard
classification images, i.e., internal weighting of stimulus
elements, we analyze weighting of each of the eight
contour features, corresponding to half cycles of RF
modulation (i.e., a peak or a trough). Classification
images by themselves could show lack of global
processing: If classification images contain just one or a
few contour parts, this can be used as a strong
argument against global contour integration. On the

other hand, if contour integration is a global process,
the classification image should contain all contour
parts. However, even if a classification image has all the
contour parts, that does not necessarily imply ‘‘opti-
mal’’ linear integration; another possibility is that the
visual system uses a nonlinear, maximum-of-output
kind of integration from a single best-fitting contour
feature detector. This ‘‘probability summation’’ (see,
e.g., Loffler et al., 2003; Mullen et al., 2011) would still
use all contour features at the early stage, but in a
probabilistic manner; the best-matching detector varies
from trial to trial, and outputs from other detectors are
not used. In this scheme, using the standard linear
method to analyze the data would still result in a
classification image containing signatures from all of
the contour detectors over all trials, even when their
responses are not summed together linearly (see also
Tjan & Nandy, 2006). Therefore, we use the classifi-
cation-image data to test different integration models.
Following the multistage contour integration model
(Figure 1), we assume that the global integration stage
integrates responses of local contour feature detectors
(instead of single contour elements). Responses to
contour features can be approximated from linear
classification-image data. We test the global/local
processing by feeding the stimuli to a model that sums
the outputs of local contour detectors with Minkowski
summation. The Minkowski summation model (see,
e.g., Graham, 1989) is a generalization of the maxi-
mum-of-outputs rule, where a summation parameter
controls the nature of summation from linear to
maximum-of-outputs. We test the model with different
summation parameters from linear to maximum-of-
outputs to estimate which parameter predicts the
observer responses the best.

In the last experiment, the temporal dynamics in
shape integration are investigated using a convex side
stimulus similar to one in the first experiment, but with
very brief stimulus presentation time of 20 ms: ‘‘short-
duration RF.’’ We wanted to study contour integration
in a time-limited condition, as it is often thought that
short stimulus durations allow only a coarse analysis of
more complex stimulus features.

Methods

Participants

Five observers participated in the study. IK is one of
the authors, and VS is a nonnaı̈ve observer. All of the
observers had normal or corrected-to-normal visual
acuity and extensive experience in psychophysical
experiments. The experimental procedure was in
accordance with the Declaration of Helsinki and

Journal of Vision (2014) 14(12):24, 1–19 Kurki, Saarinen, & Hyvärinen 5

Downloaded from jov.arvojournals.org on 09/18/2019



approved by the Ethics Committee of the Institute of
Behavioral Sciences, University of Helsinki. All sub-
jects were volunteers and gave their written consent.

Apparatus and stimuli

Experiments were conducted in a dimly lit room.
Stimuli were created using Matlab 2008b (Mathworks
Inc., Natick, MA) using custom software and the
PsychToolbox 3 extensions (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007; Pelli, 1997). Stimuli were
displayed on a Mitsubishi Diamond Pro 2070 SB
monitor using a Cambridge Research Systems (Cam-
bridge, UK) ViSaGe stimulus generation system that
enables 15-bit luminance resolution.

The stimuli were generated by using a two-step
procedure. The radius rh of the radial frequency pattern
(modulation around the mean radius) is defined in
polar coordinates by

rh ¼ a sinð fhþ /Þ; ð1Þ
where a is the amplitude of the radial modulation, h is
the polar angle, f is the radial frequency (here: 4), and /
is the radial phase. Radial frequency patterns were
presented always at the same phase. A virtual radial
frequency contour where elements were later placed
was computed first. Then the locations of the elements
were chosen by sampling the virtual contour at 32
locations, keeping the distance between the elements
along the contour constant. Generation of the stimulus
is explained in more detail in Appendix A. This method
ensures that the radial modulation of the contour does
not change the local element density, as would be the
case if the element positions had been sampled by using
a constant polar angular separation. Let rT be the
vector that contains the target shape radii and t a
binary vector that encodes the target presence on each
trial of the experiment. Radial modulation of the
stimulus elements around the baseline shape trial k was
coded by vector rk (Equation 2), where nk denotes a
vector of random radial position noise that is added to
the radii of elements. This position noise was inde-
pendent Gaussian random noise (SD¼ 6.20), generated
using the ‘‘randn’’ function of Matlab.2 Thus, we get

rk ¼ tðkÞrT þ nk: ð2Þ
Finally, the baseline radius rb was added. For

experiments with convex shapes, this was the mean
radius (i.e., perfect circle). For concave-shape experi-
ments, the baseline shape was a square RF pattern (see
Figure 2). Thus, radii for the final shape rs were given by

rs ¼ rk þ rb: ð3Þ
The global position of the pattern on the screen was

then randomized by displacing the center of the pattern

by an offset drawn from a uniform random distribu-
tion.

The mean radius of the pattern was 1.58. Elements
were difference-of-Gaussian (DoG) envelopes. The
standard deviation of the center was 5.6 arcmin and of
the surround, 16.9 arcmin. Thus the surround was
rather large and had a low peak contrast (see Figure 2).
The backward mask stimulus was a 6·68 random
(spatial) luminance noise patch, which was spatially
convoluted with the element DoG envelope. Root-
mean-square contrast of the noise was 25%.

Procedure

A one-interval shape discrimination task with a four-
point confidence rating procedure (see also Li, Klein, &
Levi, 2006; Li et al., 2004) was used. The rationale for
using a four-point rating procedure is that it provides
more information about outcome of perceptual pro-
cessing compared to yes/no answers; effectively mea-
suring with a 4-point scale leads to a smaller estimation
error in classification images (Murray et al., 2002). The
trial started with a blank get-ready period (250 ms),
followed by the fixation screen (250 ms). The stimulus
was then displayed (200 ms, except for the short-
duration experiment, where it was 20 ms), followed by
a backward luminance noise mask (500 ms). The
observers’ task was to indicate whether the noisy RF
stimulus resembled more the target (RF) shape or the
baseline (circle/square) shape. The observer gave the
confidence rating response of seeing the target versus
the baseline (sure target, unsure target, unsure baseline,
sure baseline). An audio feedback was provided
immediately for incorrect answers. The feedback was
not dependent on the confidence level. After that, the
next trial started immediately. The shape amplitude of
the RF target stimulus was adjusted so that the
proportion of correct responses was about 75%, using
the QUEST procedure (Watson & Pelli, 1983).
Experiments were conducted in blocks of 100 trials,
with different conditions in balanced order. Before
starting the experiments, subjects practiced at least two
blocks for every condition.

For every trial, the radial position noise sample and
the response of the observer were saved for later
analysis. Observers ran between 2,000 and 3,000 trials
in each condition. Final thresholds were computed
from the mean of the last 20 experiment blocks (last 10
experiment blocks in the short-duration condition,
where some thresholds were initially very high).

Linear observer model and data analysis

We analyzed both standard classification images and
contour feature weights.

Journal of Vision (2014) 14(12):24, 1–19 Kurki, Saarinen, & Hyvärinen 6

Downloaded from jov.arvojournals.org on 09/18/2019



We assume that the response variable (visual
system’s internal response) in trial k is a function of the
linear cross correlation gk between the radial modula-
tion rk of shape elements and the internal shape
template w, which determines how information at each
location of the contour is used for the perceptual
decision (here, we assume that w has a unit length, i.e.,
wTw¼ 1). As the baseline shapes’ (circle or a square RF
pattern) radii rb were added to all stimuli within an
experimental condition, and since the cross-correlation
operation is linear, the cross correlation with the
template adds just a constant in all trials. We can
therefore subtract the baseline shape rb from the
stimulus rs, i.e., assume that only modulations around
the baseline shape are used. Lastly, to represent the
internal noise in the visual system, a normally
distributed scalar ek is added to the cross correlation
between the shape template and the stimulus radial
information. Thus, we have

gk ¼ rT
k wþ ek: ð4Þ

The observer responds with four confidence ratings
by comparing the response with a set of internal
criteria. An observer’s confidence rating response ak on
trial k is l when (if and only if) response gk falls between
criteria c ¼ [�‘, c2, c3, c4, ‘] ca and caþ1:

ak ¼ l; iffcl � gk , clþ1: ð5Þ
Since the target shape rT was not varied in an

experimental condition and its amplitude was almost
constant, we approximate that the match between the
template and the target is a constant. The expectation
for a positive ‘‘target seen’’ response, i.e., a response
exceeding criteria c, can be written as Equation (6). The
term nk(i) represents the position noise of the ith
element on the kth trial. Noise is weighted by elements
1–32 of vector of covariates w. Since the match between
the template and the target is a constant, we use the
33rd regressor b to represent the constant target
presence response (coded as a dummy variable) in those
trials where the target was present. This gives

Eðy. cÞ ¼ /
�
w1nkð1Þ þ w2nkð2Þ þ w3nkð3Þ

þ . . .þ w32nkð32Þ þ btðkÞ � c
�
; ð6Þ

where / is the standard cumulative normal distribution
function. This formulation allows estimation of a
classification image using only presented noise masks,
in both target and baseline trials without the target
pattern and four-point observer responses. This ensures
that any patterns in classification images that resemble
the target cannot be caused by the target stimulus. We
use the generalized linear model (GLM) to estimate the
weights w (the classification image). More specifically,
we use the ordered probit regression. Recent studies

have shown that using maximum-likelihood GLM can
lead to a smaller estimation error than the standard
weighted sums method (Knoblauch & Maloney, 2008;
Murray, 2011). The Matlab Statistics Toolbox function
‘‘mnrfit’’ was used for GLM. This procedure returns
an estimate of the template up to a scale factor, which is
proportional to internal noise (Knoblauch & Maloney,
2008; Murray, 2011).

Finally, we tested the statistical significance for
shape templates as well as the template difference (for
the difference between concave and convex pattern)
using a nested hypothesis likelihood ratio test (Kno-
blauch & Maloney, 2008, 2012). In the template
significance test (T1), we compared an unconstrained
GLM model with classification-image weights as well
as a regressor for the stimulus presence to a constrained
model with just one regressor for the stimulus presence.
For the template difference test (T2), we compared an
unconstrained model in which a single classification
image is estimated on both conditions to a model that
had two separate classification images for the convex
and concave conditions. A likelihood ratio test can then
be used to reject the hypotheses that the extra
regressors for the classification-image weights do not
improve the likelihood of the model in a statistically
significant way (T1) and that extra regressors for two
separate classification images (for each condition),
instead of one, do not improve the likelihood in
statistically significant way (T2)—i.e., to test if the
classification images in the convex and concave
conditions were significantly different.

Estimating template absolute efficiency

Absolute efficiency F2
o is a measure of observed

discrimination performance relative to the ideal ob-
server, the maximum theoretical limit. It can be
obtained by comparing the ratio of the observer’s
discrimination performance d 0

o and the ideal observer’s
discrimination performance d 0

* with the same stimuli,
here the stimulus at 75% threshold shape amplitude:

F2
o ¼ ðd 0

o=d 0
*Þ

2: ð7Þ
We asked how well the classification image is able to

predict the observed absolute efficiency (see also
Murray et al., 2005). The performance of a linear
observer is dependent on two factors: the sampling
efficiency or the match between the template and the
stimulus, and the amount of internal noise.

To quantify the sampling efficiency q2
w of a shape

template, we compare how well the relative weighting
of the estimated template matches the ideal weighting.
This was done by comparing the normalized classifi-
cation image ŵn, normalized so that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵn

Tŵn

p
¼ 1, and

the ideal template w
*,
which is the normalized target
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profile (see dashed lines in Figure 4):

q2
w ¼ ðŵ

T
n w*Þ2: ð8Þ

The expected absolute efficiency F2
w for a linear

observer with sampling efficiency q2
w, internal noise

standard deviation r̂i, and external position noise
standard deviation r̂i (Burgess, Wagner, Jennings, &
Barlow, 1981; see also Eckstein, Pham, & Shimozaki,
2004; Murray et al., 2005) is

F2
w ¼

q2
w

1þ r̂2
i

r2
e

� � : ð9Þ

From the definition of the probit model and
(internal) shape template, it follows that for a linear
observer, the expected GLM classification image is
proportional to the observer’s shape template divided
by the amount of internal noise (see also Knoblauch &
Maloney, 2008; Murray, 2011). Thus we estimate r̂i

from the length of the nonnormalized classification
image ŵ:

r̂i ¼
1ffiffiffiffiffiffiffiffiffi

ŵT ŵ
p : ð10Þ

Computer simulations (results not shown) were used
to test the method, and we found that it is reasonably
accurate when the internal-to-external noise ratio is
within the range of 0.5–2, as was found to be the case
here. A good match between the predicted efficiency F2

w

and observed efficiency F2
o suggests that the linear

model is able to explain the shape discrimination
performance.

Feature weight analysis

We investigated the relative weight that the
observer gives for contour features: corners and sides.
More specifically, we divided the target RF4 pattern
of 32 elements into eight parts, each consisting of one
contour feature.3 The contour features here each
contained three elements, as every fourth element was

Figure 3. (A) Discrimination thresholds for all subjects and conditions in arc minutes (0). Thresholds are lowest in the convex and short-

duration conditions. (B) Template sampling efficiency for different stimuli and conditions (blue: convex; red: concave). Error bars

represent one standard error. Sampling efficiency is higher in the convex and lower in the concave condition. (C) Comparison of

predicted absolute efficiency for a linear observer using classification image and the observed absolute efficiency. Correlation is high

(r ¼ 0.89). The average predicted efficiency is about 10% lower than the observed.
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a zero crossing and thus did not contain radial
modulation. Let p ¼ [1, 4, 8, . . . , 32] be the vector
containing element position indices. The contour
feature weight h(i) of the ith contour feature was
computed by cross correlating the elements of the
normalized classification image ŵn at the locations of
the jth feature (starting from location p(j)) and the
corresponding locations on the ideal shape template
w
*
:

hðiÞ ¼
XpðiÞþ2

j¼pðiÞ

�
ŵnðjÞw*ðjÞ

�
: ð11Þ

An ideal detector would weight all features with 1/8
weights. However, it should be noted that as the
normalization operation takes a sum of all contour
features, this analysis does not necessarily reveal the
true efficiency of a single feature detector independently
of others. Thus, the absolute weighting is not mean-
ingful. The goal here is to compare classes of feature
detectors.

Nonlinear integration analysis

As an alternative to the linear integration model
(Equation 4), we consider the Minkowski summation

model (Figure 1) with nonlinear integration of contour
feature detector outputs. The first feature detector stage
has eight feature detectors that code the local curvature
information (corners and sides) by cross correlating the
local stimulus information in an area spanning three
elements. The response of the ith local feature detector
f(i) to pattern rk, which was presented in the kth trial, is
then

f ðiÞ ¼
XpðiÞþ2

j¼pðiÞ

�
ŵnðjÞrkðjÞ

�
: ð12Þ

The global response gk in the kth trial is then
computed by taking the Minkowski nonlinear sum of
local matches,

gk ¼
�X

j

fðjÞc
�1=c
þ ek; ð13Þ

where c is the parameter controlling the nonlinearity of
summation. A value of c¼1 equals linear integration of
contour features, being equivalent to the linear model
(Equation 4). With increasing c, the best-matching
feature becomes more dominant. A value of c¼ ‘

means a winner-takes-all scheme, where the response is
determined by just the best-matching feature. The

Figure 4. Classification images for a convex (blue) and concave (red) RF4 pattern plotted against radial angle. The estimated internal

template (element information weighting) is plotted against the radial angle of the elements. RF peaks correspond to corners of the

pattern; RF troughs correspond to sides (convex/concave) of the pattern. The target pattern, which is also an ideal template (not

normalized in these plots), is shown by a dashed line. Classification images are plotted in arbitrary scale; error bars represent 1

standard error of the mean. Panels represent different subjects; the average classification image is on the bottom right.
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internal response is translated to the observer’s
response using Equation 5.

Nonlinear summation was investigated by using the
same stimuli shown to subjects as an input to the model
(Equations 12 and 13) and comparing how well the
model explained the observer responses. Weight
functions of the local mechanisms were taken from the
linear classification image. As observer confidence
rating scale responses were categorical in nature, we
thresholded the model responses so that the number of
response categories and their relative frequencies were
matched, allowing the use of rank (categorical)
correlation as a metric for the goodness of fit (model–
observer correlation). More specifically, we (1) com-
puted the cumulative distribution for observer re-
sponses from the relative confidence rating frequencies,
using a standard signal-detection approach; (2)
thresholded the model responses to category responses,
seeking the thresholds by matching the quantiles in the
model’s response distribution with psychophysical
data; and (3) quantified the match between the
categorical model and observer responses by using
Spearman’s rho rank correlation. This procedure does
not require model responses to be normal, and
moreover, it is not dependent on an observer’s internal
criteria (like simple percentage of matches). We
computed the matches separately for target-present and
target-absent data. For estimating the best fits, we took
the mean of target-present and target-absent fits.

We tested the accuracy of the c estimation method
using simulations (see Appendix B). We found it to be
reasonably good near the range of best-fitting c,
although some downward bias was present at higher
values.

Results

Performance

We found that mean discrimination thresholds
(Figure 3A) for different contour shapes varied
systematically, being highest for the short-duration
contour (14.40), next highest for the concave contour
(4.30), and lowest for the convex contour (2.50). The
difference in thresholds across all conditions was
statistically significant across the subjects, repeated-
measures ANOVA F(2, 8) ¼ 9.55, p ¼ 0.008. The
difference between concave and (long-duration) convex
conditions was also significant across the subjects,
t(4)¼�10.39, p ¼ 0.005.

We then computed the absolute efficiencies, com-
paring human performance with the ideal observer’s
performance. This is shown in Figure 3B. The average
absolute efficiency was highest for the convex contour

(0.36) and somewhat lower for the concave contour
(0.12), t(4) ¼�3.72, p ¼ 0.02.

Classification images

Classification images represent the estimated weight
that the visual system places on each contour element
for perceptual decisions. These are represented as
graphs where the y-axis displays the estimated internal
shape template weight of each element, plotted against
the radial angle (position). Target RF pattern modu-
lation (which is also an ideal template) is plotted as a
reference. In this representation, RF peaks correspond
to the corner contour feature locations, and troughs to
side contour feature locations. Classification-image
weights in Figure 4 are nonnormalized regression
weights. Individual statistics are presented in Table 1.

Statistical testing with short-duration classification
images showed that not all templates were statistically
significant as a whole, so we restricted the analysis of
these data to differences between corner and side
features and excluded it from other template compar-
isons.

We then used concave- and convex-condition clas-
sification images to make a prediction for the
discrimination efficiency of a linear observer (Figure
3C). A good match between these two suggests that a
template-matching model can explain quantitatively (at
least to an approximation) the contour integration
performance on the task. We found a high correlation
between the predicted efficiency and observed efficien-
cy, r¼ 0.89, p ¼ 0.0005. However, the predicted
efficiency is some 10% lower than what was observed.

Convex and concave RF4 contours

In the convex condition, all subjects show nonzero
weights for nearly all contour features (convex sides
and corners, corresponding to RF troughs and RF
peaks; Figure 5, blue plots). This suggests that nearly
all parts of the contours are processed. We quantified
the possible differences in contour feature preference by
taking the mean of estimated feature weights (see
Equation 9). Average contour feature weights (Figure
6) show that no systematic preference in using corner
(RF peak) or side (RF trough) features can be seen in
any observer. Estimated templates resemble the target
closely; this was reflected in high sampling efficiency
(on average 80% in the convex condition; Figure 3B).

For concave contours, most observers still tend to
process at least most of the contour parts (Figure 5, red
plots). However, contour feature preference is no
longer even. Especially naı̈ve observers (TP, JH, SS)
rely predominantly on a set of local features or a single
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contour feature and use the others less. Interestingly,
the average contour feature weights reveal that
observers also show a preference for contours of a
certain feature type (concave sides or RF troughs,
corners or RF peaks), but this is not systematic across
the observers. IK and VS weight more corner features,
whereas TP, JH, and SS prefer side features (Figure 6).
Average template sampling efficiency was lower that in
the convex condition, t(4)¼ 3.31, p ¼ 0.03, but still
rather high (average 55%).

No systematic geometric location preference (such as
left upper corner) seems to exist across subjects in either
of the conditions (see average data in Figures 4 and 5).

Short-duration processing

As short-duration classification images were noisy,
we restrict our analysis to average weights that the
observers assign to corner and (convex) side features.
All observers show more efficient processing of corner
features relative to side features, t(4)¼ 7.20, p ¼ 0.006
(Figure 6).

Nonlinear integration

Goodness of fit between model and observer
responses (model–observer response correlation) at
various levels of nonlinear integration (c) is shown in
Figure 7. Fit curves are clearly unimodal; curves peak

around c¼ 1, which is equivalent to linear integration.
There is little evidence for any nonlinear integration, as
higher c values—i.e., maximum-of-outputs integra-
tion—provide a low correlation with human responses.

Discussion

Mechanisms and integration of contour
information

The main purpose of this study was to shed light on
psychophysical mechanisms underlying contour inte-
gration, by using the position noise classification-image
paradigm. We found that shape discrimination perfor-
mance could be predicted quite accurately by a
template-matching model using the estimated classifi-
cation image. The correlation between estimated and
predicted templates was high; predicted efficiencies
were just about 10% lower than observed. It should be
noted that absolute efficiency is proportional to the
square of the discrimination index (d 0), a more
commonly used measure for performance. Expressed in
d 0, the underprediction would be only about 5%. In
previous studies, it has also been found that classifica-
tion images slightly underpredict the true efficiency (see
also Murray et al., 2005). This may be caused by factors
such as phase or (here perhaps) feature location
uncertainty. We conclude that the high correlation
between the model prediction and observed efficiency,

Observer IK VS SS TP JH

T1 (cv)

Dev M11/M10 6,063/7,081 7,082/7,258 3,918/4,414 3,835/4,472 3,106/3,532

v2(32) 1,023 175 496 637 429

p ,10�6 ,10�6 ,10�6 ,10�6 ,10�6

T1 (cc)

Dev M11/M10 4,020/4,350 7,092/7,283 4,163/4,341 4,219/4,695 3,729/4,035

v2(32) 330 191 178 476 306

p ,10�6 ,10�6 ,10�6 ,10�6 ,10�6

T2 (cv, cc)

Dev M21/M20 10,092/10,208 14,249/14,296 8,178/8,282 8,224/8,437 6,957/7,068

v2(32) 116 47 104 212 112

p(.v2) ,10�6 0.045 ,10�6 ,10�6 ,10�6

Th (cv, cc)

t(19) �4.80 �5.00 �11.19 �20.09 �8.53
p 0.00012 0.00008 ,10�6 ,10�6 ,10�6

Table 1. Statistical tests for individual data in the convex and concave conditions. We used nested hypothesis likelihood ratio tests.
‘‘T1’’ is the test for significance of classification-image weights. ‘‘Dev’’ is the deviance (twice the negative log likelihood) for a model.
The full model (M11) is the unconstrained GLM model with classification-image weights. It was compared with a model that had only
one regressor for target presence (M10). ‘‘T2’’ is the test for template difference. There, an unconstrained model (M21) had separate
classification-image weights for convex and concave conditions. It was compared with a model (M20) where just one set of weights
was estimated for both conditions. Rows marked p give the p-value for v2 test statistics. ‘‘Th’’ is the t-test value for the discrimination
threshold difference.
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as well as relatively accurate overall performance,
suggests that a simple model matching local contour
parts and an internal shape template can capture some
key aspects of contour integration.

Template-matching models have not been previously
tested in shape perception, presumably because most of
the studies have used static (nonstochastic) stimuli with
tasks that measure fine visual discrimination process-
ing. Our results complement these findings, showing
that for stochastic shape stimuli, the visual system
calculates the linear match between noisy input and
shape template in a nearly global manner. We do not
aim to present a biologically plausible model here, but
we point out that certain features of previous biolog-
ically inspired models (Poirier & Wilson, 2007, 2011),
such as global pooling at the integration stage, are in
line with our results, as well as postulated high-level
shape templates.

Integration of contour features in shape
perception

Classification images in both conditions show that
observers used all or most of the contour features
(sides, corners), suggesting that all contour parts
contribute to shape processing. We argue that classi-

fication images will provide a major advantage over
many previous designs that have sought to investigate
global/local integration by adding/subtracting the
number of contour features (Bell & Badcock, 2008;
Hess et al., 1999; Schmidtmann et al., 2012), since
observers could switch to a more local processing
strategy when the stimulus has only certain parts. It is
not trivial to generalize these results to the global
integration task. Moreover, it has been speculated that
the number of stimulus fragments may have an
influence on how attention is distributed to contour
information (Mullen et al., 2011). With classification
images, we can use the whole intact stimulus while still
being able to infer how its different parts are processed.

We found that nonlinear, maximum-of-outputs
integration of contour features did not provide a better
fit to the data, but instead that linear summation
consistently gave the best response correlation between
the model and observers. Also, we found that weighting
of all contour features was rather even. This supports
the idea of global and linear integration of shape
feature information, even when shape phase was not
randomized (but the location of the pattern was). Our
results are in line with studies where nearly optimal
integration of RF contour fragments has been reported
(Dickinson et al., 2012; Hess et al., 1999; Loffler et al.,
2003). This further supports the idea that shape

Figure 5. Comparison of average contour feature weights in convex (blue) and concave (red) RF patterns. Bars with upward triangles

show the average corner feature weights, and bars with downward triangles show the average weighting of the side features.

Amplitudes are relative to 1/8, which indicates a perfect match between the feature in the classification image and the feature in the

ideal template. ‘‘Average’’ shows the average across the observers. Error bars represent 1 standard error of the mean.
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processing is mediated through neural mechanisms that
are sensitive to more global and object-centered
properties of the stimulus instead of local cues (such as
single corner or side), in line with neurophysiological
evidence for neurons at higher stages of the ventral
processing stream that are specialized for extraction of
contour and shape information (Gallant et al., 1996;
Nandy et al., 2013; Pasupathy & Connor, 1999, 2002;
Yau, Pasupathy, Brincat, & Connor, 2013).

Side and corner features

We derived the classification images for convex and
concave RF4 shape targets. We found that sampling
efficiency of processing was better for the target with
convex sides compared to the target with concave sides,
even when their ideal observer was identical. This is
likely to be explained by a poorer sampling and
processing of contour information (instead of a
difference in internal noise level), as the shape-template
efficiency was also lower. This is in line with the idea

that the visual system has increased sensitivity for
convex contour information (Bertamini & Mosca,
2004; Driver & Baylis, 1995; Loffler et al., 2003).
However, in the concave condition the weighting was
not systematically inferior for concave side features
compared to corner features. Another possibility is that
contour templates in the convex-shape condition reflect
more typical and better learned shapes, and thus the
templates are more efficient for that reason.

With the convex target, we found no systematic
differences in processing of corners (RF peaks) and
convex side features. Further, all contour parts were
used with a fairly even weighting. However, when the
target was a concave shape, we found inferior
processing of concave side features (RF troughs)
compared with corners (RF peaks) in three of the five
observers. The other two observers showed a preference
for concave sides over corner features.

As noted previously, noise-masking studies (Hess et
al., 1999) and pattern-masking studies (Habak et al.,
2004; Poirier & Wilson, 2007) have provided conflicting
results on the relative importance of corner and side

Figure 6. Average feature weights across locations; upward triangles are corner features and downward triangles are side features.

‘‘Ave’’ shows the average across the observers. Top panel: Blue bars show average feature weights for convex and red bars for

concave patterns. Differences between weightings of the contour features are not systematic across the observers. Bottom panel:

Average feature weights for the short-duration convex pattern. Error bars represent 1 standard error of the mean. A preference for

corner features (RF peaks) can be seen.
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features. Here, we used a more direct approach and
found no systematic preference for any of the
observers. Similar results have recently been reported
using an adaptation paradigm (Bell, Hancock, King-
dom, & Peirce, 2010). Moreover Mullen et al. (2011)
observed no systematic difference in discrimination
thresholds for isolated corner and side features.
Nevertheless, data from the concave condition show

that observers may prefer either the side or the corner
features. This may indicate that the visual system is
able to prefer a set of contour features in a contour
through an attentional strategy or a similar mechanism,
which may explain why different indirect experimental
manipulations, like RF or luminance masking, have
different effects on the relative efficiency of side and
corner feature processing.

Figure 7. Summation analysis. Contour feature integration was investigated by comparing how well a nonlinear Minkowski contour

feature integration model could predict the observer responses at various levels of nonlinearity. The two top panels show the model

performance r (model–human response correlation) against c, the parameter controlling the nonlinearity of summation. In the

average panel, the correlation is expressed as a percentage with respect to c¼ 1 for each subject. Blue curves: convex condition; red

curves: concave condition. Results peak near c ¼ 1, implying linear integration. Bottom panel: best-fitting summation values. Error

bars represent 1 standard error of the mean, obtained by bootstrap resampling.
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In the time-limited short-duration condition, we
found that estimated templates were very noisy, but
observers still did use corner features quite systemat-
ically. A reason for investigating this condition was
that results of the convex and concave RF conditions
did not show consistent differences between different
feature types (corners/sides). Yet, we found that
templates in these long-duration experiments were
overall rather efficient, i.e., the observers used contour
features in an optimal manner. A motivation in the
short-duration experiment was to test whether higher
sensitivity for certain contour features would manifest
only in conditions where the shape integration was
challenging. The results show that in a short-duration
condition, corner processing can be more efficient than
side feature processing. However, it is unclear whether
this reflects processing at the global integration stage,
as the classification images were highly noisy and do
not clearly support global processing. We stress that
previous studies have provided conflicting results on
possible preference for side or corner features, and we
conclude that preference for certain contour features
may be dependent on factors such as stimulus duration
and RF amplitude (which was also highest in the short-
duration experiment).

General conclusions

In this study, we used an efficient variant of the
classification-image method to directly estimate the
shape templates for different radial frequency shapes
and showed that the midlevel visual task of contour
integration can be explained—at least to a first
approximation—by a template-matching model that
computes a linear sum between the noisy stimulus
information and the internal shape template that
determines how the shape features are weighted.
Discrimination efficiency for different shapes could be
predicted from the classification-image template. Shape
templates contained most or even all of the contour
parts (especially in the convex condition), suggesting
global integration of contour information, in line with
previous evidence. Further, we analyzed the nature of
feature integration in radial patterns by comparing
responses of nonlinear models and human data to the
same stimulus, and found that linear summation of
features was more likely than nonlinear probability
summation.

Unlike previous masking studies and studies with
contour parts, we used a more direct approach to
estimate the relative contribution of corner and side
features and found no systematic preference for either
one, except in the short-duration condition, which may
suggest a preference for corners in time-limited
processing.

Lastly, this study shows how the classification-image
method can be further developed for research questions
like contour integration that lie outside the basic
luminance noise-masking paradigm. The method al-
lows formulation of exact computational models on
how complex midlevel tasks like contour integration
work, as well as measurement of the information the
observer uses in such a task without relying on indirect
stimulus manipulations.

Keywords: radial frequency pattern, classification
image, shape perception, global processing
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Footnotes

1It should be noted that even when we manipulate
and analyze the stimulus in the position domain, we do
not need to assume that shape coding is based on
analyzing explicitly the position of the elements.
Positional perturbation also changes the local orienta-
tions and spatial phase in the stimulus, and it is likely
that positional signal is in fact extracted in the visual
system by a local orientation and phase analysis.

2The prime symbol refers to a visual angle of 1 arc
minute.

3Note that each feature in the ideal template had the
same total energy (sum of squared deviations).
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Appendix A: Stimulus generation

Radial frequency patterns are conventionally defined
in polar coordinates. In a perfect circle (a¼ 0), the
spatial distances between the elements in the contour
are exactly proportional to the angular distances
between the elements. However, in general this is not
true. Spacing elements by equal polar angle could cause
a local density cue to the corners and sides of the
pattern. Therefore, we designed the stimulus so that the
Cartesian distance between elements at the radial
frequency contour remains constant regardless of the
pattern.

In polar coordinates, a radial frequency pattern is
defined as a sinusoidal modulation of the radius as a
function of polar angle. Let rm be the mean radius of
the pattern, f the radial frequency, / the phase, and a
the amplitude. Then

rðhÞ ¼ a sinðfhþ /Þ þ rm: ðA1Þ
We first computed a virtual radial frequency contour

by generating the set of possible element locations in
Cartesian coordinates. Contour locations p(k) were
added by the following iterative algorithm:

pðkþ 1Þ ¼ pðkÞ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
0 ðpðkÞÞ2 þ y

0 ðpðkÞÞ2
q ; ðA2Þ

where x0(p(k)) and y0(p(k)) are the derivatives of the RF
pattern at point p(k):

x0
�

pðkÞ
�
¼ af cosðfhþ /ÞcosðhÞ

�
�
a sinðfhþ /Þ þ rm

�
sinðhÞ; ðA3Þ

y0
�

pðkÞ
�
¼ af cosðfhþ /ÞcosðhÞ

þ
�
a sinðfhþ /Þ þ rm

�
sinðhÞ: ðA4Þ

New locations were added to the virtual contour
until the polar angle of the last location was 2p radians
from the first location.

Next, 32 elements were placed on the virtual contour
locations so that the distance between the elements was
constant. The radial angle of the first element was
randomized. Finally, the global position of the pattern
was jittered by adding a random spatial offset.

Figure A1. Nonlinear summation analysis accuracy simulation.

The estimated Minkowski summation parameter c is plotted

against true c. The black line represents the mean error (mean

squared estimation error as a percentage of squared true

value); the green line represents the mean estimated value. At

low c values, the method is reasonably accurate, but at higher c
values it has a downward bias.
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Appendix B: Precision of the
nonlinear summation analysis

We tested the accuracy and bias of the nonlinear
summation analysis that was used in the analysis
(Equation 13). The observer model summed the
responses to eight local features (see Methods) non-
linearly, using Minkowski summation using a noisy
version of an optimal template. The parameters of the
observer model (template efficiency, performance,
internal noise ratio, etc.) were selected so that they
would match the parameters in the experiment as
closely as possible. We then estimated the Minkowski

summation parameter c by using the same procedure as
with the empirical data.

The number of trials was set to 2,000. We tested
summation parameter values from 0.5 to 10 with 1,000
repetitions each. It should be noted that the Minkowski
model’s behavior does not change much when values of
c exceed about 4.

Figure A1 shows the accuracy of the method (mean
prediction error as a percentage of true value) plotted
against true value of c. The green curve represents the
average estimated c. Accuracy is reasonably good when
c is around 1, but at large values, there is a downward
bias, i.e., the model tends to underestimate the real
summation.
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