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We investigate whether a computational model of V1
can predict how observers rate perceptual differences
between paired movie clips of natural scenes. Observers
viewed 198 pairs of movies clips, rating how different
the two clips appeared to them on a magnitude scale.
Sixty-six of the movie pairs were naturalistic and those
remaining were low-pass or high-pass spatially filtered
versions of those originals. We examined three ways of
comparing a movie pair. The Spatial Model compared
corresponding frames between each movie pairwise,
combining those differences using Minkowski
summation. The Temporal Model compared successive
frames within each movie, summed those differences for
each movie, and then compared the overall differences
between the paired movies. The Ordered-Temporal
Model combined elements from both models, and
yielded the single strongest predictions of observers’
ratings. We modeled naturalistic sustained and transient
impulse functions and compared frames directly with no
temporal filtering. Overall, modeling naturalistic
temporal filtering improved the models’ performance; in
particular, the predictions of the ratings for low-pass
spatially filtered movies were much improved by
employing a transient impulse function. The correlations
between model predictions and observers’ ratings rose
from 0.507 without temporal filtering to 0.759 (p¼
0.01%) when realistic impulses were included. The
sustained impulse function and the Spatial Model carried
more weight in ratings for normal and high-pass movies,
whereas the transient impulse function with the
Ordered-Temporal Model was most important for
spatially low-pass movies. This is consistent with models
in which high spatial frequency channels with sustained
responses primarily code for spatial details in movies,
while low spatial frequency channels with transient
responses code for dynamic events.

Introduction

Our perception of the world is a product of the
patterns of neural activation across the sensory
system. In vision, there has been extensive research
examining the pattern of activity of V1 neurons to
different types of visual stimuli, from simplistic
gratings to more complex natural images. Several
computational models have been proposed to simulate
how the visual system responds to static natural-image
stimuli. Although the coding of motion and temporal
change by single neurons has been well studied, it is
only relatively recently that the perception of natu-
ralistic movies has been the subject of psychophysical
investigation (e.g., Hasson, Nir, Levy, Fuhrmann, &
Malach, 2004; Hirose, Kennedy, & Tatler, 2010; Itti,
Dhayale, & Pighin, 2003; Smith & Mital, 2013;
Troscianko, Meese, & Hinde, 2012; Wang & Li, 2007;
Watson, 1998).

Previously, we have shown that a V1-based Visual
Difference Predictor (VDP) model, derived from one
used to explain the contrast detection thresholds of
pairs of sine-wave gratings (Watson & Solomon, 1997),
can generate adequate predictions of how observers
perceive differences between pairs of static natural
scenes (To, Baddeley, Troscianko, & Tolhurst, 2011;
To, Lovell, Troscianko, & Tolhurst, 2010; Tolhurst et
al., 2010). We presented observers with pairs of
photographically derived still images and asked them to
rate the perceived difference between the two images.
We then built different models that compared the
paired images in a head-to-head fashion, and found
that they were moderately successful in predicting
observers’ ratings for a large variety of forms of image
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difference. The models were most successful when they
included physiologically realistic mechanisms, such as
nonspecific suppression or contrast normalization
(Heeger, 1992), surround suppression (Blakemore &
Tobin, 1972), and Gabor receptive fields that are
elongated and whose bandwidth changes with best
spatial frequency (Tolhurst & Thompson, 1981). A
model based on complex cells was more successful than
one based on simple cells. Here we ask whether such
models can be extended to the perception of natural-
image movie stimuli.

These visual discrimination models can generate
decent predictions of how well the visual system can
discriminate between static images. However, the visual
environment is obviously in constant flux and natural
scenes are rarely still. It is therefore important to
investigate whether such modeling can be extended to
dynamic movie clip pairs. Modeling the task of
discriminating between two naturalistic movie clips
needs extra consideration over the task of discriminat-
ing two static images.

First, since movie clips are composed of multiple
frames, observers must first process all the frames
within each movie separately and must then compare
some percept or memory of the frames between the two
movies. While comparing static natural scenes requires
only one head-to-head computational comparison, in
the case of comparing movies that are composed of
numerous frames, multiple comparisons need to be
made and many comparison rules are possible. It is
possible that observers might compare the frames
between movies frame by frame; this is suggested by
Watson (1998) and Watson, Hu, and McGowan (2001)
in their biologically inspired model for evaluating the
degree of perceived distortion caused by lossy com-
pression of video streams. Observers might also
compare the frames within each movie clip separately
before comparing the two clips, perhaps by coding
object movement within the movies, as has been
suggested for enhanced measures of video distortion
(e.g., Seshadrinathan & Bovik, 2010; Vu & Chandler,
2014; Wang & Li, 2007). It is important to identify the
best rule to describe how movie frames across movies
are compared.

Second, when constructing a V1-based computa-
tional model of visual discrimination of dynamic
images, one must also obviously consider the temporal
sensitivity of the visual system. One hypothesis has it
that, in the early stages of the visual system, there are
two parallel pathways. The transient or magnocellular
(M-cell) pathway acts primarily on low spatial
frequencies while the sustained or parvocellular (P-
cell) pathway acts primarily on middle and high
spatial frequencies (Derrington & Lennie, 1984;
Gouras, 1968; Hess & Snowden, 1992; Horiguchi,
Nakadomari, Misaki, & Wandell, 2009; Keesey, 1972;

Kulikowski & Tolhurst, 1973; Tolhurst, 1973, 1975).
The two pathways have been proposed to convey
different perceptual information about temporal and
spatial structure (Keesey, 1972; Kulikowski & Tol-
hurst, 1973; Tolhurst, 1973).

In the experiment described here, we presented
observers with pairs of stimuli derived from achromatic
movies of natural scenes and have asked them to rate
how different these clips appear to them. We have
examined different derivations of our static V1-based
VDP model for static images to accommodate observ-
ers’ magnitude estimation ratings of dynamic natural
scenes. We examine the different contributions of the
transient low spatial-frequency channels compared to
the sustained high spatial-frequency channels. We also
examine different possible strategies for breaking the
comparison of two movies into multiple head-to-head
comparisons between pairs of frames. Some of the
results have been reported briefly (To, Gilchrist, &
Tolhurst, 2014; To et al., 2012).

Methods

Observers viewed monochrome movie clips present-
ed on a 19-in. Sony CRT display at 57 cm. The movie
frames were 240 pixels square, subtending 128 square in
the center of the screen. Apart from that central square,
the rest of the 800 · 600 pixels of the display were mid-
gray (88 cd.m�2). In the times between movie clips, the
whole screen was maintained at that same gray.
Presentation was through a ViSaGe system (Cambridge
Research Systems, Rochester, UK) so that nonlinear-
ities in the display’s luminance output were corrected
without loss of bit resolution. The display frame rate
was 120 fps (frames per s).

In a single trial, the observers viewed two slightly
different movie clips successively, and they were asked
to give a numerical magnitude rating of how large they
perceived the differences between the clips to be. Each
clip usually lasted 1.25 s and there was a gap of 80 ms
between the two clips in a trial.

Experimental procedure

There were 198 movie clip pairs (see below), and they
were presented once each to each of seven observers. In
addition, a standard movie pair, described below, was
presented after every ten test-trials; the perceived
magnitude difference of this pair was deemed to be
‘‘20.’’ Observers were instructed to rate how different
pairs of movies appeared to them. They were asked to
base their ratings on their overall general visual
experience and were not given any specific instructions
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on what aspects of the videos (e.g., spatial, temporal,
and/or spatio-temporal) they should rely on. They were
told that if they perceived the difference between a test
movie pair to be less, equal, or greater than the
standard pair, their rating should obviously be less,
equal, or greater than 20, respectively. They were to use
a ratio scale so that, if for instance a given movie pair
seemed to have a difference twice as great as that of the
standard pair, they would assign a value twice as large
to that pair (i.e., 40). No upper limit was set, so that
observers could rate large differences as highly as they
saw fit. Observers were also told that sometimes movie
pairs might be identical, in which case, they should set
the rating to zero (in fact, all the movie pairs did differ
to some extent).

Before an experiment, each observer underwent a
training session when they were asked to rate 50 pairs
of movie clips containing various types of differences
that could be presented to them later on in the
experiment. All movie clips (apart from the standard
movie pair) used in demonstration or training phases
were made from three original movies that were
different from the seven used in the testing phase
proper.

The testing phase was divided into three blocks of 66
image pairs. Each block lasted about 15 min and
started with the presentation of the standard movie
pair, which was subsequently presented after every 10
trials to remind the observers of the standard difference
of 20. The image presentation sequence was random-
ized differently for each observer.

Data collation and analysis

For each observer, their 198 magnitude ratings were
normalized by dividing by that observer’s average
rating. Then, for each stimulus pair, the normalized
ratings of the seven observers were averaged together.
These 198 averages of normalized ratings were then
multiplied by a single scalar value to bring their grand
average up to the same value as the grand average of all
the ratings given by all the observers in the whole
experiment. Our experience (To, Lovell, Troscianko, &
Tolhurst, 2010) is that, generally, averages of normal-
ized ratings have a lower coefficient of variation than
do averages of raw ratings.

Observers

The experiment tested seven observers, recruited
from the student or postdoctoral researcher popula-
tions at the University of Cambridge, UK. They all
gave informed consent, and had normal vision after
prescription correction, as verified using Landolt C
acuity chart and the Ishihara color test (10th Edition).

Construction of stimuli

Original movies

The monochrome test stimuli were constructed from
six original color video sequences, each lasting 10 s.
Three of the stimulus movies were of ‘‘environmental
movement’’: e.g., grass blowing, or water rippling or
splashing. One was of a duck swimming on a pond. The
other two were of people’s hands: one person was
peeling a potato, and the other was demonstrating sign
language for the deaf. A seventh video sequence was
used to make a standard video pair.

The video sequences were originally taken at 200 fps
with a Pulnix TMC-6740 CCD camera (JAI-Pulnix A/
S, Copenhagen, Denmark; Lovell, Gilchrist, Tolhurst,
& Troscianko, 2009). Each frame was saved as a
separate uncompressed image: 10 bits in each of three
color planes, on a Bayer matrix of 640 · 480 pixels.
Each frame image was converted to a floating-point 640
· 480 pixel RGB image file with values corrected for
any nonlinearities in the luminance versus output
relation. Each image was then reduced to 320 · 240
pixels by taking alternate rows and columns (the native
pixelation of R and B in the Bayer), and was converted
to monochrome by averaging together the three color
planes. Finally the images were cropped to 240 · 240
pixels. Some very bright highlights were removed by
clipping the brightest image pixels to a lower value.

Stimulus movie clips

From each of the 10-s, 200-fps movies, we took two
nonoverlapping sequences of 300 frames: these will be
referred to as clips A and B. For each of the six testing
movies, the 300-frame clips A and B were each subject
to six temporal manipulations (shown schematically in
Figure 1):

A. Alternate frames were simply discarded to leave 150
frames to be displayed at 120 fps (Figure 1A). These
had natural movement. These clips were the refer-
ences for pairwise rating comparison with the
modified clips below.

B. A glitch, or pause, was inserted midway by
repeating one frame image near the middle of the
movie for a number of frames before jumping back
to the original linear sequence of frames (Figure
1B). The duration of the glitch was varied from 83–
660 ms between the six movies, and between clips A
and B. After discarding alternate frames, the
modified clips still lasted 150 frames, and still began
and ended on the same frame images.

C. The movie was temporally coarse quantized to
make it judder throughout by displaying every nth
frame n times (Figure 1C). The degree of temporal
coarse quantization (effectively reducing the video
clip from 120 fps to 6–25 fps) varied between stimuli
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but all clips still lasted 150 frames and still began
and ended on the same frame images.

D. The speed of the middle part of the movie was
increased by skipping frames (Figure 1D). The
degree of skipping (a factor of 1.2–3.7) and the
duration (from 200–500 ms) of the speeded part
varied between clips and movies. After discarding
alternate frames, the speeded movies still comprised
150 frames; they began at the same point as the
natural movement clips, but they ended further
through the original 10 s video sequence.

E. The speed of the middle part of the movie could be
reduced, by replicating frames in the middle of the
clip (Figure 1E). The degree of replication (speed
reduced by factor of 0.25–0.8) and the duration
(from 300–660 ms) of the slowed part varied
between clips and movies. After discarding alternate
frames, the slowed movies still comprised 150
frames overall; they began at the same point as the
natural movement clips, but they ended at an earlier
point in the original sequence.

F. The speed of the middle part of the movie could be
increased as in Figure 1D, except that, once normal
speed was resumed, frames were added only until
the movie reached the same point as in the natural
movement controls; thus, these speeded-short mov-
ies lasted less than 150 frames (Figure 1F).

The magnitudes and durations of the manipulations
varied between movies and between clips A and B. Of
the five manipulations, the first four (B through E) left
the modified clips with the 150 frames. However, in the
case of the last (F), there was a change in the total
number of frames; these stimuli were excluded from
most of our modeling analysis (see Supplementary

Materials). For a given original video sequence the
frames in all the derived video clips were scaled by a
single maximum so that the brightest single pixel in the
whole set was 255. In summary, for each original video
sequence, we had two clips and five modified variants
of each clip.

In the experiment, each clip was paired against its
five variants, and the natural clip A was also paired
against natural clip B. This resulted in 11 pairs of clips
per video sequence, for a total of 66 pairs in the
complete experiment. Some examples of movie clip
pairs are given in the Supplementary Materials.

Spatial frequency filtering

In addition to the temporal manipulations, each of
the 66 pairs of video clips was replicated with (a) low-
pass spatial filtering, and (b) high-pass spatial filtering.
The frames of each clip (natural and modified) were
filtered with very steep filters in the spatial frequency
domain (Figure 2A, B). The low-pass filter cut off at
1.08 c/8, while the high-pass filter cut-in at 2.17 c/8 but
also included 0 c/8, retaining the average luminance of
that frame. After filtering, the frames were scaled by the
same factor used for the unfiltered clips. Overall, there
were thus 3 · 66 movie-clip pairs used in the
experiment, or 198.

Some examples of single frames from spatially
filtered and unfiltered movie clips are shown in Figure
2C through E.

Spatio-temporal blending

A fuzzy border (30 pixels, or 1.58 wide) was applied
around each edge of each square frame image, to blend
it spatially into the gray background. The 30 pixels
covered half a Gaussian with spread of 10 pixels. The
onset and offset of the movie clip were ramped up and
down in contrast to blend the clip temporally into the
background interstimulus gray. The contrast ramps
were raised cosines lasting 25 frames (208 ms).

Standard stimulus pair

In addition to the 198 test pairs, a standard pair was
generated from a seventh video sequence of waves on
water. The two clips in this pair differed by a noticeable
but not extreme glitch or pause (291 ms) midway in one
of the pair. The magnitude of this difference was
defined as 20 in the ratings experiment. Observers had
to rely on this 20 difference to generate their ratings
(see above).

This standard movie pair served as a common
anchor and its purpose was to facilitate observers using
a same reference point. Its role would be especially
important at the beginning of the experiments when

Figure 1. Schematics of the sequences of frames used to make

movie clips. Panel A shows natural movement: alternate frames

are taken from the original clip and are played back at about

half speed. Panels B–F show various ways (described in the text)

for distorting the natural movement. Note that method F

results in movie clips with fewer frames than the other five

methods.
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observers generated an internal rating scale. This would
prevent a situation in which, for example, an observer
might rate some pairs using some maximum allowed
value only to come across subsequent pairs that they
perceive to be even more different. This standard pair
was made from a different movie clip from the test
stimuli, and was repeatedly presented to the observer
throughout the experiments in the demonstration,
training, and testing phases. Observers were instructed
that their ratings of the subjective difference between
any other movie pair must be based on this standard
pair using a ratio scale, even when the test pairs differed
along different stimulus dimensions from the standard
pair. Our previous discrimination experiments with
static natural images relied on a similar use of ratings
based on a standard pair (e.g., To, Lovell, Troscianko,
& Tolhurst, 2008; To et al., 2010).

While our choice of the particular standard pair and
the particular standard difference may have affected

the magnitudes of the observers’ difference ratings to
all other stimuli, it is unlikely that a different choice
might have modified the rank order across the
experiment.

Visual Difference Predictor (VDP) modeling of
perceived differences

Comparing a single pair of frames

We have been developing a model of V1 simple and
complex cells in order to help explain perceived
differences between pairs of static naturalistic images
(To et al., 2011; To et al., 2010; Tolhurst et al., 2010).
This model is inspired by the cortex transform of
Watson (1987) as developed by Watson and Solomon
(1997). The model computes how millions of stylized
V1 neurons would respond to each of the images under
comparison; the responses of the neurons are then
compared pairwise to give millions of tiny difference
cues, which are combined into a single number by
Minkowski summation. This final value is a prediction
of an observer’s magnitude rating of the difference
between those two images (Tolhurst et al., 2010). For
present purposes, we are interested only in the
monochrome (luminance contrast) version of the
model.

Briefly, each of the two images under comparison is
convolved with 60 Gabor-type simple cell receptive
field templates: six optimal orientations, five optimal
spatial frequencies, and odd- and even-symmetry (each
at thousands of different locations within the scene).
These linear interim responses in luminance are
converted to contrast responses by dividing by the local
mean luminance (Peli, 1990; Tadmor & Tolhurst, 1994,
2000). Complex cell responses are obtained by taking
the rms of the responses of paired odd- and even-
symmetric simple cells; To et al. (2010) found that a
complex-cell model was a better predictor than a
simple-cell model for ratings for static images. The
complex-cell responses are weighted to match the way
that a typical observer’s contrast sensitivity depends
upon spatial frequency. The response versus contrast
function becomes sigmoidal when the interim complex
cell responses are divided by the sum of two
normalizing terms (Foley, 1994; Tolhurst et al., 2010).
First, there is nonspecific suppression (Heeger, 1992)
where the response of each neuron is divided by the
sum of the responses of all the neurons whose receptive
fields are centered on the same point. Second, there is
orientation- and spatial-frequency-specific suppression
by neurons whose receptive fields surround the field of
the neuron in question (Blakemore & Tobin, 1972;
Meese, 2004). The details, assumptions and parameters
are given in To et al. (2010) and Tolhurst et al. (2010).

Figure 2. (A) The low-pass spatial filter applied to the raw movie

clips to make low-pass movies. (B) The high-pass spatial filter;

note that it does retain 0 c/8, the average brightness level. (C–E)

Single frames taken from three of the movie families, showing,

from left to right, the raw movie, the low-pass version, and the

high-pass version.

Journal of Vision (2015) 15(1):19, 1–13 To, Gilchrist, & Tolhurst 5

Downloaded from jov.arvojournals.org on 08/13/2022



Comparing all the frames in a pair of movie clips

Such VDP modeling is confined to extracting a single
predicted difference value from comparing two images.
Here, we elaborate the VDP to comparing two movie
clips, each of which comprises 150 possibly different
frames or brief static images. We have investigated
three different methods of breaking movies into static
image pairs for application of the VDP model. These
methods tap different spatio-temporal aspects of any
differences between the paired movies, and are shown
schematically in Figure 3.
The Spatial Model: Stepwise between-movie comparison
(Figure 3A). Each of the 150 frames in one movie is
compared with the corresponding frame of the other
movie, giving 150 VDP outputs which are then
combined by Minkowski summation into a single
number (Watson, 1998; Watson et al., 2001). This is
one prediction of how different the two movie clips
would seem to be. The VDP could show differences for
two reasons. First, if the movies are essentially of the
same scene but are moving temporally at a different
rate, the compared frames will get out of synchrony.
Second, at an extreme, the VDP would show differ-
ences even if the two movie clips were actually static
but had different spatial content. This method of
comparing frames will be sensitive to differences in
spatial structure as well as to differences in dynamics,
and is a measure of overall difference in spatio-temporal
structure.
The Temporal Model: Stepwise within-movie compari-
son. Here the two movies are first analyzed separately.
Each frame in a movie clip is compared with the
successive frame in the same movie; with 150 frames,
this gives 149 VDP comparison values which are
combined to a single value by Minkowski summation
(Figure 3B). This is a measure of the overall dynamic
content of the movie clip, and is calculated for each of
the paired movies separately. The difference between

the values for the two clips is a measure of the difference
in overall dynamic content. It would be uninfluenced by
any spatial differences in scene content.
The Ordered-Temporal Model: Hybrid two-step movie
comparison. The previous measure gives overall
dynamic structure but may not, for instance illustrate
whether particular dynamic events occur at different
times within the two movie clips (Figure 3C). Here,
each frame in a movie clip is compared directly with
the succeeding frame (as before) but this dynamic
frame difference is now compared with the dynamic
difference between the two equivalent frames in the
other movie clip. So within each movie, the nth frame
is compared to the (nþ 1)th frame, and then these two
differences (the nth difference from each movie) are
compared to generate a between-movie difference. The
149 between-movie differences are combined again by
Minkowski summation. This gives a measure of the
perceived difference in ordered dynamic content,
irrespective of any spatial scene content differences.
This model has the advantage of being sensitive to
dynamic changes occurring both within each movie
and between the two.

Modeling realistic impulse functions

Direct VDP comparisons of paired frames is not a
realistic model since the human visual system is almost
certainly unable to code each 8 ms frame as a separate
event. As a result, it is necessary to model human
dynamic sensitivity. Thus, before performing the paired
VDP comparisons, we convolved the movie clips with
two different impulse functions (Figure 4A) represent-
ing ‘‘sustained’’ (P-cell, red curve) or ‘‘transient’’ (M-
cell, blue curve) channels. The impulse functions have
shape and duration that matches the temporal-
frequency sensitivity functions (Figure 4B) inferred for
the two kinds of channel by Kulikowski and Tolhurst
(1973). The three methods for comparing movie frames

Figure 3. Schematics showing the three methods we used to compare movie clips, based on the idea that we should compare pairs of

movie frames directly, either between the movies (A) or within movies (B, C). See details in the text.
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were performed separately on the movies convolved
with the sustained and transient impulse functions,
giving six potential predictors of human performance.
Note that, in the absence of realistic temporal filtering,
the analysis would effectively be with a very brief
sustained impulse function lasting no more than 8 ms
(compared to the 100 ms duration of the realistic
sustained impulse; Figure 4A).

Experimental results

Reliability of the observers’ ratings

Seven naı̈ve observers were presented with 198 pairs
of monochrome movies and were asked to rate how
different they perceived the two movie clips in each pair
to be. We have previously shown in To et al. (2010) that
observers’ ratings for static natural images are reliable.
To verify the robustness of the difference ratings for
movies pairs in the present experiment, we considered
the correlation coefficient between the ratings given by
any one observer with those given by each other
observer; this value ranged from 0.36 to 0.62 (mean
0.50).

In our previous visual discrimination studies (To et
al., 2010), we have scaled and averaged the difference
ratings of all seven observers to each stimulus pair (see
Methods), and have used the averages to compare with
various model predictions. Although this procedure

might remove any potential between-observer differ-
ences in strategy, it was used to average out within-
observer variability. As in our previous experiments
and analyses, averaging together the results of observ-
ers produced a reliable datasets for modeling.

When observers’ averaged ratings for unfiltered,
high-pass and low-pass movies were compared (see
Figure 5), we found that the ratings for filtered movies
were generally lower than those for unfiltered movies.
This would seem understandable, as unfiltered movies
contain more details.

Observers’ ratings versus model predictions

The average of the normalized ratings for each movie
pair was compared with the predictions obtained from
a variety of different models of V1 complex cell
processing. The correlation coefficients between the
ratings and predictions are presented in Table 1. The
different versions of the model all rely ultimately on a
Visual Difference Predictor (To et al., 2010; Tolhurst et
al., 2010), which calculates the perceived difference
between a pair of frames. Given that the movie clips are
composed of 150 frames each, there are a number of
ways of choosing paired frames to compare a pair of
movie clips (see Methods). The Spatial Model takes
each frame in one movie and compares it with the
equivalent frame in the second movie, and is sensitive
to differences in spatial content and dynamic events in
the movie clips. The Temporal Model compares
successive frames within a movie clip to assess the
overall dynamic content of a clip. The Ordered-
Temporal Model is similar, but it compares the timings
of dynamic events between movie clips.

Figure 4. (A) The impulse functions used to convolve the movie

clips: Sustained (red) and Transient (blue). These impulse

functions have the temporal-frequency filter curves shown in

(B) and are like those proposed by Kulikowski and Tolhurst

(1973) for sustained and transient channels.

Figure 5. The averaged ratings given by observers for the

spatially filtered movies are plotted against the ratings for the

raw, unfiltered versions of the movies. Low-pass filtered (blue)

and high-pass filtered (red).
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Without temporal filtering

We first used the VDP to compare pairs of frames as
they were actually presented on the display; this
presumes unrealistically that an observer could treat
each 8 ms frame as a separate event and that the human
contrast sensitivity function (CSF) is flat out to about
60 Hz. Overall, the best predictions by just one model
were generated by the Ordered-Temporal Model (r ¼
0.438). The difference predictions were slightly im-
proved when the three models were combined into a
multiple linear regression model and the correlation
coefficient increased to r¼ 0.507. When considering the
accuracy of the models’ predictions in relation to the
different types of movies presented (i.e., spatially
unfiltered, low-pass, and high-pass), the predictions
were consistently superior for the high-pass movies,
and poorest predictions were for difference ratings for
the low-pass movies. More specifically, in the case of
the Multilinear Model, the correlation values between
predictions and measured ratings for unfiltered, low-
pass and high-pass were 0.608, 0.392, and 0.704,
respectively.

Realistic temporal filtering

The predictions discussed so far were generated by
models that compare the movies pairs frame-by-frame,
without taking into account the temporal properties of
V1 neurons. Now we examine whether the inclusion of
sustained or/and transient temporal filters (Figure 4)
improves the models’ performance at predicting per-
ceived differences between two movie clips.

The Multilinear Model based only on the sustained
impulse function caused little improvement overall (r¼

0.509 now vs. 0.507 originally) or separately to the
three different kinds of spatially filtered movie clips,
and the predictions given by the different models
separately for the different spatially filtered movie
versions were also little improved. In particular, the fit
for low-pass movies remained poor (r¼ 0.408 vs. r¼
0.392). This is hardly surprising given that low spatial
frequencies are believed to be detected primarily by
transient channels rather than sustained channels
(Kulikowski & Tolhurst, 1973). However, it is worth
noting that, for the high-pass spatially filtered movies,
the realistic sustained impulse improves the predictions
of the Spatial Model (r increases from 0.336 to 0.582)
but lessens the predictions of the Ordered-Temporal
Model (r decreases from 0.584 to 0.488). This would
seem to be consistent with the idea that higher spatial
frequencies are predominantly processed by sustained
channels (Kulikowski & Tolhurst, 1973).

As expected, when the modeling was based on the
transient impulse function alone with its substantially
different form (Figure 4), the nature of the correlations
changed. In particular, it generated much stronger fits
for low-pass spatially filtered (r¼ 0.636 vs. r¼ 0.408 in
previous case). However, the fits for high-pass were
noticeably weaker (r¼0.675 vs. r¼0.749). When taking
all the movies into account, the improvement of the
predictions for the low-pass movies meant that the
overall correlation for the multilinear fit improved from
0.509 to 0.598. It therefore becomes clear that the
sustained and transient filters operate quite specifically
to improve the predictions for only one type of movie:
high-pass movies in the case of sustained impulse
functions and low-pass movies in the case of transient
impulse functions.

Models

Transient and/or

sustained

All movies

(n ¼ 162)

Unfiltered

(n ¼ 54)

Low-pass

(n ¼ 54)

High-pass

(n ¼ 54)

Spatial – 0.288 0.338 0.274 0.336

Temporal – 0.357 0.409 0.102 0.546

Ordered-Temporal – 0.438 0.505 0.266 0.584

Multilinear (three parameters) – 0.507 0.608 0.392 0.704

Spatial S 0.396 0.425 0.306 0.582

Temporal S 0.299 0.292 0.241 0.414

Ordered-Temporal S 0.415 0.503 0.370 0.488

Multilinear (three parameters) S 0.509 0.631 0.408 0.749

Spatial T 0.453 0.391 0.444 0.565

Temporal T 0.454 0.518 0.481 0.425

Ordered-Temporal T 0.342 0.311 0.301 0.469

Multilinear (three parameters) T 0.598 0.627 0.636 0.675

Multilinear (six parameters) T/S 0.759 0.788 0.702 0.806

Table.1. The correlation coefficients between the observers’ ratings (average of 7 per stimulus) and various V1-based models. The
correlations for the spatially unfiltered, for the low-pass, and the high-pass filtered subsets are shown separately, as well as the fits for
the entire set of 162 movie pairs. Correlations are shown for raw movies and for temporally-filtered (sustained and transient) models.
The final six-parameter multilinear fit is a prediction of ratings from the three models and the two kinds of impulse function.
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Finally, the predictions of the V1 based model were
substantially improved by incorporating both the
transient and sustained filters; that is, a multiple linear
fit with six parameters (three ways for comparing
frames, for each of the sustained and transient
temporal filters). Figure 6 plots the observers’ averaged
ratings against the six-parameter model predictions.
The correlation coefficients between the predictions
generated by this six-parameter multilinear model and
observers’ measured ratings was 0.759 for the full set of
162 movie pairs, a very substantial improvement over
our starting value of 0.507 (P ¼ 0.0001, n ¼ 162). The
correlations for the six parameter fits also improved
separately for the spatially unfiltered (black symbols),
the low-pass movies (blue), and the high-pass movies
(red). The greatest improvement from our starting
point without temporal filtering was in the multilinear
fit for the low-pass spatially filtered movies (r increases
from 0.392 to 0.702).

Discussion

We have investigated whether it is possible to model
how human observers rate the differences between two
dynamic naturalistic scenes. Observers were presented
with pairs of movie clips that differed on various
dimensions, such as glitches and speed, and were asked
to rate how different the clips appeared to them. We
then compared the predictions from a variety of V1-

based computational models with the measured ratings.
All the models were based on multiple comparisons of
pairs of static frames, but the models differed in how
pairs of frames were chosen for comparison. The
pairwise VDP comparison is the same as we have
reported for static photographs of natural scenes (To et
al., 2010), but augmented by prior convolution in time
of the movie clips with separate realistic sustained and
transient impulse functions (Kulikowski & Tolhurst,
1973).

The use of magnitude estimation ratings in visual
psychophysical experiments might be considered too
subjective and, hence, not very reliable. We have
previously shown that ratings are reliable (To et al.,
2010): repeated ratings within subjects are highly
correlated/reproducible (even when the stimulus set
was 900 image pairs), and the correlation for ratings
between observers is generally good. We have chosen
this method in this and previous studies for three
reasons. First, when observers generate ratings of how
different pairs of stimuli appear to them, they have the
freedom to rate the pairs as they please, regardless of
which features were changed. The ratings therefore
allow us to measure discrimination across and inde-
pendently of feature dimensions, separately and in
combination (To et al., 2008; To et al., 2011). Second,
unlike threshold measurements, ratings can be collected
quickly. We are interested in studying vision with
naturalistic images and naturalistic tasks, and it is a
common criticism of such study that natural images are
so varied that we must always study very many (198
movie pairs in this study). Using staircase threshold
techniques for so many stimuli would be impractically
slow. Third, ratings are not confined to threshold
stimuli, and we consider it necessary to be able to
measure visual performance with suprathreshold stim-
uli as well. Overall, averaging the ratings of several
observers together has provided us with data sets that
are certainly good enough to allow us to distinguish
between different V1-based models of visual coding (To
et al., 2010; To et al., 2011). Although our study is not
aimed toward the invention of image quality metrics,
we have essentially borrowed our ratings technique
from that applied field.

We have investigated a number of different measures
for comparing the amount and timing of dynamic
events in within a pair of movies. Our Spatial Model
computed the differences between corresponding
frames in each clip in the movie pair and then combined
the values using Minkowski summation. This is the
method used by Watson (1998) and Watson et al.
(2001) in their model for evaluating the degree of
perceived distortion in compressed video streams. It
seems particularly appropriate in such a context where
the compressed video would have the same funda-
mental spatial and synchronous temporal structure as

Figure 6. The averaged ratings given by observers for the 162

movie pairs consisting of exactly 150 frames are plotted against

our most comprehensive spatiotemporal VDP model: raw

movies (black), low-pass filtered (blue) and high-pass filtered

(red). The model is a multilinear regression with six model terms

and an intercept (a seventh parameter). The six-model terms

are for the three methods of comparing frames, each with

sustained and transient impulse functions. The correlation

coefficient with seven parameters is 0.759. See the Supple-

mentary Materials for more details of this regression.
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the uncompressed reference. In a sense, this measure
imagines that an observer views and memorizes the first
movie clip, and can then replay the memory while the
second clip is played. In our experiments, it will be
sensitive to any differences in the spatial content of the
movies but also to temporal differences caused by loss
of synchrony between otherwise identical movies. The
greater the temporal difference or the longer the
difference lasts, the more the single frames will become
decorrelated and the greater the measured difference.
Others have suggested that the video distortion metrics
would be enhanced by using additional measures,
where observers evaluate the dynamic content within
each movie clip separately (e.g., Seshadrinathan &
Bovik, 2010; Vu & Chandler, 2014; Wang & Li, 2007).
We investigated a Temporal Model, which combined
the differences between successive frames within each
movie, and then compared the summary values
between the movies. While this measure might sum-
marize the degree of dynamic activity within each
movie clip, it will be insensitive to differences in spatial
content, and it is likely to be insensitive to whether two
movie clips have the same overall dynamic content but
a different order of events. Thus, our Ordered-
Temporal Model is a hybrid model that included
elements from both the Spatial and Temporal Models;
this should be particularly enhanced with a transient
impulse function, which itself highlights dynamic
change.

It is easy to imagine particular kinds of difference
between movie clips that one or other of our metrics
will fail to detect, but we feel that most differences will
be shown up by combined use of several metrics. Some
may still escape since we have not explicitly modeled
the coding of lateral motion. Might our modeling miss
the rather obvious difference between a leftward and
rightward moving sine-wave grating, or a left/right flip
in the spatial content of the scene? Natural movement
in natural scenes is less likely to be so regularly
stereotyped as a single moving grating. More interest-
ingly, a literal head-to-head comparison of movie
frames will detect almost any spatio-temporal differ-
ence, but it may be that some kinds of difference are
not perceived by the observer, even though a visual
cortex model suggests that they should be visible,
perhaps because such differences are not of any
survival benefit (see To et al., 2010). Our different
spatial or temporal metrics aim to measure the
differences between movie clips; they are not aimed to
specifically map onto the different kinds of decision
that the observers actually make. Observers often
reported that they noticed that the ‘‘rhythm’’ of one clip
was distorted or that the steady or repetitive movement
within one clip suddenly speeded up. This implies a
decision based primarily upon interpreting just one of
the clips rather than on any direct comparison. Our

model can only sense the rhythm of one clip or a
sudden change within it by comparing it with the
control clip that has a steady rhythm and steady
continuous movement.

As well as naturalistic movie clips, we also
presented clips that were subject either to low-pass
spatial filtering or to high-pass filtering. In general, the
sustained filter was particularly useful at strengthening
predictions for the movies containing only high spatial
frequencies. On the other hand, the transient filter
improved predictions for the low-pass spatially filtered
movies. These results seem to be consistent with the
‘‘classical’’ view of sustained and transient channels
(a.k.a. the parvocellular vs. magnocellular processing
pathways) with their different spatial frequency ranges
(Hess & Snowden, 1992; Horiguchi et al., 2009;
Keesey, 1972; Kulikowski & Tolhurst, 1973; Tolhurst,
1973, 1975). In order to get good predictions of
observers’ ratings, it was necessary to have a multi-
linear regression that included both sustained and
transient contributions.

Although a multiple linear regression fit (Figure 6)
with all six candidates’ measures (three ways for
comparing frames, for each of the sustained and
transient temporal filters) yielded strong predictions of
observers’ ratings (r¼ 0.759, n¼ 162), it is necessary to
point out that there are significant correlations between
the six measures. Using a stepwise linear regression as
an exploratory tool to determine the relative weight of
each, we found that, of the six factors, only two stand
out as being particularly important (see Supplementary
Materials): the spatial/sustained factor, which is
sensitive to spatial information as well as temporal, and
the ordered-temporal/transient factor handling the
specific sequences of dynamic events. A multilinear
regression with only these two measures gave predic-
tions that were almost as strong as with all six factors (r
¼ 0.733, Supplementary Materials). Again, this finding
seems to be consistent with the classical view of
sustained and transient channels, that they convey
different perceptual information about spatial structure
and dynamic content.

Our VDP is intended to be a model of low-level
visual processing, as realistic a model of V1 processing
as we can deduce from the vast neurophysiological
single-neuron literature. The M-cell and P-cell streams
(Derrington & Lennie, 1984; Gouras, 1968)—the
Transient and Sustained candidates—enter V1 sepa-
rately and, at first sight, travel through V1 separately
to reach different extrastriate visual areas (Merigan &
Maunsell, 1993; Nassi & Callaway, 2009). However, it
is undoubtedly true that there is some convergence of
M-cell and P-cell input onto the same V1 neurons
(Sawatari & Callaway, 1996; Vidyasagar, Kulikowski,
Lipnicki, & Dreher, 2002) and that extrastriate areas
receive convergent input, perhaps via different routes
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(Nassi & Callaway, 2006; Ninomiya, Sawamura,
Inoue, & Takada, 2011). Even if the transient and
sustained pathways do not remain entirely separate up
to the highest levels of perception, it still remains that
perception of high spatial frequency information will
be biased towards sustained processing, while low
spatial frequency information will be biased towards
transient processing with its implication in motion
sensing.

Our measures of perceived difference rely primarily
on head-to-head comparisons of corresponding
frames between movies or of the dynamic events at
corresponding points. This is core to models of
perceived distortion in compressed videos (e.g.,
Watson, 1998). It is suitable for the latter case because
the original and compressed videos are likely to be
exactly the same length. However, this becomes a
limitation in a more general comparison of movie
clips, when the clips might be of unequal length. The
bulk of the stimuli in our experiment were, indeed,
paired movie clips of equal length, but 36 out of the
total 198 did differ in length. We have not included
these 36 in the analyses in the Results section because
we could not simply perform the head-to-head
comparisons between the paired clips. In the
Supplementary Materials, we discuss this further: by
truncating the longer clip of the pair to the same
length as the shorter one, we were able to calculate the
predictive measures. The resulting six-parameter
multilinear regression for all stimuli had a less good fit
than for the subset of equal length videos, which
suggests that a better method of comparing unequal
length movie clips could be sought.

The inclusion of sustained and transient filters
allowed us to model low-level temporal processing.
However one surprise is that we achieved very good fits
without explicitly modeling neuronal responses to
lateral motion. It may be relevant that, in a survey of
saliency models, Borji, Sihite and Itti (2013) report that
models incorporating motion did not perform better
than the best static models over video datasets. One
possibility is that lateral motion produces some
signature in the combination of the various measures
that we have calculated. Future work could include
lateral movement sensing elements in our model, either
separately or in addition to the temporal impulse
functions and a number of such models of cortical
motion sensing both in V1 and in MT/V5 are available
(Adelson & Bergen, 1985; Johnston, McOwan, &
Buxton, 1992; Perrone, 2004; Simoncelli & Heeger,
1998). However, the current model does surprisingly
well without such a mechanism.

Keywords: computational modeling, visual discrimi-
nation, natural scenes, spatial processing, temporal
processing
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